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Abstract: The COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), has captivated the globe’s attention since its emergence in 2019. This highly infectious,
spreadable, and dangerous pathogen has caused health, social, and economic crises. Therefore,
a worldwide collaborative effort was made to find an efficient strategy to overcome and develop
vaccines. The new vaccines provide an effective immune response that safeguards the community
from the virus’ severity. WHO has approved nine vaccines for emergency use based on safety and
efficacy data collected from various conducted clinical trials. Herein, we review the safety and
effectiveness of the WHO-approved COVID-19 vaccines and associated immune responses, and
their impact on improving the public’s health. Several immunological studies have demonstrated
that vaccination dramatically enhances the immune response and reduces the likelihood of future
infections in previously infected individuals. However, the type of vaccination and individual health
status can significantly affect immune responses. Exposure of healthy individuals to adenovirus
vectors or mRNA vaccines causes the early production of antibodies from B and T cells. On the other
hand, unhealthy individuals were more likely to experience harmful events due to relapses in their
existing conditions. Taken together, aligning with the proper vaccination to a patient’s case can result
in better outcomes.
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1. Introduction

Coronaviruses are well-known zoonotic enveloped single-stranded ribonucleic acid
viruses [1]. Ribonucleotide viruses have a high mutation capability, which explains their
progressive transmissibility and infectivity [2]. This viral infection can range from mild
asymptomatic to severe, which leads to hospitalization due to respiratory distress, including
chest pain, shortness of breath accompanied by low blood oxygen, and loss of motor
functions [1]. The human coronavirus-related illness emerged in November 2002 when
patients developed atypical pneumonia caused by acute respiratory syndrome coronavirus
(SARS-CoV-1) infection [3]. In 2012, a fatal, widely spreading coronavirus strain called
the Middle East respiratory syndrome (MERS) emerged in the Middle East. Patients with
MERS presented with acute respiratory and renal failure, severe complications in different
organs, tissues, and body fluids, and pericardium inflammation and coagulation [4]. In
December 2019, a new coronavirus, SARS-CoV-2, was reported in Wuhan city, China, with
an unusual number of patients experiencing severe acute respiratory pneumonia [1]. The
14 open reading frames (ORFs) in the SARS-CoV genome code for 27 proteins. Nearly 70%
of the virus genome is made up of the first ORF (ORFla and ORF1b), which include 15 non-
structural proteins (nsps). The four major structural proteins are membrane (M), envelope
(E), spike (S), and nucleocapsid (IN) proteins, which were encoded by the remaining ORFs
in the 3’-terminal region, together with eight accessory proteins (3a, 3b, p6, 7a, 7b, 8b, 9b,
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and ORF14) [5]. Moreover, comparing SARS-CoV-2 to SARS-CoV at the amino acid level
indicated that both viruses are relatively similar [5]. However, SARS-CoV-2 is distinct
from MERS-CoVs. Phylogenetic analysis based on whole-genome sequence revealed that
SARS-CoV-2 has descended from the SARS-like bat CoV lineage [6,7].

With the extraordinary increase in the number of cases and deaths worldwide, the
World Health Organization (WHO) declared that SARS-CoV-2 is a global pandemic and
named the disease Coronavirus Disease 2019 (COVID-19) in March 2020 [8]. Globally, as
of 5 August 2022, there were 578,142,444 million confirmed COVID-19 cases, with more
than 6.4 million deaths [9]. A massive economic burden has been imposed on patients
and the general population due to the COVID-19 pandemic [10]. Therefore, the need for
effective medications and vaccines against COVID-19 was urgent. Consequently, several
pharmaceutical companies compete to develop vaccines that can minimize the damage
associated with COVID-19.

As a result, the Pfizer/BioNTech vaccine was added to the WHOs emergency use list
on 31 December 2020, followed by AstraZeneca/Oxford, Janssen, Moderna, Sinopharm,
Sinovac-CoronaVac, Covaxin, Covovax, and Convidecia COVID-19 vaccines. These vac-
cines have met the necessary criteria for safety and efficacy, according to the WHO [11].
It has been demonstrated that the S glycoprotein of SARS-CoV-2 is the optimal target for
vaccine development on various platforms due to its high antigenicity and capacity to elicit
potent immune responses [12]. Furthermore, the epitopes derived from S glycoprotein
utilize peptide fragments to minimize the allergic and/or reactogenic effects, offering a
promising alternative for creating new and safer vaccinations with highly targeted immune
responses [13]. Vaccines based on the S protein have the potential to induce antibodies that
either neutralize virus infection or prevent virus binding and fusion [14].

This review discusses the WHO-approved COVID-19 vaccine types, efficacy, safety
concerns, complications, and related immune responses.

1.1. SARS-CoV-2 Vaccines

The COVID-19 vaccine has been developed in a remarkable time due to the pandemic.
Phase I was completed in 6-9 months, compared to the normal time frame of 3-9 years
for other vaccines (Figure 1) [15]. In addition, the three phases of COVID-19 vaccine
development overlapped to speed up the process [16].

There are four primary categories of COVID-19 vaccines, including (i) attenuated
whole virus vaccines, (ii) protein-based vaccines, (iii) viral vector vaccines, and (iv) nucleic
acid vaccines.

