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Abstract: Pleckstrin Homology And RUN Domain Containing M2 (PLEKHM2) [delAG] mutation
causes dilated cardiomyopathy with left ventricular non-compaction (DCM-LVNC), resulting in a pre-
mature death of PLEKHM2[delAG] individuals due to heart failure. PLEKHM2 is a factor involved
in autophagy, a master regulator of cellular homeostasis, decomposing pathogens, proteins and other
cellular components. Autophagy is mainly carried out by the lysosome, containing degradation en-
zymes, and by the autophagosome, which engulfs substances marked for decomposition. PLEKHM2
promotes lysosomal movement toward the cell periphery. Autophagic dysregulation is associated
with neurodegenerative diseases’ pathogenesis. Thus, modulation of autophagy holds considerable
potential as a therapeutic target for such disorders. We hypothesized that PLEKHM2 is involved
in neuronal development and function, and that mutated PLEKHM2 (PLEKHM2[delAG]) neurons
will present impaired functions. Here, we studied PLEKHM2-related abnormalities in induced
pluripotent stem cell (iPSC)-derived motor neurons (iMNs) as a neuronal model. PLEKHM2[delAG]
iMN cultures had healthy control-like differentiation potential but exhibited reduced autophagic
activity. Electrophysiological measurements revealed that PLEKHM2[delAG] iMN cultures displayed
delayed functional maturation and more frequent and unsynchronized activity. This was associated
with increased size and a more perinuclear lysosome cellular distribution. Thus, our results suggest
that PLEKHM2 is involved in the functional development of neurons through the regulation of
autophagic flux.

Keywords: neurons; motor neurons; autophagy; PLEKHM2; DCM-LVNC; neurodegeneration; lyso-
somes; autophagosomes; iPSCs; disease model

1. Introduction

Autophagy is one of the systems entrusted to maintain homeostasis in cells and
organs [1,2]. Macro-autophagy (hereafter autophagy) is carried out by two principal or-
ganelles, the autophagosome and the lysosome, along with an abundance of supporting
protein complexes. The autophagosome engulfs proteins, pathogens and other cellular com-
ponents, which are labeled for degradation. The lysosome is mounted with hydrolases that
are active in acidic pH and their fusion, namely autolysosomes, results in the decomposition
of the autophagosome content and recycling of the individual amino acids obtained [3,4].
Recently, a novel mutation in the Pleckstrin Homology And RUN Domain Containing M2
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(PLEKHM2) gene, PLEKHM2[delAG], was linked to a rare and fatal cardiovascular disease
called dilated cardiomyopathy with left ventricular non-compaction (DCM-LVNC). This
horrid disease was shown to progress due to autophagy impairments [5]. PLEKHM2
(also known as SKIP) assists with anterograde lysosomal movement, which transports or-
ganelles from the nucleus to the cell periphery by traveling across the microtubules utilizing
KINESIN-1 motor protein [6,7]. Many adaptors, including PLEKHM2, are responsible for
proper lysosomal-motor protein association ensuring long-range organelle transport is car-
ried out [8]. In anterograde motion, KINESIN-1 binds to BLOC-1-related complex (BORC),
which recruits small GTPase ARL8 (abbreviated ARL8), coupling indirectly to KINESIN-1
subunits through PLEKHM2 [6,9]. Proper lysosome function is highly important in cellu-
lar processes, such as antigen presentation [10], liver function [11] and neurotransmitter
turnover [12,13]. Therefore, it is not surprising that autophagic dysregulation has been
proven to accompany pathogenesis [14–17], including neurodegenerative disorders such
as Parkinson’s disease (PD) [18], Alzheimer’s disease (AD) [19], and amyotrophic lateral
sclerosis (ALS) [20]. Deviations in lysosomal motility and complex formation are also
crucial. For example, alterations in BORC and KINESIN-1 were associated with psychiatric
and neurological disorders [21]. Additionally, KINESIN-1 and ARL8 inhibition due to
cholesterol accumulation on lysosomal membranes was discovered in the progressive
disorder known as Niemann–Pick’s disease type C (NPC) [22]. Recently, a regulatory
mechanism in which PLEKHM2 auto-inhibits its interaction with KINESIN-1 by coupling
its N- and C- terminals was discovered [8]. PLEKHM2 is re-activated by ARL8, recruiting
PLEKHM2 for lysosomal anterograde motion [6,8].

