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Abstract: Parkinson’s disease (PD), a neurodegenerative disorder, is characterized by the loss of
dopaminergic (DA) neurons. The pathogenesis of PD is associated with several factors includ-
ing oxidative stress, inflammation, and mitochondrial dysfunction. Ca2+ signaling plays a vital
role in neuronal signaling and altered Ca2+ homeostasis has been implicated in many neuronal
diseases including PD. Recently, we reported that apamin (APM), a selective antagonist of the small-
conductivity Ca2+-activated K+ (SK) channel, suppresses neuroinflammatory response. However, the
mechanism(s) underlying the vulnerability of DA neurons were not fully understood. In this study,
we investigated whether APM affected 1-methyl-4-phenyl pyridinium (MPP+)-mediated neurotoxic-
ity in SH-SY5Y cells and rat embryo primary mesencephalic neurons. We found that APM decreased
Ca2+ overload arising from MPP+-induced neurotoxicity response through downregulating the level
of CaMKII, phosphorylation of ERK, and translocation of nuclear factor NFκB/signal transducer and
activator of transcription (STAT)3. Furthermore, we showed that the correlation of MPP+-mediated
Ca2+ overload and ERK/NFκB/STAT3 in the neurotoxicity responses, and dopaminergic neuronal
cells loss, was verified through inhibitors. Our findings showed that APM might prevent loss of DA
neurons via inhibition of Ca2+-overload-mediated signaling pathway and provide insights regarding
the potential use of APM in treating neurodegenerative diseases.
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1. Introduction

The pathological hallmarks of Parkinson’s disease (PD) are the progressive loss of
dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the widespread
aggregation of alpha-synuclein (aSYN) in part of the midbrain, which is involved in motor
control [1]. The neurotoxin 1-methyl-4-phenyl pyridinium (MPP+) is an active metabolite of
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) [2]. It is highly toxic to dopaminergic
neurons and is used to establish various in vitro and in vivo experimental models of PD [3].
Systemically administered MPTP crosses the blood–brain barrier and is taken up by glial
cells, where it is metabolized/oxidized to MPP+ [4]. MPP+ is then released and is specifi-
cally taken up by dopaminergic neurons via dopamine transporters, inhibiting the activity
of mitochondrial complex I [5]. The consequences of mitochondrial dysfunction, thus in-
duced by MPP+, are the inhibition of oxidative phosphorylation [6], ATP depletion [7], pro-
duction of reactive oxygen species (ROS) [8], disturbance in calcium (Ca2+) homeostasis [9],
oxidative stress [10], explosive release of proinflammatory cytokines [11], mitochondrial
depolarization, and permeability transition, which lead to apoptotic death of dopaminergic
neurons [6,12].

Although the etiology of PD is unclear, evidence suggests that abnormal protein
aggregation, mitochondrial dysfunction, dysregulated Ca2+ homeostasis, and oxidative
stress may be involved in neurodegeneration [13]. Therefore, preventing the degeneration
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of dopaminergic neurons has been identified as a possible therapeutic mechanism to
prevent or treat PD [14].

Ca2+ is important for many cellular processes, such as proliferation, growth, differ-
entiation, development, and cell death [15]. In recent years, it has been suggested that
the changes in Ca2+ homeostasis play a key role in the degeneration of dopaminergic
neurons [16]. For example, in mitochondria and endoplasmic reticulum (ER), changes in
Ca2+ homeostasis affect neuronal survival, which is closely associated with PD [17]. In
addition, abnormally high levels of intracellular free-Ca2+-induced overproduction of free
radicals, such as reactive oxygen species (ROS), can activate stress cascade and related
signaling pathways, resulting in apoptosis [12].

The small-conductivity Ca2+-activated K+ (SK) channels have emerged as potential
tools for neuronal protection [18]. SK channel subtypes present alternative pharmacology
and distribution in the nervous system [19]. They control the firing pattern of midbrain
dopaminergic neurons in vivo [20], and could play an important role in modulating the
apoptosis of dopaminergic neurons observed in PD [15]. Ca2+ overload was also confirmed
when MPP+-induced oxidative stress, ER stress, and selective death of dopaminergic
neurons occurred [12,21–23].

Apamin (APM) is a powerful and selective antagonist of the SK channel found in
apitoxin [24]. We have reported the anti-inflammatory, antifibrotic, and anticancer prop-
erties of bee venom and its major components, melittin, and apamin [25–29]. In addition,
we recently investigated and reported the effect of APM on nonneoplastic disease [30].
Bee venom and its components have also been suggested to have beneficial effects in
the treatment of PD [26,31–36]. We recently reported that APM inhibits neuroinflam-
matory responses by regulating the interaction between SK channel/TLR4 and MAPK-
EKR/NFκB/STAT signaling [37]. Therefore, APM is a promising candidate for treating
neurotoxicity and has the potential to prevent and treat various neurological disorders.