1.2. Whole Virus Vaccines

Whole virus vaccines are attenuated or inactivated viral vaccines, which are devel-
oped by destroying the virus’ genetic material by heating, chemicals, or radiation while
maintaining all viral proteins intact (Figure 2). Therefore, the whole virus vaccines are not
infective but can still stimulate the immune system [17]. Whole inactivated virus vaccines
can produce a robust immune response. Antigens from SARS-CoV-2 will be presented
to antigen-presenting cells that produce immune responses and memory cells [18]. Ap-
proved COVID-19 whole virus vaccines include Sinopharm, Sinovac, and Covaxin. Table 1
illustrates the effectiveness, pros, cons, and usage of whole virus COVID-19 vaccines.
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Figure 1. Development of COVID-19 vaccine in comparison to other vaccines.
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Figure 2. COVID-19 whole virus vaccine development.
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Table 1. WHO-approved vaccines.
WHO-Approved Inactivated Whole SARS-CoV-2 Vaccines
The Vaccine Efficacy Advantages Disadvantages Usage References
78.10°% Reduction in the Sinopharm
in re.ven(t)in Easy to preserve,  efficacy of vaccines  inactivated vaccines
Sinopharm P & manufacture,and  over time canlead  are given in 2 doses [19]
symptomatic transport to lower for 18 years and
COVID-19 infection. ' . - T
immunogenicity. older individuals.
519 The need of batch ~ Sinovac inactivated
in reve; tin Easy to preserve, control to prevent  vaccines are given in
Sinovac P & manufacture, and any impairment 2 doses for 18 years [19]
symptomatic
. . transport. that can lead and older
COVID-19 infection. . . o
to infection. individuals.
77 809% Covaxin inactivated
in re.ven(t)in Easy to preserve, The need of vaccines are given in
Covaxin p '8 manufacture, and adjuvant to boost 2 doses for 18 years [20]
symptomatic transport the immunit and older
COVID-19 infection. port. ¥ and
individuals.
Nucleic acid based WHO-approved COVID-19 vaccines
The vaccine Efficacy Advantages Disadvantages Usage References
Safe for children
along with The need of Vaccines are given in
91.10% long-term ultra-low 2 doses for 6 months
. . in reducing protection against temperature for and older
Pfizer/BioNTech symptomatic COVID-19 transportation and individuals, with [21,22]
COVID-19 infection. storage. dose modification in
High They are expensive younger patients.
immunogenicity
Vaccines are given in
94.1% The need of low 2 doses for 6 months
Moderna in reducmg . High N temperature for . .ar.1d older . [23,24]
symptomatic immunogenicity =~ transportation and individuals, with
COVID-19 storage. dose modification in
younger patients
Viral vector WHO-approved COVID-19 vaccines
The vaccine Efficacy Advantages Disadvantages Usage References
79% The need for AstraZeneca is given
in preventing Stable and easier to  adjuvant and the in 2 doses for 18
AstraZeneca symptomatic distribute limited years and older [25,26]
COVID-19 infection immunogenicity individuals.
67% Stable and easier to The need for Johnson and Johnson
ohnson an in preventin istribute as we adjuvant and the vaccine is given in
Joh d in p ing distrib 11 dj d th ine is gi in 1 [27]
Johnson symptomatic asitis givenin a limited dose for 18 years and
COVID-19 infection single shot immunogenicity older individuals.

1.3. Protein-Based Vaccines

Protein-based vaccines use only a part of the viral protein as an antigen to develop
an effective host immune response [28]. They can be classified into subunit and virus-
like particle vaccines. The subunit vaccines are prepared using recombinant technology
(Figure 3). This technology is relatively expensive compared to other techniques, but it
is safe, efficient, and accessible [28]. The main disadvantage of the recombinant protein
vaccine is its low immunogenicity and the need for using an adjuvant. An example of
SARS-CoV-2 protein-based vaccines includes Covovax (Novavax) [28]. The main advantage
of Novavax is its unique platform through inserting part of the spike protein that will
produce a more balanced and sustained immune response compared to other vaccines,
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along with the ability to withstand the external environment [29]. On the other hand, the
main disadvantages are the need for longer research time and effort to develop the protein
subunit vaccine and the need to use an adjuvant to have a better immune response outcome.
The Novavax vaccine is given in two doses for 18 years and above and has 89.7% efficacy
in preventing symptomatic infection [29].

Protein Subunit COVID-19 vaccines
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Protein
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Plasmid contains the viral Expression of viral proteins
subunit protein code and purification

Figure 3. Development of COVID-19 protein subunit vaccine.

1.4. Nucleic Acid-Based Vaccines

The use of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) is a newly utilized
technique for COVID-19 vaccine development [30]. They are developed recombinantly by
using a specific virus gene, which is expressed in the body as a protein that causes antibody
production (Figure 4) [30].
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Figure 4. Development of COVID-19 nucleic acid-based vaccine.
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DNA and RNA vaccines can integrate into the human genome and mutate humans’ ge-
netic code. However, RNA is very unstable compared to DNA, and the only RNA-approved
vaccines for COVID-19 are Pfizer/BioNTech and Moderna [30,31]. Table 1 shows the effi-
cacy, benefits, drawbacks, and application of the various nucleic acid COVID-19 vaccines.

1.5. Viral Vector-Based Vaccines

The virus-like particles technology was used to develop different SARS-CoV-2 vaccines,
such as AstraZeneca and Johnson & Johnson, by using a harmless virus as a vector to carry
a SARS-CoV-2 antigen code (Figure 5). This technology produces a specific protein with the
capability to build the host’s immune response [32]. The main disadvantage of viral vector
vaccines is the need for multiple booster doses [32,33]. Table 1 shows the efficacy, strengths,
weaknesses, and usage of various viral vector COVID-19 vaccines. Taken together, different
vaccine platforms are essential for immunity to prevent the spread of COVID-19.

Viral vector COVID-19 vaccines

‘ Adenovirus l COVID-19 virus %

Modify
adenovirus

Take the spike
protein

|
=
.

Figure 5. Development of COVID-19 viral vector vaccine.

2. Vaccine Formulation and Their Complication

Vaccine design is one of the crucial steps in developing an optimum immune re-
sponse [34]. It depends on the antigen and platform selection, the need for adjuvants, the
formulation, and the route of administration [35]. In the case of COVID-19 vaccines, the
SARS-CoV-2 structure contains different proteins (S1 and S2 spike proteins), nucleocapsid
protein, membrane protein, and envelope protein. S protein was used in most vaccines
developed against SARS-CoV-2 [36].

