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Abstract: Many specific features of ultrafast electron transfer (ET) reactions in macromolecular
compounds can be attributed to nonequilibrium configurations of intramolecular vibrational degrees
of freedom and the environment. In photoinduced ET, nonequilibrium nuclear configurations are
often produced at the stage of optical excitation, but they can also be the result of electron tunneling
itself, i.e., fast redistribution of charges within the macromolecule. A consistent theoretical description
of ultrafast ET requires an explicit consideration of the nuclear subsystem, including its evolution
between electron jumps. In this paper, the effect of the multi-timescale nuclear reorganization on
ET transitions in macromolecular compounds is studied, and a general theory of ultrafast ET in
non-Debye polar environments with a multi-component relaxation function is developed. Particular
attention is paid to designing the multidimensional space of nonequilibrium nuclear configurations,
as well as constructing the diabatic free energy surfaces for the ET states. The reorganization energies
of individual ET transitions, the equilibrium energies of ET states, and the relaxation properties of the
environment are used as input data for the theory. The effect of the system-environment interaction
on the ET kinetics is discussed, and mechanisms for enhancing the efficiency of charge separation in
macromolecular compounds are analyzed.

Keywords: electron transfer; macromolecular compounds; photochemistry; ultrafast reactions;
nonequilibrium processes

1. Introduction

Intramolecular electron transfer (ET) is an essential component of many biological
processes including photosynthesis, cellular respiration, activation of sensory proteins,
and others [1–6]. In ET reactions, quantum tunneling of an electron between the redox
sites within a macromolecule is largely controlled by the environment that creates the
necessary preconditions for an electron jump. Both fast fluctuations of solvent polarization
and relatively slow and large-scale reorganization of the environment around the redox
sites are important in these processes [7–10].

The role of the environment is even more pronounced in ultrafast photoinduced
reactions, where the evolution of the Franck-Condon state is strongly coupled to the
medium [11–15]. These reactions often exhibit unusual behavior that does not correspond
to the predictions of classical ET theories. For example, photoinduced ET in donor-acceptor
compounds may proceed faster than the characteristic timescale of solvent relaxation [16],
which indicates the inapplicability of the Zusman model of diffusion along the ET coordi-
nate [17]. Ultrafast reactions are also sensitive to the properties of the pumping pulse [18,19],
and often manifest oscillatory kinetics due to vibrational coherence effects [20–22].

One of the promising areas of research in the field of photovoltaics and solar energy
conversion is the design of macromolecular compounds aimed at efficient photochemical
separation of charges [23–25]. These compounds commonly involve several redox sites
organized in a way that ensures the stabilization of separated charges. This stabilization
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is achieved by fast and efficient ET from a photosensitizer and primary electron donor
to the distant electron-accepting centers, thus preventing loss of energy due to charge
recombination. Fast ET transitions in these compounds lead to the formation of nonequilib-
rium nuclear configurations and strong coupling of the subsequent ET steps to relaxation
processes in the environment. To describe these phenomena, in this paper we develop a
semiclassical model of multistage intramolecular electron transfer reactions controlled by
the medium with a multi-component dielectric relaxation function. Particular attention
is paid to the design of the configuration space of the medium, as well as methods for
constructing the diabatic free energy surfaces corresponding to the ET states. The study is
mainly focused on the role of the polar environment in these processes and does not take
into account the ET-active high-frequency (h̄ω � kBT) intramolecular vibrational modes.
However, an appropriate extension of the theory is straightforward and can be easily
introduced to the model. In what follows we assume that the macromolecule is «rigid»
in the course of ultrafast ET, so that we can omit reorganization of slow large-amplitude
intramolecular nuclear coordinates and consider only fast dielectric response both from the
outer environment and internal low-frequency (classical) degrees of freedom.

Many theoretical approaches describe electron transfer in condensed phase in terms
of the energy-gap coordinate—the quantity evaluated by mapping the system’s nuclear de-
grees of freedom onto the energy gap ∆E between the ET reactant and product states [26–28].
Using the ∆E quantity as the reaction coordinate allows one to reduce the dimensionality
of the nuclear configuration space, and ultimately admit the one-dimensional picture of
ET with the two intersecting electronic surfaces for the reactant and product states in the
diabatic presentation. This approach was suggested by Marcus to describe intermolecular
electron transfer in polar liquids [29,30], and later was applied to intramolecular processes,
including those initiated by optical excitation of reactants [31–35].

When applied to multistage ET reactions involving several redox centers within a
macromolecule, the Marcus approach suggests using several reaction coordinates ∆Ek, each
controlling ET between the two centers. This extension is straightforward and enables one
to consider the multistage reaction as a set of elementary ET steps occurring sequentially
and/or in parallel. The key problem of this approach is the non-orthogonality of the
∆Ek coordinates [36–38]. This non-orthogonality implies some important features of the
reaction, for example, the mutual influence of consequent ET steps on each other [39].
However, the multi-∆Ek approach leads to apparent technical difficulties associated with
the use of a non-orthogonal basis. At present, the method has been implemented only for
the three-center model systems of the type A1-D-A2 or D-A1-A2, where D is the electron
donor, and A1/A2 are the acceptors [38,40].

An alternative approach was proposed by Tang and Norris [41], who introduced two
independent solvent coordinates (x, y) to describe ET in a model system involving the
initial (reactant) |1〉, intermediate |2〉, and final (product) |3〉 states. This three-component
molecular system reproduces the structure of the photosynthetic reaction center, where pri-
mary photochemical charge separation proceeds as ultrafast ET from a bacteriochlorophyll
special pair dimer P∗ (donor) through a bridging accessory bacteriochlorophyll monomer
BL (primary acceptor) to a distant bacteriopheophytin HL (secondary acceptor). The use
of the independent solvent coordinates in this model implies certain assumptions about
the medium, namely, its linear response to charge redistribution between the molecular
centers. Now, this model is a common framework for the description of ET in molecular
triads [42–45].