Although our prior studies and those by other researchers have investigated the
physiological and pharmacological functions of APM, the effects of APM on Ca2+ overload
and oxidative stress caused by MPP+ in dopaminergic neurons has not been evaluated as
a molecular mechanism. Therefore, in this study, we evaluated the potential therapeutic
effects of APM on the signal transduction pathway involved in dopaminergic neurotoxicity.

2. Results
2.1. APM Protects SH-SY5Y Cells and Rat Embryo Primary Mesencephalic Neurons against
MPP+-Induced Neurotoxicity

To determine cytotoxicity, SH-SY5Y cells and rat embryo primary mesencephalic
neurons treated with different concentrations of MPP+ (1–5 mM or 10–200 µM) and APM
(0.1 to 2 µg/mL) for 24 h were analyzed by the established CCK8 assay. Treatment of
SH-SY5Y cells with MPP+ concentrations ranging from 1 mM showed mild growth in-
hibitory activity with a 10 % decrease in cell viability at 2 mM and exhibited some toxicity
(25%) at 3 mM (Figure S1a). In addition, cytotoxicity was 25% at 50 µM MPP+ in rat embry-
onic primary mesencephalic neurons (Figure S2a). We also confirmed these results at the
cellular level (Figures S1b and S2b). The morphology of SH-SY5Y cells and rat embryonic
primary mesencephalic neurons showed full cell bodies and extending neurites. After
exposure to 3 mM or 50 µM MPP+, cells became sparsely distributed, and displayed growth
inhibition and development of short neurites with few branches. This result was consistent
with changes of cell viability. αSYN expression increased depending on the MPP+ concen-
tration and expression of the dopaminergic neurons marker, tyrosine hydroxylase (TH),
decreased (Figures S1c and S2c).

The cytotoxic effects of APM on SH-SY5Y cells and rat embryonic primary mesen-
cephalic neurons were examined through a CCK assay before investigating its pharmaco-
logical potential. Treatment of SH-SY5Y cells and rat embryonic primary mesencephalic
neurons with APM exhibited some toxicity at 0.5 µg/mL (Figures S1d and S2d). APM
significantly increased the viability of 3 mM or 50 µM MPP+-stimulated SH-SY5Y cells
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and rat embryonic primary mesencephalic neurons compared to cells treated with only
MPP+ (Figures S1e and S2e). Based on these results, the optimal APM concentration
for subsequent experiments was set as 0.5 µg/mL for 3 mM or 50 µM MPP+-stimulated
dopaminergic neurons.

To determine whether APM could regulate the expression of MPP+-induced TH and
αSYN, SH-SY5Y cells and rat embryo primary mesencephalic neurons were incubated
in the presence or absence of APM for 1 h and then treated with MPP+ for 24 h. The rat
embryo primary mesencephalic neurons and SH-SY5Y cells grew well, showing obvious
neurites, and the cells treated with only APM did not show any difference in cell growth
compared to normal cells (Figure 1A). When rat embryo primary mesencephalic neurons
and SH-SY5Y cells were exposed to MPP+, neurites were reduced and cell debris increased;
however, they were recovered with APM co-treatment. Immunofluorescence staining
with an antibody against TH and αSYN revealed that rat embryo primary mesencephalic
neurons and SY-SY5Y cells were healthy TH-positive neurons with extensive neurites.
However, treatment of cells with MPP+ for 24 h reduced the number of TH-positive cells
and induced accumulation of αSYN. When the cells were treated with only APM, the
number and morphology of TH-positive neurons did not change. Addition of APM to
MPP+-treated cells seemed to protect them against the loss of TH-positive neurons and
accumulation of αSYN. These results were also confirmed for SH-SY5Y cells. Consistent
with immunofluorescence staining, APM attenuated TH reduction and accumulation of
αSYN in rat embryo primary mesencephalic neurons (Figure 1B). These expressions were
also confirmed in SH-SY5Y cells (Figure 1C). These results put together indicated that APM
protected dopaminergic neurons from neurotoxicity induced by MPP+.

2.2. APM Ameliorates MPP+-Induced Mitochondrial-Dependent Apoptosis Pathway in SH-SY5Y
and Rat Embryo Primary Mesencephalic Neurons

Cell morphology and viability were identified (Figures S1 and S2) to understand the
neurotoxic effect of MPP+ on the growth of dopaminergic neuronal cells. Since apoptosis is
one of the important steps in the pathogenesis of PD, we hypothesized that APM could
protect dopaminergic neuronal cells by inhibiting the apoptotic pathway. APM inhibited
the cleavage of caspase-3 and PARP, which are apoptosis marker proteins, in MPP+-induced
rat embryo primary mesencephalic neurons and SH-SY5Y cells (Figure 2A,B). Consistent
with these results for APM, it was confirmed that MPP+ induced TUNEL positive cells in
SH-SY5Y cells (Figure 2C,D). Next, we used JC-1 staining to measure the mitochondrial
membrane potential to examine whether mitochondrial membrane integrity was affected
by APM. SH-SY5Y cells were incubated in the presence or absence of APM for 1 h and
then treated with MPP+ for 12 h. APM clearly recovered the number of mitochondria,
which was observed as decreased membrane potential in MPP+-stimulated SH-SY5Y cells.
Furthermore, the anti-apoptotic protein BclxL was significantly increased, while the pro-
apoptotic protein Bax was significantly decreased, by APM in MPP+-stimulated SH-SY5Y
cells (Figure 2E). Thus, these results indicated that APM could protect dopaminergic
neuronal cells from mitochondrial dependent apoptosis caused by MPP+.
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and accumulation of αSYN in rat embryo primary mesencephalic neurons (B), and SH-SY5Y cells 