To enhance the immune response, the vaccine formulation may require adjuvants [37].
The most used adjuvant in COVID-19 vaccines is aluminum salt, which includes either
aluminum hydroxide or aluminum phosphate [38]. In addition to enhancing IgG1 titers
and neutralizing antibodies, the adjuvant is durable and plays an essential role in reducing
vaccine doses [39]. However, many previous studies showed that using small amounts of
aluminum in the formulation of COVID-19 vaccines is considered safe [40]. Other studies
reported that it could cause mild side effects such as allergies and pain at the injection site
and, to a lesser extent, severe side effects including neurotoxicity, autism, and some chronic
diseases [40-42].
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Oil in water emulsion is another type of adjuvant used in the formulation of COVID-19
vaccines, including MF59 and AS03 [43]. This approach elicits a more balanced immune
response, possibly by improving antigen uptake, attracting immune cells, and promoting
antigen-presenting cell migration [43]. However, emulsion adjuvants can cause side effects
ranging from mild headache, fever, and nausea to more severe, such as the induction of
autoimmune diseases [44].

Lastly, toll-like receptors (TLR) are an adjuvant mainly used for nucleic acid and
protein-based COVID-19 vaccines, including TLR4 and TLR7 [45]. The adjuvant can induce
the production of Interleukin-1, which can activate alveolar macrophages. Moreover,
it helps neutralize antibodies and CD4+ T cells, resulting in optimal protection against
COVID-19 through the synergistic effect of CD8+ T cells [46]. The side effects can be mild
or moderate, including flu-like symptoms [47].

Additionally, the route of administration and the formulation are crucial to the im-
munization outcome [37]. All COVID-19-approved vaccines are injected through the
intramuscular route, as it shows an efficient immune response. Although subcutaneous
injection can be effective, it may also cause severe side effects at the site of injection [48].
An under-investigation newly developed route of the COVID-19 vaccine is inhalation.
However, immunization through inhalation on rats showed high IgG and IgA antibodies,
which may be the future of vaccination against airborne pathogens [37,49].

Storage and transportation are also essential for COVID-19 vaccines. Table 2 summa-
rizes the transportation and storage of WHO-approved COVID-19 vaccines. In developing
countries, complications related to transportation and storage were raised because of the
need for freezing temperatures, especially for mRNA vaccines, to maintain vaccine stability
during transport [50]. Therefore, many studies were conducted to enhance the strength
and supply of COVID-19 vaccines; one of these methods is using lyophilized COVID-19
vaccines, which are being tested by a Korean drug company [51]. A scientist also claimed
that a liposome-based liquid vaccine was successfully developed and could be potentially
used for the SARS-CoV-2 virus [52]. This method may be globally beneficial in the future in
case of any outbreaks and might make transporting and storing vaccines easier. Collectively,
it is necessary to design, store, and transport vaccines within their approved specifications
to have an optimum vaccine that involves fewer complications and better responses.

Table 2. Storage and transport of COVID-19 vaccines.

Vaccine

Storage and Transport References

Pfizer/BioNTech (12 + formulation)

Moderna

AstraZeneca
Sinopharm

Sinovac
Covaxin
Convidecia
Johnson and Johnson

Covovax (Novavax)

The vials can be stored between —90 °C and —60 °C until the expiration
date and shipped thermally using dry ice as they are stable for 30 days.
They can be kept in the freezer for up to 2 weeks and in the refrigerator for
up to 1 month (31 days).

This vaccine should be stored at —20 °C.

It is stable for around 1 month between 2 and 8 °C
Unpunctured vials can be stored in a refrigerator from 2 to 8 °C for up to 30
days. Punctured vials can be held between 8 and 25 °C for 24 h.

This vaccine is stored, carried, and handled at normal refrigerated [55]
conditions between 2 and 8 °C for at least 6 months. :

The vials should be stored at a normal fridge temperature from 2 to 8 °C. [54]

The vials should be stored at a normal fridge temperature from 2 to 8 °C for

[53]

[54]

12 months, and at room temperature not to exceed +25. [54]
The vials should be stored at a normal fridge temperature from 2 to 8 °C for [54]
6 months.

The vials should be stored at a normal fridge temperature from 2 to 8 °C for [56]
12 months. :

Opened vials should be discarded after 6 h. The vials should be stored at a 54]
normal fridge temperature between 2 and 8 °C for 3 months. i

The vials should be stored between 2 and 8 °C until the expiration date. 57]

They should be discarded 6 h after puncture.
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3. Effectiveness of SARS-CoV-2 Vaccines
3.1. Pfizer/BioNTech

A lipid nanoparticle-based BNT162b2 vaccine encoding the full-length SARS-CoV-2 S
protein is modified by two proline mutations to lock it in a prefusion form [26]. The efficacy
trial included 43,548 participants who were randomized to receive the BNT162b2 vaccine
or a placebo [26]. They concluded that in 16 years old and above, two doses of BNT162b2
inferred 95% protection against COVID-19 [26]. However, according to another pivotal
study, four months after the second dose, efficacy declined by an average of 6% every
two months, from 96.2% to 83.7% [58]. In addition, a new study suggests that two doses
of the Pfizer-BioNTech vaccine were less effective against a more contagious strain. The
Pfizer-BioNTech vaccine was 93.7% effective against the Alpha variant and 88.0% effective
against the Delta variant when given in two doses [59]. The vaccine’s effectiveness against
the Omicron variant was 65.5% from 2 to 4 weeks, dropping to 8.8% at >25 weeks after two
Pfizer doses. The booster increased the vaccine’s effectiveness to 73.9% from 2 to 4 weeks,
then declined to 64.4% from 5 to 9 weeks [60].

3.2. Moderna

Moderna vaccine is an mRNA-based vaccine encapsulated in a lipid nanoparticle
that encodes a full-length spike protein of the SARS-CoV-2 in a prefusion-stabilized
conformation [61]. A phase III randomized trial was conducted at 99 different centers
across the US, in which participants were assigned to receive two doses of the mRNA-1273
vaccine or a placebo. A 94.1% efficacy was achieved by the Moderna vaccine [62]. A
study was conducted on 26,683 COVID-19-positive patients, 16% (Delta infection) and 84%
(Omicron infection), and over 67,000 who tested negative [63]. They concluded that in
those who received two doses of the Moderna vaccine, the effectivity was 44% against the
Omicron variant until three months after vaccination, with a decline in effectivity afterward.
However, after three doses, increased effectiveness was noticed (94% against Delta and 72%
against Omicron) within two months of receiving the vaccine. For immunocompromised
patients, the effectiveness was only 29% [63].