PLEKHM2[delAG] patients experienced premature death due to improper autophagic
process. Since, mRNA levels of PLEKHM2 in human tissues had the highest expression in
the brains and testis [5], and as neurons are greatly dependent on homeostasis to function
properly, we hypothesized that PLEKHM2[delAG] mutation may result in neuropatho-
genesis. We therefore sought to study patient-specific cells as a research tool to study the
involvement of PLEKHM2 on neuronal functions.

Here, we describe an in vitro model that enables us to address the role of PLEKHM2 in
the context of functional neuronal maturation. Induced pluripotent stem cell (iPSCs) from
two DCM-LVNC patients and from a heterozygous healthy sibling [23] were differentiated
to motor neurons (iMNs), as a neuronal source. PLEKHM2[delAG] neurons in iMN cultures
displayed increased lysosome size that remained in proximity to the nucleus, which was
accompanied by reduced autophagic flux. In addition, the development of spontaneous
electrophysiology activity was delayed and exhibited increased firing frequency and asyn-
chrony within the neuronal network. Our findings emphasize the importance of PLEKHM2
in the development and regulation of functional neuronal maturation.

2. Results
2.1. PLEKHM2[delAG] Patients and iPSCs

Fibroblasts from two DCM-LVNC sibling patients with a homozygous (chr1:
16055171_16055172delAG) disease-causing mutation and their healthy heterozygous sibling
were collected and reprogrammed into patient-specific iPSCs using non-integrating Sendai
virus as previously described in detail [23], officially registered as BGUi009, BGUi010 and
BGUi008 in hPSCreg, respectively. The PLEKHM2 protein expressed in fibroblasts was
previously suggested to be shorter in PLEKHM2[delAG] cultures [5], translated either
with or without the pleckstrin homology (PH) domain (Figure 1). To assess PLEKHM2
expression in our cells, we performed a Western blot analysis using a previously validated
anti-PLEKHM2 antibody targeting the N-terminal domain [5]. iPSC-derived neuroep-
ithelial cells from both PLEKHM2[delAG] patients and controls displayed several bands
including the expected 113 kDa (Supplementary Figure S1A,B). Quantifying this band
showed a 2-fold decrease in protein levels, suggesting that this variant affects its protein
levels. Since no additional bands were detected in the PLEKHM2[delAG] cells, we conclude
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that the PH-domain aberrant variant is either nonexistent or expressed at low levels in
PLEKHM2[delAG] cells.
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Figure 1. PLEKHM2 protein structure in healthy individuals (top panel) and the two possible variants
that are truncated as a result of AG nucleotide deletion in DCM-LVNC patients (bottom panel).

Although these patients died as young adults before they exhibited any neurological
pathology phenotype, previous studies suggested that autophagy impairments correlate
with neuropathology in other disorders [24,25]. Furthermore, iPSC-derived neurons were
previously shown to be useful in uncovering subtle differences in both developmental and
late-onset neurological disorders [26,27]. We therefore sought to take advantage of these
iPSCs to generate an in vitro model for studying the role of PLEKHM2 in autophagy and
to test its role in functional neuronal development.