(C). βActin was used to confirm equal sample loading. Immunoblotting was quantified by densito-

metric analysis. The data are representative of three independent experiments and quantified as 

mean values ± SEM. Tukey’s multiple comparison test, * p < 0.05, ** p < 0.01, *** p < 0.001 compared 

to normal control. 

Figure 1. Effects of APM on MPP+-induced TH and αSYN expression in dopaminergic neuronal cells.
SH-SY5Y cells and rat embryo primary mesencephalic neurons were incubated in the presence or
absence of APM for 1 h and then treated with MPP+ for 24 h. (A) The morphological changes, TH and
αSYN expression in dopaminergic neurons after exposure to MPP+ in the presence or absence of APM.
Immunofluorescence staining for TH (green) and αSYN (red) localization. Cells were counterstained
with DAPI (blue). Scale bars: 50 µm. APM strongly reduced expression of TH reduction and accu-
mulation of αSYN in rat embryo primary mesencephalic neurons (B), and SH-SY5Y cells (C). βActin
was used to confirm equal sample loading. Immunoblotting was quantified by densitometric analysis.
The data are representative of three independent experiments and quantified as mean values ± SEM.
Tukey’s multiple comparison test, * p < 0.05, ** p < 0.01, *** p < 0.001 compared to normal control.
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Figure 2. APM protects MPP+-induced mitochondria-dependent neurotoxicity in dopaminergic
neuronal cells. SH-SY5Y cells and rat embryo primary mesencephalic neurons were incubated in
the presence or absence of APM for 1 h and then treated with MPP+ for 12 h or 24 h. Expression of
cleaved-Caspase3 and cleaved-PARP in rat embryo primary mesencephalic neurons (A) and SH-SY5Y
cells (B) were detected by immunoblotting. βActin was used to confirm equal sample loading.
Arrows: cleaved form. (C) SH-SY5Y cells were evaluated by fluorescence microscopy on the basis
of morphological criteria after TUNEL staining (upper, scale bars: 100 µm) and JC-1 mitochondrial
staining (lower, scale bars: 50 µm) and immunofluorescence positive cells were quantified by den-
sitometric analysis (D). Nuclei were stained with DAPI. APM regulates mitochondrial apoptotic
proteins (E). VDAC was used as mitochondrial loading control. Immunoblotting was quantified by
densitometric analysis. The data are representative of three independent experiments and quantified
as mean values± SEM. Tukey’s multiple comparison test, * p < 0.05, ** p < 0.01, *** p < 0.001 compared
to normal control.
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2.3. APM, a Strong Inhibiter of SK2 Channel, Protects MPP+-Induced Loss of TH-Positive
Neurons and Accumulation of αSYN via Ca2+ Signaling

APM is a specific inhibiter of SK2 channels [24], and we recently reported that APM
inhibits neuroinflammatory responses through SK2 channels [37]. Ca2+ channels play
an important role in the loss of TH-positive neurons and the accumulation of αSyn, and
its inhibition is essential for the protection of dopaminergic neurons [12,16]. First, the
expression of Kca2.2 was increased in a concentration-dependent manner with MPP+ in
SH-SY5Y cells and rat embryonic primary mesencephalic neurons (Figures S1c and S2c).
Next, to examine whether APM itself regulated the SK2/Kca2.2 channel and Ca2+ signaling,
SH-SY5Y cells and rat embryo primary mesencephalic neurons were treated with APM
for 1 h followed by MPP+ for 24 h, followed by immunoblotting and immunofluorescence
staining. First, we observed intracellular localization of Ca2+ overload. In Figure 3A,
APM and BAPTA-AM significantly inhibited FLUOFORTE positive cells by MPP+ in rat
embryo primary mesencephalic neurons. In addition, APM inhibited the expression of
Kca2.2 and pCaMKII induced by MPP+ in rat embryo primary mesencephalic neurons and
SH-SY5Y cells (Figure 3B,C). We also confirmed that MPP+-induced TH reduction and
αSYN expression were protected by BAPTA-AM in SH-SY5Y cells (Figure S3a). These
results suggested that APM could alter MPP+-induced neurotoxicity in dopaminergic
neuronal cells by inhibiting Ca2+ overload.
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Figure 3. APM inhibited MPP+-induced SK channels in dopaminergic neuronal cells. SH-SY5Y cells
and rat embryo primary mesencephalic neurons were incubated in the presence or absence of APM
or BAPTA-AM (5 µM) for 1 h and then treated with MPP+ for 24 h. (A) Intracellular Ca2+ overload
positive cells of rat embryo primary mesencephalic neurons were evaluated using fluorescence
microscopy using FLUOFORTE staining (green, scale bars: 100 µm). Nuclei were stained with DAPI
(blue). APM significantly inhibit MPP+-induced Kca2.2 and pCaMKII expression in rat embryo
primary mesencephalic neurons (B) and SH-SY5Y cells (C). βActin was used to confirm equal sample
loading. Immunoblotting and immunofluorescence positive cells were quantified by densitometric
analysis. The data are representative of three independent experiments and quantified as mean
values± SEM. Tukey’s multiple comparison test, ** p < 0.01, *** p < 0.001 compared to normal control.
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2.4. APM Alleviates MPP+-Induced Neuroinflammatory Response, Oxidative and ER Stress