3.3. AstraZeneca

The viral vector vaccine, AstraZeneca, uses a harmless virus as a delivery mode to
carry the genetic material of the surface spike protein of SARS-CoV-2. It allows the cells to
activate the immune system when the body reencounters the disease [64]. The virus vector
generally used is ChAdOx1, or adenovirus, a virus known to induce the common cold in
chimpanzees. This virus is modified not to cause harm or infection to the human body [64].
Many trials were performed to study how effective the immune response of AstraZeneca is
towards hospitalization and the reduction of the symptomatic effect of COVID-19. A phase
III randomized trial in the US was conducted by comparing two doses of the AstraZeneca
vaccine to the placebo group [65]. The vaccine showed 79% efficacy in preventing severe
symptomatic events and 100% in reducing the number of infected patients admitted to
the hospital.

Another study was performed in Canada after the appearance of new, more contagious
variants of SARS-CoV-2, such as Delta and Gamma, to evaluate how effective the vaccine
is in lowering the risk and improving protection against both variants. Results from the
Canadian Immunization Research Network against symptomatic events caused by different
variants showed that after one dose of the AstraZeneca vaccine, the efficacy was reduced
to 70% and 72% for Delta and Alpha variants, respectively [66]. At the same time, it was
decreased to 50% for Beta and Gamma variants. In addition, for hospitalization, the efficacy
was reduced to 92% and 86% for Delta and Alpha variants, respectively [66].

3.4. Johnson & Johnson

Johnson & Johnson uses the same vaccine platform as AstraZeneca; the adenovirus
is used as a vehicle to transport the genetic code of SARS-CoV-2 [67]. In clinical trials, a
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single dose of Johnson showed 66.3% effectiveness in preventing SARS-CoV-2 infection
and 50% efficacy against symptomatic events [67,68]. Many studies suggested the need
for Johnson & Johnson’s booster dose to strengthen the vaccine’s benefits. A recent study
in South Africa demonstrated that a booster dose from Johnson & Johnson showed up to
85% effectiveness in reducing hospitalization [69]. Another study in the US showed that
antibody titers increased four to six times after booster doses compared to a single dose of
the vaccine [70].

3.5. Convidecia

Convidecia is a viral vector vaccine similar to those of AstraZeneca and Johnson &
Johnson [71]. It is produced by genetic engineering using recombinant virus technology.
The vaccine showed low efficacy in reducing the symptomatic events of COVID-19 in
clinical trials compared to other vaccines. Its effectiveness ranged from 57.5 to 63.7%. The
vaccine’s efficacy against severe COVID-19 ranged from 91.7% to 96% [71-73]. In the phase
IV clinical trial, the company that developed the vaccine, CanSinoBio, suggested that a
heterologous booster would give a better immune response as it would stimulate the body
to produce more antibodies to fight the virus. The heterologous booster showed a six-fold
increase in neutralizing antibodies compared to a homologous booster dose [74]. Another
study was performed using a protein subunit vaccine (ZF2001) as a heterologous booster
compared to a homologous booster of Convidicea that showed from a 2.5- to 3.3-fold
increase in humoral immune response and was safer and more tolerable [75].

3.6. Sinovac-CoronaVac

Sinovac vaccine follows the usual platform used for vaccination using an inactivated
virus. The WHO follow-up on the immunogenicity of Sinovac in human clinical trials
showed that adults aged 18 and above could be immunized using Sinovac in two doses [76].
However, the antibodies formed from the two doses usually decline after three months [76].
Moreover, a study in Chile on the age group of 60 years and older showed that the vaccine
was 66.6%, 85.3%, and 89.2% effective against COVID-19 infection, hospitalization, and
ICU admission, respectively [77]. For adults between 18 and 59 years old, the efficacy in
preventing COVID-19 infection was 65.03% [78]. Another study showed that antibodies
formed after two doses of Sinovac were significantly lower in older patients, with an
average of 85.3% efficacy compared to adults with an efficacy of 97.4% [79].

3.7. Sinopharm

Like Sinovac, Sinopharm is also an inactivated vaccine [80]. In 2021, WHO approved
the Sinopharm vaccine for emergency use based on interim phase III clinical trial data since
it prevents symptomatic diseases in 79% of cases in adults younger than 60 years old [81].
Additionally, participants in the phase III clinical trial were randomized to receive 1 of
2 inactivated vaccines developed from SARS-CoV-2 WIV04 and HBO02 strains or a placebo.
During an average follow-up duration of 77 days for WIV04, the vaccine efficacy was
72.8%, and for HB02, it was 78.1%. They reported only two severe cases in the placebo
group [82]. A case-control study of vaccinated elderly individuals showed that 14 days
after the second dose, the Sinopharm vaccine reduced the risk of symptomatic COVID-19
infection, hospitalizations, and mortality by 94.3%, 60.5%, and 98.6%, respectively [83].

3.8. Covaxin

The last WHO-approved inactivated vaccine for emergency use was Covaxin. During
the phase IlI trial in India, Covaxin showed 81% efficacy against SARS-CoV-2 infection [84].
However, another study was performed to determine the effectiveness of Covaxin against
the Delta variant. The efficacy of the vaccine was 64% after two doses and 44% after one
dose, respectively [85]. This can conclude that Covaxin is a moderately effective vaccine, but
it might not fully protect individuals against the new mutant strains. Additionally, a study
showed that after six months of the first and second doses of Covaxin, the seropositivity
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was reduced significantly in individuals aged 60 years and older compared to younger
individuals. Furthermore, the vaccine-induced antibody titers, regardless of age, were
decreased after 6 months of vaccination by 56% [86].

3.9. Covovax (Novovax)

Covovax is the only protein subunit vaccine approved for emergency use in COVID-
19. In India, the Covovax vaccine was given to individuals who were 18 years old and
above, but recently it has been approved to be given to children from 12 to 17 years
old [87]. In the phase III trial in India, the vaccine showed 89.3% effectiveness against
COVID-19 infection [88]. In addition, a study in the UK comparing the Covovax vaccine
with a placebo revealed that the vaccine was 86.3% and 96.4% effective against Alpha
and non-Alpha variants, respectively, with no reported hospitalizations or deaths after
immunization [29]. Briefly, all WHO-approved COVID-19 vaccines reduced symptoms of
infection and prevented complications associated with them.