Recently a more general theory of solvent-controlled ET in the Debye polar liquids
was developed [46], applicable to multistage reactions with an arbitrary number of elemen-
tary ET steps. Following Tang and Norris, the configuration space of multistage ET was
constructed with the use of independent solvent coordinates Qk. The number K of the Qk
coordinates was shown to be related to the number N of the active redox sites according to
the equation K = N − 1. It was also shown that the ET energy gaps ∆Ek in this model can
be calculated by simple linear transformations over the Qk coordinates [46].
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In the present paper, the theory developed in ref. [46] is extended to the non-Debye
environments, i.e., media characterized by several dielectric relaxation timescales τi. The
aim of this extension is to broaden the scope of the previous theory, and make it applicable to
«complex» environments, as one may expect in molecular electronics devices, biomolecules,
and other macromolecular compounds [34,47,48]. As a method, we employ «splitting» of
the polarization coordinates Qk into the relaxation components, each corresponding to
the individual τi mode. This approach is similar to that used by Zusman [49], but it is
applied here to independent polarization coordinates rather than the energy-gap coordinate
∆Ek. In the next section, we formulate the general idea of the method and introduce the
corresponding mathematical framework. After that, we consider an illustrative example
by applying the general theory to a simple three-center model in a medium with the
two-component relaxation function. Finally, the proposed general approach is verified by
analyzing the two special cases in which the results of the well-known Najbar/Tachiya and
Zusman models of ET are reproduced.

2. Results and Discussion
2.1. General Formulation of the Theory

We consider a macromolecule containing N redox centers and denote
|ϕn〉 (n = 1, · · · , N) the state of the system with the electron localized on the nth re-
dox center. We admit here a general case when ET transitions are possible between any
|ϕn〉 and |ϕn′〉 states. We introduce the free energy of medium reorganization λ(nn′) that
quantifies the response of the environment to the shift of the electronic density |ϕn〉� |ϕn′〉.
Since λ(nn) = 0 and λ(nn′) = λ(n′n), the λ(nn′) values form a square symmetric matrix of the
size N with zero diagonal elements

λ̂ =


0 λ(12) . . . λ(1N)

λ(12) 0 . . . λ(2N)

...
...

. . .
...

λ(1N) λ(2N) . . . 0

. (1)

The number of independent parameters here is N(N − 1)/2.
Complex dynamics of medium polarization in view of multiple redox centers and

ET transitions can be considered by extending the method developed in ref [46]. First, we
introduce the set of independent polarization coordinates Qk, where k ranges from 1 to
K = N − 1. In the linear-response approximation, the diabatic free energy surfaces (FESs)
of the |ϕn〉 electronic states in the Qk coordinates are written as [46]

G(n)(Q) =
K

∑
k=1

(
Qk − Q̌(n)

k

)2
+ Ǧ(n). (2)

Here Q̌(n)
k are the coordinates of the FES minimum (unknown model parameters

so far), and Ǧ(n) is the equilibrium free energy of the nth electronic state. The mutual
arrangement of the G(n) surfaces in the Q space is fully determined by the λ̂ matrix. To
show this, one can use the definition of λ(nn′)

λ(nn′) ≡ G(n)
(

Q̌(n′)
)
− G(n)

(
Q̌(n)

)
(3)

and Equation (2) to obtain

λ(nn′) =
K

∑
k=1

(
Q̌(n′)

k − Q̌(n)
k

)2
=
∣∣∣D(nn′)

∣∣∣2. (4)
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It is easy to see from this equation that D(nn′) is a vector in the Q space connecting the
G(n) and G(n′) FES minima [46]. The distance between the Q̌(n′) and Q̌(n) points is thus
equal to

√
λ(nn′), that is determined only by the free energy of the medium reorganization

for the |ϕn〉 → |ϕn′〉 ET transition.
Dynamic properties of the medium are commonly introduced to the model using the

energy-gap autocorrelation function X(t) = 〈∆E(0)∆E(t)〉/〈∆E(0)∆E(0)〉. This function
is an experimentally measured quantity and is often approximated by a sum of several
exponentials [50,51]

X(t) =
R

∑
i=1

Xi(t) =
R

∑
i=1

xi exp(−t/τi). (5)

The Xi(t) terms in Equation (5) are often referred to as the relaxation components
of the medium, with xi and τi being the weight and the relaxation timescale of the ith
component. The xi quantities satisfy the normalization condition ∑ xi = 1. It should
be noted here that polar solvents generally reveal 2–3 relaxation components with the τi
values differing by several times. In mixtures and structured environments, the range
of τis can be even larger. An early-time X(t) dependence in liquids is often determined
using a combination of ultrafast spectroscopic techniques and computational methods (see,
e.g., [52]).

Due to the linearity of the medium response, the X(t) splitting into the relaxation
components X(t) = (X1(t), X2(t), . . . , XR(t)) in Equation (5) is expected to be valid, not
only for the energy-gap coordinate ∆E (the Zusman method [49]), but for any polarization
coordinate as well. Keeping this in mind, we replace the single Qk value with an R-
dimensional vector as follows

Qk =⇒ Qk = (qk1, qk2, qk3, . . . , qkR), (6)

where qki is the ith component of Qk corresponding to the ith relaxation mode. The
coordinate splitting (6) extends the Q space and produces a D-dimensional configuration
space, where

D = (N − 1)R. (7)

By construction, this multidimensional space (denoted in what follows as q) is a direct
product of the «polarization» and «relaxation» subspaces, Q and R, with the coordinates
qki = (Qk, Ri), where Ri (i = 1, . . . , R) are the coordinates of R. Figure 1 illustrates this
basic idea. We will show later that the splitting method allows one to get rather simple
model equations in spite of the expanded dimensionality of the configuration space.

s u b s p a c e  o f  r e l a x a t i o n  c o o r d i n a t e s

R i

s u b s p a c e  o f  
p o l a r i z a t i o n  c o o r d i n a t e s

Q k

c o m p o s i t e  s p a c e

Figure 1. Schematic presentation of subspaces Q and R, as well as the composite space q = Q×R of
nuclear configurations of the environment.

The coordinate splitting (6) is an essentially new element of the theory compared to
that presented in ref. [46]. The extended configuration space enables one to describe not
only the nonequilibrium polarization of the environment, but also the multi-component
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relaxation of this polarization to a new equilibrium state. Since the qki coordinate is directly
related to the i-th mode of the environment, the system’s relaxation along qki proceeds
with the timescale τi. This approach allows one to overcome the limitation of the previous
theory and develop a more general framework applicable to non-Debye solvents, solvent
mixtures, and other environments with complex relaxation functions.