MPP+ causes mitochondrial dysfunction, neuroinflammation, oxidative stress, and
ER stress [38]. To evaluate the impact of APM on MPP+-mediated neuroinflammatory
response, SH-SY5Y and rat embryo primary mesencephalic neurons were treated with
APM for 1 h followed by MPP+ for 24 h, immunoblotting, real-time PCR, ELISA, and
immunofluorescence staining. Increased TNFα, IL1β, and IL6 expression was significantly
inhibited in MPP+-stimulated SH-SY5Y cells by APM administration (Figure 4A). Consis-
tent with these results, APM significantly suppressed MPP+-induced secretion of TNFα,
IL1β, and IL6 and their mRNA expression in SH-SY5Y cells (Figure S4).
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Figure 4. APM alleviated MPP+-induced neuroinflammatory response, oxidative stress, and ER
stress. Dopaminergic neuronal cells were incubated in the presence or absence of APM for 1 h
and then treated with MPP+ for 24 h. Expression of inflammatory cytokines (A), HIF1α, NOX2,
GRP78, and CHOP (B) in SH-SY5Y cells were analyzed by immunoblotting. (C) Expression of TNFα,
NOX2, and CHOP in rat embryo primary mesencephalic neurons were confirmed by immunoblotting.
βActin was used to confirm equal sample loading. (D) ROS generation in rat embryo primary
mesencephalic neurons was detected by DCF-DA staining (green, scale bars: 100 µm). Nuclei were
stained with DAPI (blue). Immunoblotting and immunofluorescence positive cells were quantified by
densitometric analysis. The data are representative of three independent experiments and quantified
as mean values± SEM. Tukey’s multiple comparison test, * p < 0.05, ** p < 0.01, *** p < 0.001 compared
to normal control.

MPP+ causes Ca2+-mediated HIF-1α accumulation through the mechanism of ROS
production by NOX2 [39]. Therefore, we examined the accumulation of HIFα and NOX2 in
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response to MPP+-induced ROS production. Increased HIFα and NOX2 expression was
significantly inhibited in MPP+-stimulated SH-SY5Y by APM administration (Figure 4B).

MPP+ causes mitochondrial dysfunction and disturbs Ca2+ homeostasis in the ER [38].
APM significantly inhibited MPP+-induced GRP78 and CHOP expression in MPP+-stimulated
SH-SY5Y cells (Figure 4B). Consistent with these results, APM strongly inhibited expression
of TNFα, NOX2, and CHOP in MPP+-stimulated rat embryo primary mesencephalic
neurons (Figure 4C). DCF-DA positive cells were remarkably elevated in MPP+-stimulated
rat embryo primary mesencephalic neurons (Figure 4D), whereas administration of APM
significantly inhibited these levels. These strong expressions were inhibited by APM,
which is linked to the outcome of MPP+-induced mitochondrial membrane potential
disorder observed in Figure 2E. We also confirmed that the MPP+-induced TH reduction,
αSYN accumulation, and Kca2.2 expression were strongly protected by NAC and 4-PBA
(Figure S5a,b). Moreover, the MPP+-induced TNFα, NOX2, and CHOP expression were
clearly inhibited by BAPTA-AM in SH-SY5Y cells (Figure S3b). These results also suggested
that APM could alter MPP+-induced neurotoxicity in dopaminergic neuronal cells by
inhibiting the Ca2+ overload.