4. COVID-19 Vaccines Booster Dose

Vaccinations worldwide have provided a high level of protection against COVID-19,
but the pandemic has not ended despite the rapid development of vaccines. Therefore,
a third booster dose of the vaccine was recommended [89]. Maximizing the vaccine’s
neutralizing antibody formation is the key to better immunity and protection against the
virus and its different variants. Various studies evaluated whether a booster dose was
required or not. According to a study performed by the National Institute of Allergy and
Infectious Diseases (NIAID) on the immunity following mRNA vaccination in 34 adults,
participants showed a decline in the antibody titers formed by the vaccine after 199 days of
the first dose. However, three months after receiving the second dose, antibodies formed
remained elevated for an extended period [89,90]. Another study at Alexandra General
Hospital in December 2020 evaluated how the body handles the neutralizing antibodies
formed from mRNA vaccines over 2 weeks, 1 month, 3 months, 6 months, and 9 months
in healthy participants [90]. The study results showed that after 9 months of being fully
vaccinated, there was a significant decline in the level of neutralizing antibodies with a
median inhibition of 66.23%, meaning 1/5 of the participants were not fully protected
against SARS-CoV-2 infection. For participants with comorbidities, further investigations
are needed since the effect of each comorbidity on the kinetics of vaccination is substantially
varied [90]. Collectively, a booster dose is more effective in enhancing immunity in older
individuals since the ability to produce antibodies is lower and the clearance of antibodies
is faster than in younger individuals.

5. Adverse Effects Due to SARS-CoV-2 Vaccines

The incredible speed of developing SARS-CoV-2 vaccines led to skepticism and safety
concerns among the public and healthcare providers. However, some common adverse
effects, such as the natural body’s responses to the vaccine, were reported. They can range
from minor reactions, including fever, pain, and rash, to severe side effects, including
vomiting, diarrhea, and allergic reactions [91]. These common adverse effects are expected
and observed during clinical trials. However, rare side effects, including thrombocytopenia,
pneumonia, hepatic injury, myocarditis, and respiratory failure, were also reported [92,93],
which may be developed in the long run and usually emerge when large populations
are vaccinated.

Many studies have been conducted to report possible side effects and evaluate the
safety of the COVID-19 vaccination. Pfizer/BioNTech and Moderna vaccines utilize mRNA
for immunization [94]. Since this is considered a new strategy, assessing its success through
studying the adverse events and symptoms is essential. Therefore, a cohort study was
performed in the United States (US) during a phase III trial by the Mayo Clinic and the
Hospital Institutional Review Board for vaccinated people. A total of 52 million doses of the
two vaccines (Pfizer/BioNTech and Moderna) were administered. Both vaccines showed
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high efficacy with partial safety [95]. Common adverse effects varied among individuals,
including fever, chills, nausea, vomiting, myalgia, headache, fatigue, and swelling at the
injection site. Seven days after the first vaccination, 19.6% of participants reported at least
one adverse effect using the online survey. On the other hand, 18.3% of the placebo group
reported side effects. Additionally, 14.7% of vaccinated participants and 15.8% of the
placebo group reported at least one side effect after the second dose. There was no signifi-
cant difference between the two groups using the two different vaccines [95], indicating
that the mRNA COVID-19 vaccines are well-tolerated. Participants aged from 18 to 59 were
randomized to receive Johnson & Johnson's single-dose vaccine with reported local side
effects. These local side effects include pain at the injection site, swelling, erythema, and
any local reaction [96]. On the other hand, many non-serious systemic effects were also
reported by vaccinated participants, such as headache, fatigue, myalgia, nausea, and fever,
along with different systemic reactions. Headache and fatigue were the highest reported
side effects, with 38.9% and 38.2%, respectively [96]. In addition, AstraZeneca participants
reported mild to moderate adverse events similar to those reported by Johnson & Johnson
during phase I and II trials, such as chills, muscle aches, and headaches [97]. In Europe, dur-
ing phase I and II clinical trials, AstraZeneca and Johnson & Johnson vaccinated individuals
reported blood clotting events. However, clinical trials were resumed later, as the reported
cases were rare compared to the number of vaccinated individuals [98-100]. Another study
showed that some participants experienced severe side effects such as kidney pain, blue
lips and nails, enlarged lymph nodes, and irregular heartbeats [101].

Convidecia vaccine is the only vaccine administered using the following two methods:
inhalation or intramuscular injection [100]. Comparing the side effects of Convidecia
immunized participants to a placebo, 74% of vaccinated individuals reported at least one
side effect. Common adverse effects were pain, headache, fever, and fatigue. All side
effects were mild but significantly higher in the vaccinated group [102]. Nevertheless, no
serious events were reported, which concludes that the Convidecia vaccine has good safety
compared to other viral vector vaccines. The third and most utilized vaccination platform
uses a whole inactivated virus to obtain robust humoral immunity. Two inactivated
vaccines, the Sinopharm and Sinovac vaccines, were approved for emergency use by
the WHO [103]. Trials for the Sinopharm vaccine included a wide variety of patients,
ranging from children to the elderly [104]. During phases I and II clinical trials, side effects
were mild to moderate and more predominant after receiving the first dose of Sinopharm
compared to the second and booster doses. The most common side effects were pain and
fever [104]. In a Chinese study, the use of Sinovac reported 15.6% side effects after the first
dose and 14.6% after the second dose compared to the placebo [105]. The data after the
first and second doses of vaccination are considered similar. The most common side effect
was pain at the injection site, while the common systemic side effects were fatigue and
headache [105]. A study conducted in Indonesia showed similar side effects following both
doses of Sinovac; around 14%, 80%, 71-78%, and 4% reported fever, pain at the injection
site, upper arm pain, and cough, respectively [106]. Both studies showed that Sinovac is
well-tolerated in ages eighteen to sixty [106].