Now we explore the properties of the q space. In the qki coordinates, Equation (2)
becomes

G(n)(q) =
N−1

∑
k=1

R

∑
i=1

(
qki − q̌(n)ki

)2
+ Ǧ(n). (8)

Using (3) and (8), one can find the following expression for the reorganization free energy

λ(nn′) = ∑
k,i

(
q̌(n

′)
ki − q̌(n)ki

)2
=
∣∣∣d(nn′)

∣∣∣2. (9)

This expression is similar to Equation (4), but is written for the D-dimensional vector
d(nn′) in the extended configuration space. Calculating the projection of the d(nn′) vector

onto the Ri coordinate, d(nn′)
i , one finds

λ
(nn′)
i =

(
d(nn′)

i

)2
. (10)

Here λ
(nn′)
i is the part of λ(nn′) corresponding to the i-th relaxation mode,

λ
(nn′)
i ≡ xiλ

(nn′). Equation (10) can be easily verified by direct summation over the Qk
coordinates.

Equations (9) and (10) establish a relation between the known parameters of the model
(free energies λ(nn′) and relaxation weights xi) and unknown quantities q̌(n)ki . It follows

from Equation (9), that q̌(n)ki can be found using the distances between the FESs minima in

the q space,
∣∣∣d(nn′)

∣∣∣ = √λ(nn′). This expression allows us to formulate a general scheme for

the q̌(n)ki evaluation. As an illustration, we consider a simple three-center model of ET in a
medium with two relaxation components. The choice of this model is due to the following
reasons: (1) the q̌(n)ki values in this case can be found analytically, (2) the model to be verified
for compatibility with earlier results.

2.2. Three-Center Molecular System in a Two-Component Environment

We consider a molecular triad of the type DA1A2, where D is the electron donor and
photosensitizer, and A1/A2 are the electron acceptors. Optical excitation of this compound
leads to a population of the locally excited state DA1A2 → D∗A1A2, and triggers a series
of electronic transitions, including charge separation to the D+A−1 A2 and D+A1A−2 states,
charge shift between the A1 and A2 units, charge recombination back to the DA1A2 state,
and radiationless deactivation of the excited state. The general scheme of the reaction is
shown in Figure 2 and involves the following transitions

DA1A2 → D∗A1A2, (optical excitation)

D∗A1A2 → D+A−1 A2, (charge separation, CS1)

D∗A1A2 → D+A1A−2 , (charge separation, CS2)

D+A−1 A2 ↔ D+A1A−2 , (charge shift, CSh)

D+A−1 A2 → DA1A2, (charge recombination, CR1)

D+A1A−2 → DA1A2, (charge recombination, CR2)

D∗A1A2 → DA1A2, (internal conversion, IC).
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It should be noted here that many molecular compounds have the same structure as
the redox centers, and can be considered prototype systems. A common and well-known
example is the photosynthetic reaction center (RC), where primary charge separation
proceeds as a two-step ET involving a BChl special pair dimer (D), an accessory BChl
monomer (A1) and a BPh molecule (A2). The spatial arrangement of the D, A1, A2 units in
RCs do not facilitate direct electron transfer between D and A2, therefore, the CS2 and CR2
transitions in these compounds are effectively suppressed. This fact, however, does not
change the arrangement of the electronic FESs in the q space, since positions of the FESs
minima are determined solely by the medium reorganization.

b

D +A 1 A −2

D A 1 A 2

R 1

A 1

A 2

D
R 2 3

R 3

R 1 2

h �

I C

a

R 1 3

h ν D ∗A 1 A 2 C S C S h
D +A −1 A 2

C R

Figure 2. (a) Three-center molecular compound of the type DA1A2, where D is the electron-donating,
and A1/A2 are the electron-accepting units. The spatial structure of the compound is shown schemat-
ically including the effective radii of the units and the center-to-center distances. (b) Photochemical
processes in this compound. Abbreviations CS, CR, CSh, and IC denote charge separation, charge
recombination, charge shift, and internal conversion, respectively.

The molecular triad is assumed to interact with a polar environment with the two-
component relaxation function X(t). The relaxation parameters of the medium (x1, τ1, x2,
τ2) are considered to be known. Our goal here is to construct a general model of ET in this
system taking into account both multiple redox centers and the multi-component relaxation
of the medium. It is important to note that this is the simplest model, which has not yet
been studied within semiclassical theories. On the one hand, the two-stage ET models in
the Debye solvents are known [36–39,44], and, on the other hand, there are general models
of single-step ET in liquids with several relaxation timescales [34,49]. The theory presented
here combines both these approaches.

According to Equation (7), the configuration space for a three-center (N = 3) molec-
ular system in a two-mode (R = 2) medium should minimally involve (N − 1)R = 4
independent coordinates. It is convenient to represent the 4-dimensional vector q as a
2 × 2 matrix

q =

(
q11 q12
q21 q22

)
. (11)

As before, the first index here relates to the polarization coordinate Qk, and the second
one—to the relaxation component Ri. We assume that optical excitation does not produce a
significant redistribution of the electronic density, so medium reorganization at the stage of
excitation can be neglected. According to Equation (9), the positions of the ground-state
and the excited-state FESs minima, in this case, coincide, q̌(ex)

ki = q̌(gr)
ki . To simplify the

description we omit the ground state from consideration and restrict our model to electronic
transitions with the charge-transfer character only. The following notation will be used for
the ET states

|ϕ1〉 = D∗A1A2, |ϕ2〉 = D+A−1 A2, |ϕ3〉 = D+A1A−2 .

The equilibrium free energies Ǧ(1), Ǧ(2), Ǧ(3), and the reorganization free energies
λ(12), λ(13) and λ(23) are considered as known parameters.
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We employ Equation (10) to find the FESs minima q̌(1), q̌(2), and q̌(3). Since this

equation deals only with relative distances d(nn′)
i , the q̌(n) points are invariant under the

shift and rotation in the q-space as a whole. This allows us to choose q̌(1) arbitrarily, for
example, by placing it into the origin of the coordinate system

q̌(1) =

(
0 0
0 0

)
. (12)

Now, to find q̌(2), we use the known distance to the q̌(1) point, which is equal to√
λ(12) according to Equation (9). At this step, it is enough to use only one of the two

polarization coordinates, say Q1. From Equation (10) one finds
∣∣∣q̌(1)11 − q̌(2)11

∣∣∣ = √
λ(12)x1

and
∣∣∣q̌(1)12 − q̌(2)12

∣∣∣ = √λ(12)x2. This gives the following result

q̌(2) =

(√
λ(12)x1

√
λ(12)x2

0 0

)
. (13)

Similar algorithm can then be applied to q̌(3). This point should be arranged in such a
way that distances from q̌(3) to q̌(1) and q̌(2) satisfy Equation (10). To fulfill these conditions,
both polarization coordinates Q1 and Q2 are needed. Finally, one gets

q̌(3) =

(√
λ(13)x1 cos θ

√
λ(13)x2 cos θ√

λ(13)x1 sin θ
√

λ(13)x2 sin θ

)
, (14)

where

cos θ =
λ(12) + λ(13) − λ(23)

2
√

λ(12)λ(13)
. (15)

Equations (12)–(14) can be easily verified by direct evaluation of the d(12)
i , d(13)

i , and

d(23)
i components, and comparing them with Equation (10).