2.5. APM Ameliorates MPP+-Induced Neurotoxicity via ERK/STAT/p65 Signaling Pathway in
Dopaminergic Neuronal Cells

Dopaminergic neuron loss, oxidative stress, and ER stress induced by MPP+ trigger
MAPK-ERK/JNK/p38, p65, and STAT potential, disrupting Ca2+ homeostasis [12,20]. Ac-
cordingly, we investigated whether APM influenced MPP+-induced neurotoxicity
via regulation of the MAPK-ERK/JNK/p38 signaling pathway. Phosphorylation of
MAPK-ERK/JNK/p38 were significantly induced in MPP+-stimulated SH-SY5Y cells
(Figures 5A and S6a). Interestingly, APM inhibited MPP+-induced pERK-pJNK-pp38, but
inhibited pERK most strongly. In addition, it was confirmed that the pERK-MAPK was in-
hibited by APM in rat embryo primary mesencephalic neurons (Figure 5B). This controlling
effect of strong APM on ERK is consistent with our other reports [37,40]. According to these
results, since MPP+ induced neurotoxicity through the MAPK-ERK signaling pathway, the
effects of ERK inhibitor on MPP+-induced TH and aSYN expression were investigated.
SCH772984 significantly decreased MPP+-induced TH reduction and αSYN expression in
SH-SY5Y cells, similar to APM (Figure S6b).

Dopaminergic neurotoxins induce cell death and neuroinflammatory responses by
NFκB and STAT3 translocation [14,41]. Therefore, we examined the translocation of NFκB
and STAT3 in response to MPP+-stimulated SH-SY5Y and rat embryo primary mesen-
cephalic neurons. Along with phosphorylation, pp65 and pSTAT3 were translocated from
the cytoplasm to the nucleus after MPP+ stimulation (Figure 5C,D); however, this was
effectively inhibited by APM in dopaminergic neuronal cells. These results were further
supported by DNA binding activity. Formation of NFκB-DNA and STAT3-DNA complexes
was prominent in nuclear extracts of MPP+-stimulated SH-SY5Y cells (Figure 5E). However,
formation of these complexes was significantly suppressed in MPP+-stimulated SH-SY5Y
cells when these cells were treated with APM. We also performed immunofluorescence
staining to confirm whether treatment with APM inhibited nuclear translocation of NFκB
and STAT3 in MPP+-stimulated rat embryo primary mesencephalic neurons. The translo-
cation of pp65 and pSTAT3 expression was observed at the same position as the staining
nucleus in MPP+-stimulated rat embryo primary mesencephalic neurons (Figure 5F). These
expressions were effectively inhibited by APM. These results were consistent with data
obtained above. Since MPP+-induced neurotoxicity through the NFκB and STAT3 signaling
pathway, the effects of each of these inhibitors on MPP+-induced TH and αSYN expression
were investigated. Bay11-7085 and S3I-201 clearly inhibited MPP+-induced TH reduction
and αSYN expression in SH-SY5Y cells, similar to APM (Figure S6d).
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Figure 5. APM strongly inhibited MPP+-induced phosphorylation of MAPK-ERK/p65/STAT3
signaling pathway. Dopaminergic neuronal cells were incubated in the presence or absence of APM
for 1 h and then treated with MPP+ for 12 h. Phosphorylation of ERK in SH-SY5Y cells (A) and
rat embryo primary mesencephalic neurons (B) were analyzed by immunoblotting. MPP+-induced
NFκB-p65 and STAT3 translocation in SH-SY5Y cells (C) and rat embryo primary mesencephalic
neurons (D) were analyzed by immunoblotting. βActin was used to confirm equal sample loading.
(E) The DNA-binding activity of NFκB-p65 and STAT3 in nuclear extracts was measured using EMSA.
(F) Immunofluorescence double staining for TH (green) and pp65 (red) localization, and TH (green)
and pSTAT3 (red) localization, in rat embryo primary mesencephalic neurons. Scale bars: 50 µm.
Nuclei were stained with DAPI (blue). Immunoblotting and EMSA were quantified by densitometric
analysis. The data are representative of three independent experiments and quantified as mean
values ± SEM. Tukey’s multiple comparison test, * p < 0.05, ** p < 0.01, *** p < 0.001 compared to
normal control.

To further investigate the interactive role of MPP+-induced pERK, pp65, and pSTAT3
translocation, SH-SY5Y cells were treated with Bay11-7085, S3I-201, SCH772984, and APM.
MPP+-induced pp65 and pSTAT3 translocation was significantly inhibited by SCH772984
and APM (Figure S6c). In addition, MPP+-induced pERK was strongly inhibited by
Bay11-7085, S3I-201, and APM (Figure S6d). Together, these data confirmed the interac-
tion between MAPK-ERK phosphorylation and p65/STAT3 translocation in dopaminergic
neurotoxins, suggesting that APM played an important role in their regulation.