Covaxin is the first Indian whole inactivated virus vaccine designed for the COVID-19
pandemic [107]. A study performed in India to monitor adverse events after immunization
showed that during the phase I clinical trial, 5% of the individuals reported side effects
such as pain at the injection site, redness, and swelling, and 14% reported systemic side
effects, including headache, fever, and fatigue. In addition, children had more side effects
than older participants [108], concluding that the vaccine is safer for fifteen-year-olds.

An observational survey showed that 77.27% and 72.72% of the participants reported
side effects after the first and second doses of Covaxin vaccination, respectively, with
fever as the predominant adverse event after vaccination (AEFI) [109]. Lastly, the only
protein subunit approved vaccine by the WHO is Covovax; two doses are recommended for
18 years and older [110]. During the phase II clinical trial in India, 40.7% of the vaccinated
participants reported 96 adverse events. In contrast, 18% of the placebo group reported
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11 adverse events [111], and most side effects were mild and resolved without intervention.
Opverall, the approved COVID-19 vaccines were well tolerated, with only mild to moderate
adverse reactions.

6. Vaccine Immune Responses
6.1. Beneficial Responses in Healthy Individuals

According to a St. Jude Children’s Research Hospital report, herd immunity is not
superior to vaccination since both produce similar T cell responses [112]. The following two
types of immune cells are activated: the B cell, which produces antibodies to combat the
virus, and the T cell, which destroys the infected cells. Once the immune system responds to
the vaccine, the level of antibodies decreases, but some B and T cells remain in the body to
fight subsequent infections [113]. Kim et al. reported that all participants (43 healthy people
who were administered two doses of the Pfizer-BioNTech vaccine) developed memory
B cells against the spike protein of SARS-CoV-2 for six months following vaccination.
In addition, the vaccine was also associated with antigen-binding IgG and neutralizing
antibodies [21,114].

Adenovirus vector and mRNA vaccines stimulate the immune response by producing
anti-S and anti-receptor binding domain (RBD) antibodies. They cause early IgA, IgM, and
IgG antibody production and a long-lasting memory of B and T cells [16]. The neutralization
antibodies were evident in all participants in the phase I trial after the second dose of the
Moderna vaccine [61]. In phase I-Ila trials, 29 days after the first dose of the Johnson &
Johnson vaccine, 90% of participants developed neutralizing antibodies to the wild-type
virus. In participants between 18 and 55 years old, CD4+ T cell responses were detected in
76-83% of the cases [115].

Sinopharm /BBIBP-CorV vaccine recipients were tested for SARS-CoV-2 antibodies
4 weeks, 2 weeks, and 12 weeks after the first dose. Antibody responses declined insignifi-
cantly between 6 and 16 weeks. In addition, for the S1 peptide pool (peptides 1-130) and the
52 peptide pool (peptides 131-253), T and memory B cells showed positive responses in the
ex vivo testing. However, the antibodies blocking ACE-2 receptors decreased significantly
in all age groups [116]. An immunological response to various vaccination procedures is
visualized on a time-course graph (Figure 6).

During a recent study, five adjuvant groups showed significant increases in CD4 cells
after the second dose of a subunit vaccine. CD4 cells have two subsets, TH1 and TH2;
TH1 is a CD4 responsible for the cytokines, such as TNEF, associated with inflammation,
while TH2 secretes cytokines, such as IL-4, associated with humoral immunity [117]. TH1
showed a slightly higher percentage of cells due to the CpG-alum adjuvant, while alum
showed a higher TH2 rate. Aside from the fact that adjuvants enhance immunity, different
adjuvants can elicit antibodies that can neutralize various antigens [117]. Therefore, the
adjuvanted RBD-NP vaccine promotes protective immunity against SARS-CoV-2.

The third dose of mRNA vaccines (Pfizer/BioNTech or Moderna) helps induce an
immune response similar to hybrid immunity (immune protection in those who received one
or more COVID-19 vaccine doses and were infected at least once with SARS-CoV-2) [118,119].
A 5.82-fold increase in neutralizing activity was observed in participants who received
the three doses (SN3) compared to the two doses (SN2) [120]. In addition, an increase
of 2.2-fold in the secretion of neutralizing antibodies by S-specific B-lymphocytes in SN3
compared to SN2 was observed. Furthermore, three doses enhanced the binding affinity
to the S protein and its receptor-binding and N-terminal domains [120]. Tables 3 and 4
illustrate the beneficial immune responses, including IgG anti-RBD levels in the mRNA
and inactivated SARS-CoV-2 vaccines, respectively.
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Figure 6. A time-course graph for immunological response in the different vaccination procedures.

The clinical trial evaluating a booster dose of the same or a different vaccine reported
an increase in the neutralizing antibodies to the Omicron BA.1 sub-lineage [121]. Despite
this, antibody levels were lower in those who initially received the adenovirus vector
vaccine or as a booster. Three months after the boost, neutralizing antibody levels declined
2.4-5.3-fold across all groups. Comparatively to the BA.1 sub-lineage, sub-lines BA.2.12.1
and BA.4/BA.5 were 1.5 and 2.5 times more resistant to neutralization, respectively [121].
The trials and studies emphasize the efficacy of the vaccines in stimulating the immune
system; however, the effect on different strains needs to be better studied.

Moreover, immune responses are associated with age, as Tazerji et al. reported that
death in the elderly is associated with decreased function of the immune system [122].
Generally, the COVID-19 vaccine stimulates neutralizing antibodies and IgG, both of which
have beneficial effects on the immune system.

Table 3. Beneficial immune responses in mRNA COVID-19 vaccines.

IgG Anti-RBD Levels BAU/mL

mRNA Vaccines
Data Pfizer Moderna References
Self et al. 2950 4274 [123]
Kanokudom et al., (Pfizer); Al-Sadeq
(Moderna) et al. 2584 2272 [124,125]
Median 2767 3273
Standard deviation 258.801082 1415.62778
Fold change 1.14164087 1.88116197

The result of study 2 in Moderna was in 1.6 x 104 AU/mL. Then, the value was multiplied by 0.142 to convert it
to binding antibody units per milliliter (BAU/mL), which is 2272 (BAU/mL).
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Table 4. Beneficial immune responses in inactivated COVID-19 vaccine.