The G(n)(q) FESs, constructed using Equations (8) and (12)–(15), completely determine
the energy barriers for all ET steps. As an example we consider the |ϕ1〉 → |ϕ2〉 transition,
i.e., transfer of an electron from D∗ to A1. The ET is possible only if the reactant and product
energies are equal, G(1)(q) = G(2)(q). The solution of this equation is a hyperplane in the
4-dimensional space

q11

√
λ(12)x1 + q12

√
λ(12)x2 = λ(12) + Ǧ(2) − Ǧ(1), (16)

that describes the intersection of the two parabolic FESs. The section itself is a three-
dimensional paraboloid, and the minimum value on this surface is the saddle point between
the reactant and product FESs (we denote it as q]). The height H]

12 of the energy barrier
between the equilibrium states then can be calculated using the q] value. This parameter is
very important for the analysis of thermal (quasi-equilibrium) reactions and included many
expressions for the ET rate constants [26,28,33]. At the same time, the reaction pathway in
the case of nonequilibrium ET may not be limited to the saddle point, especially in ultrafast
processes, where the reaction flux deviates from the saddle point significantly [53]. The
effective energy barrier in ultrafast ET may therefore differ from H]

12.
These peculiarities of nonequilibrium ET can be taken into account by considering

the motion of the wave packets on the corresponding FESs along with ET transitions. We
introduce the time-dependent density function ρn(q, t) for the nth ET state of the system.
According to the Zusman method [17], the qki dynamics can be considered as diffusion, and
chemical transformations as reversible quantum transitions localized at the intersection
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regions of the reactant and product FESs. Applying this method, one obtains the following
equation for ρ1(q, t)

∂ρ1(q, t)
∂t

= L̂(1)
1 ρ1 + L̂(1)

2 ρ1+

+
2πV2

12
h̄

δ
(

G(1) − G(2)
)
(ρ2 − ρ1) +

2πV2
13

h̄
δ
(

G(1) − G(3)
)
(ρ3 − ρ1). (17)

The last two terms on the right-hand side describe the ET transitions |ϕ1〉 ↔ |ϕ2〉 and
|ϕ1〉 ↔ |ϕ3〉 in the nonadiabatic limit. V12 and V13 are the coupling energies between the
corresponding electronic states, L̂(n)

1 and L̂(n)
2 are the Smoluchowski operators of diffusion

on the G(n) FES. It is important that the diffusion coefficients along the (q11, q21) coordinates
and along the (q12, q22) coordinates are different, since these coordinates are associated
with different timescales of polarization relaxation (τ1 and τ2)

L̂(n)
i =

1
τi

2

∑
k=1

(
1 +

(
qki − q̌(n)ki

) ∂

∂qki
+ kBT

∂2

∂q2
ki

)
. (18)

Similar kinetic equations can be written for the ρ2(q, t) and ρ3(q, t) densities, they
have the same structure as Equation (17). The resulting set of equations accomplishes the
formulation of the model. This set can also be supplemented with the initial conditions,
which usually reflect the conditions of the initial state formation. In the case of activated
ET from the |ϕ1〉 state, the initial distribution on the G(1) FES is often assumed to be
thermodynamically equilibrium

ρ1(q, t = 0) = ∏
k,i

1√
2πkBT

exp

−
(

qki − q̌(n)ki

)2

2kBT

. (19)

In ultrafast photoreactions, on the contrary, the initial distribution in the excited state
is generally nonequilibrium and depends both on the energetic parameters of the system
and spectral characteristics of the pumping pulse (see, e.g., [54]).

The proposed theory can be used as a framework for numerical simulations and
analysis of experimental data on ultrafast ET in macromolecules. The theory can be linked
to experiments, for example, by calculating the populations of the electronic states and
comparing them with the observed ET kinetics. In the present model, the |ϕn〉 state
population is evaluated as the integral of the density function over the entire configuration
space

Pn(t) =
∫

dq ρn(q, t). (20)

Another important quantity of ultrafast ET is the quantum yield of charge separation
YCS, which is commonly identified with the total population of charge-transfer states at the
time T when relaxation processes are over [55,56]

YCS = P2(T) + P3(T), where T = 5 max{τ1, τ2}. (21)

It is important to note here, that the ρn(q, t) functions can also be used for simulations
of luminescent properties of the system in the course of ET. Recently, specific computational
methods have been developed for simulations of the reaction kinetics and transient absorp-
tion/emission spectra of nonequilibrium macromolecules [46,57,58], but within simpler
models that do not take into account complex dynamics of medium relaxation. Similar
algorithms can also be developed for the generalized theory presented here, but these
results will be reported elsewhere.
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3. Methods and Materials
Verification of the Theory

The proposed theory can be verified by comparing it with earlier models, especially
those that can be considered as special cases with respect to the present general approach.
Hereafter, the following well-known frameworks are used for this verification: (1) the
Najbar/Tachiya theory of two-stage ET in the Debye polar solvent [37], (2) the Zusman
theory of ET in solvents with a two-component relaxation function [49]. Both these theories
are special cases: the Najbar/Tachiya theory was developed for the three-center molecular
compounds (N = 3), but only in a single-component solvent (R = 1); the Zusman theory is
applicable to the multi-component environments (any R), but involves ET between only
two redox centers (N = 2) and thus does not provide appropriate description of multistage
reactions. The difference between these two models can also be clarified by comparing
their configuration spaces. Both spaces are two-dimensional, but their nature is completely
different. In the Najbar/Tachiya model, the free energy surfaces are constructed as func-
tions of the polarization coordinates, while the Zusman model employs the relaxation
coordinates. The two models thus operate in different subspaces as shown in Figure 1.
Since the theory presented in this paper is a generalization of the two approaches, we
expect the new theory to reproduce the results of the previous ones in domains of their
applicability according to the correspondence principle.