3. Discussion

Although the etiology of PD is unclear, evidence suggests that abnormal protein aggre-
gation, mitochondrial dysfunction, and dysregulated Ca2+ homeostasis may be involved
in neurodegeneration observed in PD [12]. In recent years, changes in Ca2+ homeostasis
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has been suggested to play a key role in the degeneration of dopaminergic neurons [6].
MPP+ is shown to selectively increase intracellular Ca2+ concentrations in mesencephalic
cultures [42]. It was also reported that the increase in cytosolic Ca2+ was not caused by
MPP+-induced oxidative stress but was dependent on Ca2+ channel activity and aSYN
expression, and these two pathogenic factors acted on PD [43]. A study of potential neuro-
protective agents through attenuation of MPP+ and Ca2+-overload-induced excitotoxicity
in SH-SY5Y cells has been reported [44]. Many reports imply that Ca2+ is involved in the
pathogenesis of PD and, therefore, the regulation of Ca2+ might be a potential therapeutic
target for neuroprotection in PD [45,46].

It has been suggested that use of APM, a specific selective antagonist of the SK2 chan-
nels, has beneficial effects in treating PD [31,34]. We have reported the anti-inflammatory
and anti-fibrotic properties of APM in chronic diseases [25,28,29,40]. Recently, we reported
that APM suppresses LPS-induced neuroinflammatory responses via SK channels and
TLR4 signaling [37]. Our prior studies have investigated the physiological function of
APM. However, the molecular mechanisms of MPP+-induced neurotoxicity and cellu-
lar signaling potential of APM in PD models have not yet been elucidated. The major
findings of this study are that APM suppressed TH reduction and αSYN accumulation
through the inhibition of MAPK-ERK phosphorylation and pp65/pSTAT3 translocation,
and that it ameliorated the neuroinflammatory response and apoptosis in dopaminergic
neuronal cells.

Several studies have suggested that reduction of TH, aggregation of αSYN, neuroin-
flammatory response, and apoptosis of dopaminergic neuronal cells play important roles
in both in vitro and in vivo models of PD [6,12,47,48]. Thus, many studies have been
conducted to find their inhibitors [7,10,47,49–53]. Furthermore, the membrane-permeable
Ca2+ chelator, BAPTA-AM, significantly protects cells from oxidative stress, ER stress,
and apoptosis [22,54–56]. BAPTA-AM and a Ca2+ channel blocker suppress αSYN ag-
gregates in HEK293T cells and SHSY-5Y cells treated with KCl54, supporting the notion
that dysregulation of cytosolic Ca2+ contributes to dopaminergic neurodegeneration [57].
Our result showed that APM inhibited MPP+-induced reduction of TH, αSYN expression,
neuroinflammatory response, and apoptosis in dopaminergic neuronal cells. APM had
an anti-inflammatory and anti-apoptotic effect; this is consistent with our other research
reports [25,28,37].

Ca2+ signaling plays a vital role in neuronal signaling and altered Ca2+ homeostasis
in many neuronal diseases including PD [20,44,58]. The rise in intracellular Ca2+ rapidly
activates CaMKII [59]. Additionally, CaMKII is widely distributed in neurons including
mesencephalic neurons [60]. APM inhibited the MPP+-induced SK/KCa2.2 and pCaMKII
expression in SHSY-5Y cells and rat embryo primary mesencephalic neurons.

CaMKII is a vital regulator of multiple signaling pathways initiated by Ca2+

signaling [61]. Activated pCaMKII upregulates downstream ERK, NF-kB, and STAT3
signaling leading to inflammatory response, cell apoptosis, and ultimately neuronal
damage [62–64]. Recently, several studies reported that the cell signaling control of
these transcription factors inhibited neuroinflammation [65–69]. We reported potential
candidates for the treatment of neurodegenerative disorders through inhibition of ERK,
NFκB, and STAT3 [70]. In accordance with these findings, our present results showed
that APM effectively inhibited ERK, NFκB, and STAT3 in MPP+-stimulated dopaminergic
neuronal cells.

Taken together, APM is believed to be a strong inhibitor of neurotoxicity by regulat-
ing mediated to increased SK channels and neurotoxin-mediated signaling pathways in
dopaminergic neuronal cells. Thus, APM is a promising candidate for anti-neurotoxic agent,
and it can be used for the prevention and treatment of various neurological disorders.
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4. Materials and Methods
4.1. Cell Cultures and Reagents

A dopaminergic human neuroblastoma cell line SH-SY5Y (America Tissue Culture
Collection, CRL-2266; ATCC, Manassas, VA, USA), was cultured in a Dulbecco’s Modified
Eagle’s Medium (DMEM) medium (Gibco, Grand Island, NY, USA) containing 10% fetal
bovine serum (FBS, Gibco) and 1% Anti-Anti (Gibco). Mesencephalic neuron cultures were
prepared from the ventral mesencephalic tissues of embryonic day 13–14 rats, as described
previously [35,36]. All experimental protocols were approved by the Institutional Animal
Care and Use Committee of the Daegu Catholic University Medical Center (EXP-IRB
number: DCIAFCR-191112-07-Y) in accordance with criteria outlined in the Institutional
Guidelines for Animal Research. Briefly, dissociated cells were seeded at 1 × 105/well
to poly-d-lysine and laminin-coated 24-well plates. Cells were cultured in a Dulbecco’s
modified Eagle’s medium/Ham’s F-12 medium (Gibco) containing ITS premix (Sigma-
Aldrich, St Louis, MO, USA) and 1% penicillin-streptomycin (Gibco). Cell cultures were
maintained at 37 ◦C in a humidified atmosphere of 5% CO2.