Sinopharm Vaccine

Data IgG Levels BAU/mL Number of Participants References
Algqassieh et al. 170 (60—400) n =147 [126]
Kanokudom et al. 164.1 (133.8-201.1) n =60 [125]
Median 167.05 103.5
SD 4.171930009
Fold 1.035953687

6.2. Harmful Responses in Healthy Individuals

Vaccination has led to a few severe events, including vaccine hypersensitivity reactions
reported on different vaccine platforms. The leading cause of hypersensitivity can be asso-
ciated with excipients such as stabilizing agents, preservatives, or adjuvants, and to a lesser
extent, due to the active antigen used [127,128]. It was observed that PEG surfactant was
the cause of allergy in the mRNA vaccines from Pfizer/BioNTech and Moderna; individuals
with skin disorders can be susceptible to this type of adverse reaction. It is believed that
EDTA, a preservative used in viral vector vaccines such as AstraZeneca, is responsible
for causing sensitivity in these vaccines [128]. The vaccine’s active antigen can be another
source of hypersensitivity since the human body might consider the functional antigen as
a foreign body and elicit an allergic reaction [128]. Moreover, COVID-19 vaccination has
also been shown to cause the reactivation of Herpes Zoster through stimulation of toll-like
receptors (TLR), production of interferons, and activation of immune cells, which can lead
to the reactivation of latent viruses [129]. Several factors contribute to herpes zoster (HZ)
development, including age-related declines in cell-mediated immune responses to the
Varicella zoster virus (VZV). VZV reactivation is caused by the T cell compartment’s failure
to keep the virus under control; this is anticipated to happen more frequently as people age
due to the immune system’s age-related dysfunction and decline (immunosenescence) [130].
Seven HZ cases have been reported following an mRNA vaccine (five cases reported and
six observed), indicating a temporal link between COVID-19 vaccination and the devel-
opment of HZ [131]. However, there is no specific mechanism for developing HZ after
infection or vaccination with COVID-19 In AstraZeneca, the adenovirus used as a vector
binds strongly to platelet factor 4 (PF4) and activates platelets [132]. In addition, a previous
study found a positive correlation between serum reactivity and PF4 in vaccine-induced
immune thrombotic thrombocytopenia patients with COVID-19, suggesting a possible
causal relationship [133]. Harmful immune reactions were few and mainly caused by
hypersensitivity to vaccine formulations.

6.3. Beneficial Responses in Unhealthy Individuals

A significant association was found between steroid use and a lack of T cell re-
sponses [134]. Patients who receive specific medications and have certain solid tumors and
hematologic malignancies could not sufficiently produce anti-SARS-CoV-2 IgG antibodies
after immunization [135]. The COVID-19 mRNA vaccine generally elicited excellent hu-
moral responses but insufficient cellular responses in patients with solid cancer (Table 5),
while hematologic malignancies elicited less appropriate humoral and cellular responses.
Most cancer patients were unable to elicit a CD8+/CD4+ T cell response due to immunosup-
pressant medications [134]. A marked decrease in neutralizing capacity of 26.3% at 1 month
and 43.6% at 3 months in hematologic malignancies patients were reported [136]. On obser-
vation, there was a uniform blunting of responses in patients with leukemia, lymphoma,
and multiple myeloma. Some targeted anticancer therapies inhibit immune responses,
but single-agent immunomodulating agents do not [136]. There are no differences in
anti-receptor binding domain (RBD) IgG responses between HIV-positive individuals with
CD4+ counts over 250 cells/mm?3 and the general population. In contrast, CD4+ counts less
than 250 cells/mm3 have a weaker response [137]. Further, other studies on HIV-positive
vaccinated individuals showed increased immune responses compared to individuals with
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lower CD4+ counts. Taken together, HIV patients with CD4+ counts of >350 cells/uL have
an S-RBD-IgG titer 2 folds higher than HIV patients with <350 cells/pL CD4+ counts. How-
ever, HIV patients with >500 cells/uL CD4+ counts have an S-RBD-IgG titers 1.25 folds
higher than HIV patients with <500 cells/pL CD4+ counts (Table 6). Multiple sclerosis (MS)
patients who received no treatments developed protective SARS-CoV-2 humoral responses
similar to those of healthy individuals after COVID-19 vaccines. However, the immune
response to COVID-19 vaccination varied between MS patients treated with high-efficacy
disease-modifying therapies (DMTs) [138]. In another study, similar results of protective
immune responses for the untreated MS patients and healthy individuals” group were
reported. For the fingolimod treatment, 9.5% developed humoral immune responses, com-
pared to 3.8% from the previously discussed article findings. The low lymphocyte count
in most MS patients who received fingolimod might have contributed to the failure to
produce SARS-CoV-2 IgG antibodies [139]. Table 7 compares the two discussed studies.
Most solid organ transplant recipients who received two doses of the mRNA SARS-CoV-2
vaccination had measurable antibody responses after the second dose. However, those
who did not react to dose one often showed low antibody levels [140].

A study reported that after receiving two doses of the mRNA BNT162b2 vaccine
(Pfizer-BioNTech), none of the lung transplant recipients (LTRs) produced anti-SARS-CoV-2
antibodies, whereas 85% did so upon SARS-CoV-2 infection. Testing specific CD4+ and
CD8+ T cell levels in immunocompromised patients post-vaccination would benefit the
assessment of immune responses. Additional boosting may be necessary for developing
an antibody response in LTRs after vaccination [141]. To a large extent, immune responses
were also evident in unhealthy individuals.

Table 5. Beneficial immune responses in solid tumor after taking mRNA vaccines.