To demonstrate the correspondence to the Najbar/Tachiya model, we set τ1 = τ2 and
eliminate the relaxation subspace R from consideration by projecting the composite space
q onto the subspace Q

Qk = |Qk| =
√

∑
i

q2
ki. (22)

This R-space folding gives the following coordinates of the FES minima

Q̌(1) =

(
0
0

)
, Q̌(2) =

(√
λ(12)

0

)
, Q̌(3) =

(√
λ(13) cos θ√
λ(13) sin θ

)
. (23)

The G(n) FESs in the (Q1, Q2) coordinates take the form of Equations (2). This result
reproduces the Najbar/Tachya model [37], where two-stage ET is considered in terms of
two-dimensional parabolic surfaces. It should also be noted that two-dimensional presenta-
tion of FESs in the form (2), (28) has been repeatedly used earlier (see, for example, [34,45]).

Consider the 3-center molecular system in more detail, assuming the electronic den-
sities on D, A1, A2 to be described by the effective radii r1, r2, r3, and the distances r12,
r13, r23 between the centers. This simple model is shown in Figure 2a, and allows us to
estimate the system’s energetics using the Marcus formula for the reorganization energy in
a continuous dielectric medium

λij =
cpe2

2

(
1
ri
+

1
rj
− 2

rij

)
. (24)

Here e is the charge of an electron, cp = ε−1
o − ε−1

s is the Pekar factor, ri and rj are the
effective radii of the donating and accepting sites, and rij is the center-to-center distance
between them. We adopt here the following model parameters that provide relatively high
yields of charge separation [44]

r1 = r2 = 4, r3 = 8, r12 = 10.4, r23 = 12, r13 = 19.4 (in angstroms). (25)

As a solvent, we take highly polar acetonitrile (ACN, ε∞ = 1.806, ε0 = 36.64) with
a two-component dielectric relaxation [50,51]. The X(t) function parameters in ACN are:
x1 = 0.686, τ1 = 0.089 ps, x2 = 0.314, τ2 = 0.63 ps.
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Using these model parameters one can estimate the reorganization energies from
Equation (24)

λ(12) = 1.17 eV, λ(13) = 1.03 eV, λ(23) = 0.79 eV, θ = 50◦. (26)

and calculate the diabatic FESs minima from Equations (12)–(15)

q̌(1) =

(
0 0
0 0

)
, q̌(2) =

(
0.894 0.605

0 0

)
, q̌(3) =

(
0.540 0.365
0.645 0.436

)
. (27)

With known values Ǧ(1) = 0, Ǧ(2) = −0.2 eV and Ǧ(3) = −0.1 eV we have a set of
diabatic FESs Ǧ(n) in the 4-dimensional composite space q.

To illustrate the R-space «folding» (Equation (22)), we calculate the projections of the
q̌(n) points into the Q subspace. They are

Q̌(1) =

(
0
0

)
, Q̌(2) =

(
1.080

0

)
, Q̌(3) =

(
0.652
0.779

)
. (28)

Figure 3 shows parabolic FESs calculated using Equation (28). Panel b) also shows
the displacement vectors D(nn′) and the angle θ between the directions of the |ϕ1〉 → |ϕ2〉
and |ϕ1〉 → |ϕ3〉 transitions. The standard one-dimensional ET picture of two intersecting
parabolic curves can be obtained by cutting the surfaces in Figure 3a by vertical planes
passing through the minima of the reactant and product FESs.
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Figure 3. (a) Free energy surfaces of the ET states |ϕ1〉 = D∗A1A2, |ϕ2〉 = D+A−1 A2 and
|ϕ3〉 = D+A1A−2 as functions of the polarization coordinates. These curves are constructed by
projection of the 4-dimensional G(n)(q) surfaces into the 2-dimensional Q subspace. The values of the
model parameters are indicated in the text. (b) FESs minima on the (Q1, Q2) plane. The displacement
vectors D(nn′) and the θ angle are also shown.

Now we check the present theory for its correspondence to the Zusman model of ET
in solvents with two relaxation timescales [49]. To do this, we eliminate the polarization
subspace Q by projecting the q space onto the relaxation subspace R. This projection is
done as follows

Ri = |Ri| =
√

∑
k

q2
ki. (29)

From Equations (12)–(14) one gets

Ř(1) =

(
0
0

)
, Ř(2) =

(√
λ(12)x1√
λ(12)x2

)
, Ř(3) =

(√
λ(13)x1√
λ(13)x2

)
. (30)
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In the Zusman model, the FESs displacements in relaxation coordinate Ri are pro-
portional to the corresponding weight factors xi [49]. The same result is valid for our
model, where the Ř(n)

i coordinates are located along a straight line given by the equation
R2 =

√
x2/x1R1 (see Equation (31)). Such an arrangement provides the required ratio of

the relaxation components for all ET transitions in the system. Equation (17) for the system
evolution is transformed into the Smoluchowski equation of diffusion in a two-dimensional
parabolic potential. Diffusion coefficients along the R1 and R2 coordinates, however, are
different: D1 = kBT/τ1 and D2 = kBT/τ2. These equations reproduce the results of ref [49]
as well.

Applying the Q-folding transformation to our model system (Equation (27)) we find
the FESs minima in the R subspace

Ř(1) =

(
0
0

)
, Ř(2) =

(
0.894
0.605

)
, Ř(3) =

(
0.841
0.569

)
. (31)

The G(n) curves on the (R1, R2) plane are pictured in Figure 4.
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Figure 4. (a) Free energy surfaces of the ET states as functions of the relaxation coordinates R1 and
R2. The surfaces are calculated by orthogonal projection from the q space onto the . The x1 and x2

parameters correspond to acetonitrile (given in the text), other parameters are the same as in Figure 3.
(b) Arrangement of the FESs minima on the (R1, R2) plane: the Ř(n) points are located on the straight
line given by the equation R2/R1 =

√
x2/x1.

4. Conclusions

Many studies of photoinduced ET in macromolecules are related to the prospects
for their use as components of molecular electronics devices, in particular, solar cells,
organic light-emitting diodes, optical sensors, switches, and others. Ultrafast photochemical
reactions on the femtosecond timescale are often accompanied by the nonequilibrium
states of the reactants and the environment. Multistage photoinduced ET in non-Debye
environments, such as polymer mixtures, protein matrices, nanoaggregates, etc., is of
particular interest. To describe the nonequilibrium effects in these reactions, we propose
a method based on the splitting of the independent polarization coordinates into the
relaxation components. The method can be considered as a generalization of the two well-
known approaches, one of which is used to describe multistage processes, and the other, to
account for the multi-component relaxation of the environment. In this study, the properties
of the extended space are studied, and the relationship between the reorganization free
energy, the medium relaxation parameters, and the arrangement of the diabatic FESs
in the extended configuration space is established. The proposed general approach is
applied to a three-center molecular system in a medium with a two-component relaxation
function. The algorithm for the diabatic FESs construction is described in detail, and a set
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of kinetic equations for the electronic density functions is specified. The general approach
is verified by demonstrating its correspondence to the well-known Najbar/Tachiya and
Zusman models.