The sources of the following reagents were: MPP+ (Sigma-Aldrich); an intracellu-
lar Ca2+ chelator, BAPTA-AM (Sigma-Aldrich); a specific inhibitor for ROS, NAC (Cell
Signaling, Danvers, MA, USA); a specific inhibitor for ER stress, phenyl butyric acid, 4-PBA
(Sigma-Aldrich); a specific for ERK, SCH772984 (Cell Signaling); a specific for NF-κB,
Bay11-7085 (Sigma-Aldrich); a specific for STAT3, S3I-201 (Sigma-Aldrich); anti-Kca2.2
(Millipore, Bedford, MA, USA); anti-pCaMKII and anti-CaMKII (Novus, Littleton, CO,
USA); anti-TNFα, anti-IL1β, and anti-IL6 (Abcam, Cambridge, MA, USA); anti-HIF1α,
anti-Bcl-xL, and anti-Bax (Santa Cruz Biotechnology, Dallas, TX, USA); anti-NOX2 (Thermo
Fisher Scientific, Waltham, MA, USA); anti-TH, anti-αSYN, anti-Caspase3, anti-PARP,
anti-GRP78, anti-CHOP, anti-pERK, anti-ERK, anti-pJNK, anti-JNK, anti-pp38, anti-p38,
anti-pp65, anti-p65, anti-pSTAT3, anti-STAT3, and anti-β-actin, and horseradish peroxidase-
conjugated secondary antibodies (Cell Signaling). Immunoblots were detected using an
enhanced chemiluminescence reagent (Amersham Bioscience, Amersham, UK).

4.2. Morphology Examination

Morphological changes in cells were observed under an inverted phase-contrast mi-
croscope (Olympus CKX41SF, Tokyo, Japan). The effect of APM on MPP+-induced neuro-
toxicity was observed for 24 h. The photographs were taken at ×200 or ×400 magnification
using a digital camera.

4.3. Cytotoxicity Assay

To evaluate the effect of APM on MPP+-stimulated proliferation of SH-SY5Y cells,
cells were plated in 96-well culture plates at 1 × 105 cells/mL in culture medium and
allowed to attach for 24 h. Media were then discarded and replaced with new medium
containing various concentrations of MPP+ and APM. Cell viability was analyzed using the
Cell Counting Kit (CCK8; Dojindo Laboratories, Kumamoto, Japan) assay according to the
manufacturer’s instructions. The absorbance at 450 nm was assessed using a microplate
reader (Thermo Fisher Scientific).

4.4. Quantitative Real-Time Polymerase Chain Reaction (PCR) Analysis

mRNA transcription of cytokines was analyzed by qRT-PCR. Total RNA was extracted
from SH-SY5Y cells using TRIzol Reagent (Thermo Fisher Scientific) according to the
manufacturer’s recommendations. Reverse transcription reaction was performed using
EcoDry Premix Kit (TaKaRa, Tokyo, Japan). cDNA was subjected to qRT-PCR using SYBR
Green Mix kit (Toyobo, Osaka, Japan) and the CFX Connect real-time PCR system (Bio-Rad
Laboratories, Hercules, CA, USA). Primers, synthesized at Microgen (Daejon, Korea), were
as follows: for TNF-α, 5′-TCT CGA ACC CCG AGT GAC AA-3′ (sense) and 5′-TGA AGA
GGA CCT GGG AGT AG-3′ (antisense); for IL-6, 5′-CAC AGA CAG CCA CTC ACC TC-3′

(sense) and 5′-TTT TCT GCC AGT GCC TCT TT-3′ (antisense); for β-actin, 5′-CTT CCT
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GGG CAT GGA GTC CT-3′ (sense) and 5′-GGA GCA ATG ATC TTG ATC TT-3’ (antisense).
β-actin served as a normalization control. The relative RNA expression of each gene was
analyzed using the 2−∆∆CT method as previously reported [37].

4.5. Enzyme-Linked Immunosorbent Assay (ELISA)

The culture medium of the cells was harvested, and cytokine production (TNFα, IL1β,
and IL6) in the supernatant was measured with a solid phase sandwich enzyme-linked
immunosorbent assay (ELISA) using a Quantikine TNFα, IL1β, and IL6 kit (R&D systems,
Minneapolis, MN, USA) according to the manufacturer’s instructions.