Solid Tumor Cases

Study Number of Cases Average Standard Deviation Median
Ehmsen [142] 139
Mencoboni [143] 166 152.5 19.091 152.5

Solid tumor antibodies

Study

Ehmsen (three doses of
mRNA vaccine)
Mencoboni (two doses of
mRNA vaccine)

Anti-spike SARS-CoV-2 IgG in

BAU,/mL after mRNA vaccine Average Standard deviation Median
2464
6 1787.65 956.503343 1787.65
1111.3

Table 6. Beneficial immune responses in HIV patients after taking COVID-19 vaccine.

HIV Patients Antibody Titer (S-RBD-IgG Titers) - .
Study CD4+ Counts U/mL in Inactivated Vaccine Average Standard Deviation Median
Liu et al. [144] >350 cells/puL 22.4
Liu et al. [144] <350 cells/ L) 112 l6.8 7.919595949 168
Netto et al. [145] >500 cells/puL 53.3
Netto et al. [145] <500 cells /L 26 47.95 7:566042559 47.95

Table 7. Number of vaccinated cases among multiple sclerosis patients.

Study 1 [138] Study 2 [139]
Multiple Sclerosis Healthy Individuals Multiple Sclerosis Healthy Individuals
Untreated N = 32 Untreated N =76
Cladribine N = 26 Cladribine N = 48
n =47 n=289

Ocrelizumab N = 44 Ocrelizumab N = 114
Fingolimod N = 26 Fingolimod N = 42
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6.4. Harmful Immune Response in Unhealthy Individuals

A previous study reported a few patients with a flare-up onset of autoimmune
rheumatic disease (AIRD) after the COVID-19 vaccine, which was due to the adjuvant
use [146]. There has been speculation that vaccine adjuvants could trigger different autoim-
mune reactions by stimulating inflammatory products, which cause bystander T cells to
become activated; however, the exact mechanism remains unclear. In addition, there needs
to be more detailed information about systemic reactions following vaccinations [147]. For
example, Campos et al. observed a relapse of autoimmune cytopenia after SARS-CoV-2
vaccination [148]. They claimed it happened through the stimulation of preexisting B cells
to produce autoantibodies and by molecular mimicry (a molecular structure that affects
the construction of another molecule). Therefore, blood monitoring and a high dose of
dexamethasone are required for those patients to prevent unwanted immune responses.

Following the COVID-19 vaccination, several cancer patients have been detected
to have metabolically active axillary lymph nodes. For example, in a 62-year-old man
diagnosed with prostate cancer, imaging showed that his left axillary, paratracheal, para-
aortic, subcarinal, and hilar lymph nodes were enlarged 3 weeks after vaccination [149].
Immunization caused local inflammation at the injection site, affecting the lymph nodes
afferent to the injection site and the muscles around the injection site [149].

The development of glomerulonephritis (GN) after the mRNA vaccine results in a
more potent immune response [150]. This might be due to the upregulation of CD4+
and CD8+ T cells as part of the cell-mediated response and an increase in interferon y
secretion. In situations where immunogenicity and cross-reactivity are higher, immune
activation is likely to occur unexpectedly [150], unmasking or instigating autoimmune
processes that may aggravate, disguise, or exacerbate existing conditions [151]. Of the
13 patients studied who showed GN, 62% were newly diagnosed, whereas 38% relapsed.
It was observed that five patients developed symptoms after the second dose, and three
patients developed symptoms after the first dose [150]. Patients with confirmed systemic
lupus erythematosus (SLE) flares following vaccination required a change in the treatment
in 71% of cases and hospitalization in 19% of cases [152]. Autoimmune responses may
be triggered by the interaction between mRNA vaccines and cytoplasmic RNA-binding
proteins involved in the post-translational regulation of inflammatory mediators [152].
Principally, most of the harmful immune responses in unhealthy individuals were a flare-
up of a pre-existing condition.

7. Future Perspective

To combat the recent COVID-19 pandemic, companies have demonstrated several
technologies to advance the vaccine development. For instance, nanotechnology has dra-
matically accelerated the development of vaccines, enabling a nano-level investigation that
allows the researchers to better imitate the interaction between the virus and the immune
system [153]. The nano vaccines protect the antigen from biodegradation through the
depot effect, providing slow release. Nanotechnology also improves antigen drainage and
accumulations in lymph nodes due to their small size. They also enhance the uptake by
antigen-presenting cells. Lipids are known as an excellent transporter of nucleic acids to
the cells, mainly due to their compatibility with the lipid cell membranes [154]. Although
mRNA-based vaccines have never been approved, the nucleoside-modified mRNA-lipid
nanoparticles (LNP) vaccine platform employed by Pfizer/BioNTech and Moderna in
developing SARS-CoV-2 vaccines has extensively undergone preclinical studies for its
effectiveness and supportive protective effect of the humoral immune responses [155].
Furthermore, angiotensin-converting enzyme-2 (ACE-2) receptors are prime targets for
antibody-mediated inactivation of SARS-CoV-2 by preventing its binding to RBDs, limiting
its propagation, and spreading in the host [156]. For targeting pathways, various epitopes
such as S, M, N, and E proteins have been tested for their ability to enhance antibody
production and T cell responses against SARS-CoV-2 [157]. Vaccines targeting the receptor
binding motif in the S1 subunit of the S protein may not be effective because of the signifi-
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cant genetic mismatches in structures targeting this region, while linear epitopes of the 52
subunit may induce a protective antibody response [158]. On the other hand, targeting the
RBD prevented the virus infection by preventing entry into the host cells [158,159].

8. Conclusions

An unanticipated, highly contagious respiratory pathogen was suddenly discovered
as the cause of the emergence of the COVID-19 pandemic, necessitating the rapid develop-
ment and testing of new vaccine platforms. This review sheds light on the WHO-authorized
emergency use vaccines, including Pfizer/BioNTech, Moderna, Sinopharm, Sinovac, Cov-
axin, AstraZeneca, Convidecia, Johnson & Johnson, and Covovax. Additionally, we have
discussed the effectiveness and protection of different vaccines, their safety concerns, the
common side effects that individuals may encounter, the antibodies” formation, and the
beneficial and harmful immune responses. As a result, several vaccines utilizing viral
vectors, nucleic acids, protein subunits, and inactivated viruses have been developed and
become available on the market. However, many others are still under clinical trials for
further investigation.
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