Funding: The reported study was supported by Russian Science Foundation (grant no. 22-13-00180,
https://rscf.ru/en/project/22-13-00180/, accessed on 29 October 2022).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Williams, R.J.P., Overview of Biological Electron Transfer. In Electron Transfer in Biology and the Solid State; American Chemical

Society: Washington, DC, USA, 1990; Chapter 1, pp. 3–23. [CrossRef]
2. Weber, S. Light-driven enzymatic catalysis of DNA repair: A review of recent biophysical studies on photolyase. Biochim. Biophys.

Acta 2005, 1707, 1–23. [CrossRef] [PubMed]
3. Formosinho, S.; Barroso, M. (Eds.) Proton-Coupled Electron Transfer; Catalysis Series; The Royal Society of Chemistry: Cambridge,

UK, 2012; pp. 1–157. [CrossRef]
4. Strumpfer, J.; Sener, M.; Schulten, K. How Quantum Coherence Assists Photosynthetic Light-Harvesting. J. Phys. Chem. Lett.

2012, 3, 536–542. [CrossRef]
5. Britikov, V.V.; Bocharov, E.V.; Britikova, E.V.; Dergousova, N.I.; Kulikova, O.G.; Solovieva, A.Y.; Shipkov, N.S.; Varfolomeeva, L.A.;

Tikhonova, T.V.; Timofeev, V.I.; et al. Unusual Cytochrome c552 from Thioalkalivibrio paradoxus: Solution NMR Structure and
Interaction with Thiocyanate Dehydrogenase. Int. J. Mol. Sci. 2022, 23, 9969. [CrossRef] [PubMed]

6. Zara, V.; De Blasi, G.; Ferramosca, A. Assembly of the Multi-Subunit Cytochrome bc1 Complex in the Yeast Saccharomyces
cerevisiae. Int. J. Mol. Sci. 2022, 23, 10537. [CrossRef] [PubMed]

7. LeBard, D.N.; Martin, D.R.; Lin, S.; Woodbury, N.W.; Matyushov, D.V. Protein dynamics to optimize and control bacterial
photosynthesis. Chem. Sci. 2013, 4, 4127–4136. [CrossRef]

8. Sjulstok, E.; Olsen, J.; Solov’yov, I. Quantifying electron transfer reactions in biological systems: What interactions play the major
role? Sci. Rep. 2015, 5, 18446. [CrossRef] [PubMed]

9. Mondal, S.; Bagchi, B. From structure and dynamics to biomolecular functions: The ubiquitous role of solvent in biology. Curr.
Opin. Struct. Biol. 2022, 77, 102462. [CrossRef] [PubMed]

10. Migliore, A.; Polizzi, N.F.; Therien, M.J.; Beratan, D.N. Biochemistry and Theory of Proton-Coupled Electron Transfer. Chem. Rev.
2014, 114, 3381–3465. [CrossRef]

11. Ponnu, A.; Sung, J.; Spears, K.G. Ultrafast Electron-Transfer and Solvent Adiabaticity Effects in Viologen Charge-Transfer
Complexes. J. Phys. Chem. A 2006, 110, 12372–12384. [CrossRef]

12. Kundu, M.; He, T.F.; Lu, Y.; Wang, L.; Zhong, D. Short-Range Electron Transfer in Reduced Flavodoxin: Ultrafast Nonequilibrium
Dynamics Coupled with Protein Fluctuations. J. Phys. Chem. Lett. 2018, 9, 2782–2790. [CrossRef]

13. Lu, Y.; Kundu, M.; Zhong, D. Effects of nonequilibrium fluctuations on ultrafast short-range electron transfer dynamics. Nat.
Commun. 2020, 11, 2822. [CrossRef] [PubMed]

14. Yang, J.; Zhang, Y.; He, T.F.; Lu, Y.; Wang, L.; Ding, B.; Zhong, D. Ultrafast nonequilibrium dynamics of short-range protein
electron transfer in flavodoxin. Phys. Chem. Chem. Phys. 2022, 24, 382–391. [CrossRef] [PubMed]

15. Dhole, K.; Jena, N.K.; Samanta, A.; Ghosh, S.K. Electron transfer reactions in condensed phase: Effect of reversibility. Phys. Rev. E
2012, 85, 026105. [CrossRef] [PubMed]

16. Rosspeintner, A.; Lang, B.; Vauthey, E. Ultrafast photochemistry in liquids. Annu. Rev. Phys. Chem. 2013, 64, 247–271. [CrossRef]
[PubMed]

17. Zusman, L.D. Outer-sphere electron transfer in polar solvents. Chem. Phys. 1980, 49, 295–304. [CrossRef]
18. Petersson, J.; Hammarsrtröm, L. Ultrafast Electron Transfer Dynamics in a Series of Porphyrin/Viologen Complexes: Involvement

of Electronically Excited Radical Pair Products. J. Phys. Chem. B 2015, 119, 7531–7540. [CrossRef]
19. Szakacs, Z.; Tasior, M.; Gryko, D.T.; Vauthey, E. Change of Quadrupole Moment upon Excitation and Symmetry Breaking in

Multibranched Donor-Acceptor Dyes. ChemPhysChem 2020, 21, 1718–1730. [CrossRef]
20. Schrauben, J.N.; Dillman, K.L.; Beck, W.F.; McCusker, J.K. Vibrational coherence in the excited state dynamics of Cr(acac)3:

Probing the reaction coordinate for ultrafast intersystem crossing. Chem. Sci. 2010, 1, 405–410. [CrossRef]
21. Yoneda, Y.; Kudisch, B.; Rafiq, S.; Maiuri, M.; Scholes, G.; Miyasaka, H. Vibrational coherence in ultrafast electron transfer reaction

observed by broadband transient absorption spectroscopy. EPJ Web Conf. 2019, 205, 09028. [CrossRef]
22. Kim, W.; Musser, A.J. Tracking ultrafast reactions in organic materials through vibrational coherence: Vibronic coupling

mechanisms in singlet fission. Adv. Phys. X 2021, 6, 1918022. [CrossRef]

https://rscf.ru/en/project/22-13-00180/
http://doi.org/10.1021/ba-1990-0226.ch001
http://dx.doi.org/10.1016/j.bbabio.2004.02.010
http://www.ncbi.nlm.nih.gov/pubmed/15721603
http://dx.doi.org/10.1039/9781849733168
http://dx.doi.org/10.1021/jz201459c
http://dx.doi.org/10.3390/ijms23179969
http://www.ncbi.nlm.nih.gov/pubmed/36077365
http://dx.doi.org/10.3390/ijms231810537
http://www.ncbi.nlm.nih.gov/pubmed/36142449
http://dx.doi.org/10.1039/c3sc51327k
http://dx.doi.org/10.1038/srep18446
http://www.ncbi.nlm.nih.gov/pubmed/26689792
http://dx.doi.org/10.1016/j.sbi.2022.102462
http://www.ncbi.nlm.nih.gov/pubmed/36150344
http://dx.doi.org/10.1021/cr4006654
http://dx.doi.org/10.1021/jp0617322
http://dx.doi.org/10.1021/acs.jpclett.8b00882
http://dx.doi.org/10.1038/s41467-020-15535-y
http://www.ncbi.nlm.nih.gov/pubmed/32499536
http://dx.doi.org/10.1039/D1CP04445A
http://www.ncbi.nlm.nih.gov/pubmed/34889914
http://dx.doi.org/10.1103/PhysRevE.85.026105
http://www.ncbi.nlm.nih.gov/pubmed/22463277
http://dx.doi.org/10.1146/annurev-physchem-040412-110146
http://www.ncbi.nlm.nih.gov/pubmed/23298248
http://dx.doi.org/10.1016/0301-0104(80)85267-0
http://dx.doi.org/10.1021/jp5113119
http://dx.doi.org/10.1002/cphc.202000253
http://dx.doi.org/10.1039/c0sc00262c
http://dx.doi.org/10.1051/epjconf/201920509028
http://dx.doi.org/10.1080/23746149.2021.1918022


Int. J. Mol. Sci. 2022, 23, 15793 13 of 14

23. Ennist, N.M.; Zhao, Z.; Stayrook, S.E.; Discher, B.M.; Dutton, P.L.; Moser, C.C. De novo protein design of photochemical reaction
centers. Nat. Commun. 2022, 13, 4937. [CrossRef] [PubMed]

24. Barber, J.; Tran, P.D. From natural to artificial photosynthesis. J. R. Soc. Interface 2013, 10, 20120984. [CrossRef] [PubMed]
25. Blankenship, R.E. Molecular Mechanisms of Photosynthesis, 2nd ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2014; p. 312.
26. Kuznetsov, A.; Ulstrup, J. Electron Transfer in Chemistry and Biology: An Introduction to the Theory; Wiley: Chichester, UK,

1999; p. 350.
27. Likhtenshtein, G. Electron Transfer Theories. In Solar Energy Conversion; John Wiley & Sons: Hoboken, NJ, USA, 2012; Chapter 1,

pp. 1–44. [CrossRef]
28. Blumberger, J. Recent Advances in the Theory and Molecular Simulation of Biological Electron Transfer Reactions. Chem. Rev.

2015, 115, 11191–11238. [CrossRef] [PubMed]
29. Marcus, R.A. On the theory of oxidation-reduction reactions involving electron transfer. J. Chem. Phys. 1956, 24, 966–978.

[CrossRef]
30. Marcus, R.A.; Sutin, N. Electron Transfers in Chemistry and Biology. Biochim. Biophys. Acta 1985, 811, 265–322. [CrossRef]
31. Misra, R.; Bhattacharyya, S.P. Intramolecular Charge Transfer: Theory and Applications; Wiley: Weinheim, Germany, 2018; p. 256.
32. Hatano, S.; Abe, J. A peroxide-bridged imidazole dimer formed from a photochromic naphthalene-bridged imidazole dimer.

Phys. Chem. Chem. Phys. 2012, 14, 5855–5860. [CrossRef]
33. Barzykin, A.V.; Frantsuzov, P.A.; Seki, K.; Tachiya, M. Solvent effects in nonadiabatic electron-transfer reactions: Theoretical

aspects. In Advances in Chemical Physics; Wiley: Hoboken, NJ, USA, 2002; Volume 123, Chapter 9, pp. 511–616. [CrossRef]
34. Feskov, S.V.; Mikhailova, V.A.; Ivanov, A.I. Non-equilibrium effects in ultrafast photoinduced charge transfer kinetics. J. Photochem.

Photobiol. C 2016, 29, 48–72. [CrossRef]
35. Fukuzumi, S. Electron Transfer: Mechanisms and Applications; Wiley: Weinheim, Germany, 2020; p. 230.
36. Cho, M.; Silbey, R.J. Nonequilibrium photoinduced electron transfer. J. Chem. Phys. 1995, 103, 595–606. [CrossRef]
37. Najbar, J.; Tachiya, M. Potential energy surfaces for electron transfer in a supramolecular triad system A1-D-A2 in a polar solvent.

J. Phys. Chem. 1994, 98, 199–205. [CrossRef]
38. Khohlova, S.S.; Mikhailova, V.A.; Ivanov, A.I. Three-centered model of ultrafast photoinduced charge transfer: Continuum

dielectric approach. J. Chem. Phys. 2006, 124, 114507. [CrossRef]
39. Newton, M.D. Bridge-Mediated Electron Transfer and Multiple Reaction Coordinates. Isr. J. Chem. 2004, 44, 83–88. [CrossRef]
40. Motylewski, T.; Najbar, J.; Tachiya, M. Competitive electron transfers in model triad systems: Continuum model approach. Chem.