4.6. Immunoblot Analysis

Cytosolic and nuclei protein fractions were obtained as described [34]. Protein samples
were prepared from the cultured SH-SY5Y cells and rat embryo primary mesencephalic
neurons with a protein extraction buffer (Cell Lytic™ M; Sigma) and NE-PER Nuclear and
Cytoplasmic Extraction Kit (Thermo Fisher Scientific). The protein concentration of the
samples was measured with Bio-Rad Bradford kit (Bio-Rad Laboratories). The protein
samples were loaded on precast gradient polyacrylamide gels (Bolt™ 4–12% Bis-Tris Plus
Gels; Thermo Fisher Scientific) and transferred to nitrocellulose membranes (GE Healthcare,
Madison, WI, USA) by using Bolt™ Mini Blot Module and Mini Gel Tank (Thermo Fisher
Scientific), according to the manufacturer’s recommendations. The membrane blocked
with 5% bovine serum albumin was probed with a primary antibody and horseradish
peroxidase-conjugated secondary antibody. The chemiluminescent substrate (Thermo
Fisher Scientific) was used to detect the protein bands. Image analyses were performed
using the ChemiDoc™ XRS+ (Bio-Rad Laboratories).

4.7. Terminal Deoxynucleotidyl-Transferase-Mediated dUTP Nick End Labelling (TUNEL) Staining

Apoptotic cells were detected in situ by TUNEL assay using an In Situ Cell Death
Detection kit (Roche Applied Science, Penzberg, Germany). Following this, the cells were
resuspended in permeabilization solution for 2 min on ice. Cells were washed by PBS three
times, resuspended in TUNEL reaction buffer mixture, and incubated in the dark at 37 ◦C
for 1 h. Cells were counterstained with DAPI (excitation/emission = 330–380 nm/460 nm,
ImmunoChemistry, Bloomington, MN, USA). Immunolabeling was examined by an Eclipse
Ti-U confocal microscope and processed with NIS-Elements C ver. 4.20 software (Nikon,
Tokyo, Japan). A total of 10 fields-of-view were randomly selected for analysis.

4.8. JC-1 Mitochondrial Transmembrane Potential Assay

To measure the mitochondrial transmembrane potential, JC-1 dye (Sigma-Aldrich), a
sensitive fluorescent probe, was used. Fluorescence microscopy with a 488 nm filter was
used for the excitation of JC-1. Emission filters of 535 and 595 nm were used to quantify
the population of mitochondria with green (JC-1 monomers) and red (JC-1 aggregates)
fluorescence, respectively. Immunolabeling was examined by an Eclipse Ti-U microscope
(Nikon). A total of 10 fields-of-view were randomly selected for analysis.

4.9. Detection of Intracellular Ca2+ and ROS Expression

For evaluating the intracellular Ca2+ level and oxidative stress levels in rat embryo pri-
mary mesencephalic neurons, FluoForte Calcium Assay Kit (Enzo Life Sciences, Ann Arbor,
MI, USA) and 2′,7′-dichlorofluorescin diacetate (DCFDA)/H2DCFDA-Cellular ROS Assay
Kit (Abcam) were used. Cells were stained according to each manufacturer’s recommended
protocol. Cells were counterstained with DAPI (excitation/emission = 330–380 nm/460 nm,
ImmunoChemistry). The fluorescence signal was detected and observed using an Eclipse
Ti-U and confocal microscope (Nikon). A total of 10 fields-of-view were randomly selected
for analysis.
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4.10. Immunofluorescent Staining

Cells were incubated with primary antibodies for 1 h at room temperature. After wash-
ing, they were incubated with the Alexa Flour 488 (excitation/emission = 495/519 nm,
green, Invitrogen, Carlsbad, CA, USA) and Alexa Flour 594 (excitation/emission = 590/617 nm,
red, Invitrogen) for 30 min at room temperature. Cells were counterstained with DAPI
(excitation/emission = 330–380 nm/460 nm, ImmunoChemistry). Slides were mounted us-
ing ProLong® Gold antifade reagent (Molecular Probes® by Life TechnologiesTM, Carlsbad,
CA, USA). Immunolabeling was examined using an Eclipse Ti-U and confocal microscope (Nikon).

4.11. Electrophoretic Mobility Shift Analysis

Nuclear extract fractionation from dopaminergic neuronal cells was conducted using
an NE-PER Nuclear and Cytoplasmic Extraction Kit (Thermo Fisher Scientific) according to
the manufacturer’s instructions. The lightshift chemiluminescent electrophoretic mobility
shift analysis (EMSA) Kit (Thermo Fisher Scientific) was used for the EMSA to analyze the
expression of NFκB and STAT3. The consensus NFκB binding site (5′-AGT TGA GGG GAC
TTT CCC AGG C-3′) and STAT3 binding site (5′-CTT CAT TTC CCG TAA ATC CCT AAA
GCT-3′) were used as DNA binding oligos.

4.12. Statistical Analysis

All data analysis was performed with the GraphPad Prism 9 (GraphPad Software,
Inc., San Diego, CA, USA) using either a one-way ANOVA with Tukey’s post hoc test for
multiple comparisons and data are presented as the mean ± SEM (* p < 0.05, ** p < 0.01,
*** p < 0.001).
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