Phys. 1996, 212, 193–206. [CrossRef]
41. Tang, J.; Norris, J.R. On superexchange electron-transfer reactions involving three paraboloidal potential surfaces in a two-

dimensional reaction coordinate. J. Chem. Phys. 1994, 101, 5615–5622. [CrossRef]
42. Khokhlova, S.S.; Mikhailova, V.A.; Ivanov, A.I. The influence of changes in the dipole moment of reagents on the rate of

photoinduced electron transfer. Russ. J. Phys. Chem. A 2008, 82, 1024–1030. [CrossRef]
43. Feskov, S.V.; Kichigina, A.O.; Ivanov, A.I. Kinetics of nonequilibrium electron transfer in photoexcited ruthenium(II)-cobalt(III)

complexes. J. Phys. Chem. A 2011, 115, 1462–1471. [CrossRef]
44. Feskov, S.V.; Ivanov, A.I. Effect of geometrical parameters of dyad D-A and triad D-A1-A2 on the efficiency of ultrafast intramolecular

charge separation from the second excited state. Chem. Phys. 2016, 478, 164–172. [CrossRef]
45. Feskov, S.V.; Ivanov, A.I. Efficiency of Intramolecular Electron Transfer from the Second Excited State of the Donor in Molecular

Triads D-A1-A2. Russ. J. Phys. Chem. 2016, 90, 144–151. [CrossRef]
46. Feskov, S.V.; Ivanov, A.I. Solvent-assisted multistage nonequilibrium electron transfer in rigid supramolecular systems: Diabatic

free energy surfaces and algorithms for numerical simulations. J. Chem. Phys. 2018, 148, 104107. [CrossRef]
47. Wallin, S.; Monnereau, C.; Blart, E.; Gankou, J.R.; Odobel, F.; Hammarström, L. State-Selective Electron Transfer in an Unsymmetric

Acceptor–Zn(II)porphyrin–Acceptor Triad: Toward a Controlled Directionality of Electron Transfer from the Porphyrin S2 and S1
States as a Basis for a Molecular Switch. J. Phys. Chem. A 2010, 114, 1709–1721. [CrossRef]

48. Robotham, B.; Lastman, K.A.; Langford, S.J.; Ghiggino, K.P. Ultrafast Electron Transfer in a Porphyrin-Amino Naphthalene
Diimide Dyad. J. Photochem. Photobiol. A 2013, 251, 167–174. [CrossRef]

49. Zusman, L.D. The theory of electron transfer reactions in solvents with two characteristic relaxation times. Chem. Phys. 1988,
119, 51–61. [CrossRef]

50. Jimenez, R.; Fleming, G.R.; Kumar, P.V.; Maroncelli, M. Femtosecond solvation dynamics of water. Nature 1994, 369, 471–473.
[CrossRef]

51. Maroncelli, M.; Kumar, V.P.; Papazyan, A. A simple interpretation of polar solvation dynamics. J. Phys. Chem. 1993, 97, 13–17.
[CrossRef]

52. Nazarov, A.E.; Ivanov, A.I.; Rosspeintner, A.; Angulo, G. Full relaxation dynamics recovery from ultrafast fluorescence
experiments by means of the stochastic model: Does the solvent response dynamics depend on the fluorophore nature? J. Mol.
Liq. 2022, 360, 119387. [CrossRef]

53. Ivanov, A.I.; Maigurov, A. Reaction flux deviation from the saddle point in fast electron transfer processes. Russ. J. Phys. Chem.
2003, 77, 243–248.

54. Nazarov, A.E.; Ivanov, A.I. Excitation Frequency Dependence of Ultrafast Photoinduced Charge Transfer Dynamics. Int. J. Chem.
Kinet. 2017, 49, 810–820. [CrossRef]

http://dx.doi.org/10.1038/s41467-022-32710-5
http://www.ncbi.nlm.nih.gov/pubmed/35999239
http://dx.doi.org/10.1098/rsif.2012.0984
http://www.ncbi.nlm.nih.gov/pubmed/23365193
http://dx.doi.org/10.1002/9783527647668.ch1
http://dx.doi.org/10.1021/acs.chemrev.5b00298
http://www.ncbi.nlm.nih.gov/pubmed/26485093
http://dx.doi.org/10.1063/1.1742723
http://dx.doi.org/10.1016/0304-4173(85)90014-X
http://dx.doi.org/10.1039/c2cp40239d
http://dx.doi.org/10.1002/0471231509.ch9
http://dx.doi.org/10.1016/j.jphotochemrev.2016.11.001
http://dx.doi.org/10.1063/1.470094
http://dx.doi.org/10.1021/j100052a033
http://dx.doi.org/10.1063/1.2178810
http://dx.doi.org/10.1560/LQ06-T9HQ-MTLM-2VC1
http://dx.doi.org/10.1016/S0301-0104(96)00175-9
http://dx.doi.org/10.1063/1.467348
http://dx.doi.org/10.1134/S0036024408060290
http://dx.doi.org/10.1021/jp108607t
http://dx.doi.org/10.1016/j.chemphys.2016.03.013
http://dx.doi.org/10.1134/S0036024416010106
http://dx.doi.org/10.1063/1.5016438
http://dx.doi.org/10.1021/jp907824d
http://dx.doi.org/10.1016/j.jphotochem.2012.11.002
http://dx.doi.org/10.1016/0301-0104(88)80005-3
http://dx.doi.org/10.1038/369471a0
http://dx.doi.org/10.1021/j100103a004
http://dx.doi.org/10.1016/j.molliq.2022.119387
http://dx.doi.org/10.1002/kin.21129


Int. J. Mol. Sci. 2022, 23, 15793 14 of 14

55. Feskov, S.V.; Malykhin, R.E.; Ivanov, A.I. The Efficiency of Photoinduced Intramolecular Charge Separation from the Second
Excited State: What Factors Can Control It? J. Phys. Chem. B 2020, 124, 10442–10455. [CrossRef]

56. Siplivy, N.B.; Feskov, S.V.; Ivanov, A.I. Quantum yield and energy efficiency of photoinduced intramolecular charge separation.
J. Chem. Phys. 2020, 153, 044301. [CrossRef]

57. Fedunov, R.G.; Yermolenko, I.P.; Nazarov, A.E.; Ivanov, A.I.; Rosspeintner, A.; Angulo, G. Theory of fluorescence spectrum
dynamics and its application to determining the relaxation characteristics of the solvent and intramolecular vibrations. J. Mol.
Liq. 2020, 298, 112016. [CrossRef]

58. Nazarov, A.E.; Ivanov, A.I. Principles of modeling the fluorescence spectral dynamics of dye molecules in solutions. Comput.
Phys. Commun. 2022, 270, 108178. [CrossRef]

http://dx.doi.org/10.1021/acs.jpcb.0c07978
http://dx.doi.org/10.1063/5.0013708
http://dx.doi.org/10.1016/j.molliq.2019.112016
http://dx.doi.org/10.1016/j.cpc.2021.108178

	Introduction
	Results and Discussion
	General Formulation of the Theory
	Three-Center Molecular System in a Two-Component Environment

	Methods and Materials
	Conclusions
	References