2.2. PLEKHM2[delAG] iPSCs Can Differentiate into iMNs

iPSCs were differentiated into motor neurons as previously described [27] (Figure 2A).
Differentiated cells highly expressed neural markers including SOX1 and the neural pro-
genitor marker NESTIN. As expected, differentiated cells displayed reduced expression of
the pluripotency marker OCT3/4 compared to undifferentiated iPSCs. Motor neuron pro-
genitor cells (MNPCs) continued to proliferate while pluripotency decreased. Proliferation
halts when applying S3M, which induces maturation, pushing MNPCs towards mature
MN fate (Figure 2B–D).

Immunocytochemistry (ICC) analysis showed that neuronal markers TUJ1α, MAP2ab
and ISL1 are expressed in MNPCs and more pronounced in iMNs (Figure 2E,F). Contrarily,
the levels of the neural progenitor marker, SOX1 decreased during the transition to iMNs.
Flow cytometry analysis confirmed that iMN cultures contain MAP2ab- and TUJ1α-positive
neurons, as well as ISL1-positive motor neurons (Figure 2G). No significant differences were
observed between control and PLEKHM2[delAG] cultures at all stages of differentiation
(D0, D6, D12 and D18). These results suggest that PLEKHM2 is not involved in the
differentiation of iPSCs to motor neurons.
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Figure 2. PLEKHM2 is not involved in neural differentiation potential. (A) Differentiation protocol
layout, D6 neuroepithelium (NEP), D12 motor neuron progenitor cells (MNPCs), D18 immature motor
neurons (iMNs) and from D30 on motor neurons (MNs). (B–D) Protein expression by flow cytometry
analysis. Organized by row accordingly: the pluripotency marker OCT3/4 (B), the neural progenitor
cell markers SOX1 (C) and NESTIN (D). One-way ANOVA with Sidak’s multiple-comparisons test
was used. Data presented as mean ± SEM n = 2–6. (E,F) ICC of MNPCs (E) and iMNs (F) for
ISL1, TUJ1α (i) SOX1 and MAP2ab (ii). Scale bars—100 µm. Blue—DAPI, red—ISL1, SOX1 and
green—TUJ1α, MAP2ab. (G) Specific neuronal markers in iMN cultures—MAP2ab, TUJ1α and ISL1.
One-way ANOVA with Sidak’s multiple-comparisons test was used. Data presented as mean ± SEM
n = 2–6.

2.3. PLEKHM2[delAG] Cultures Show Reduced Autophagic Activity

PLEKHM2 was previously shown to be required for the autophagic process [5,6,21].
Autophagic activity occurs constitutively at a low rate, but when stress is applied au-
tophagy levels increase to restore homeostasis [28]. Therefore, we next tested autophagy in
PLEKHM2[delAG] and control lines throughout the different stages of differentiation to
determine whether this activity was compromised under stress. Cells were treated by either
inhibiting the target of rapamycin (mTOR) pathway with rapamycin® (Enzo Life Sciences,
Tokyo, Japan) at a concentration of 500 nM for 20 h, or by nutrient deprivation (termed
here NLM) that prompts recycling of proteins within the cell, for 3 h [29]. Chloroquine
(CQ) inhibits lysosomal function as it alkalinizes lysosomal pH and as such, a combina-
tion of either R + CQ or NLM + CQ treatment is expected to exhibit an accumulation of
cellular autophagosomes and lysosomes. The CYTO-ID autophagy detection kit (Enzo Life
Sciences) was used to label the autophagosomes and the autophagic flux was evaluated.
Flow cytometry examination of the cultures showed insignificant differences in autophagic
flux throughout differentiation between control and PLEKHM2[delAG] (Figure 3A). iPSC,
MNPC and iMN cultures only exhibited a modest response with changes of less than 2-fold
to the different stressors in both control and PLEKHM2[delAG] cells (marked by a dashed
line). On the other hand, at the NEP stage, stress induced more than 2-fold production of
autophagosomes. However, no significant differences were observed between the treat-
ments at the different stages. Since NEP cultures had the greatest response to the treatments,
we next tested the protein expression of the established autophagosome markers LC3B
and p62 [30,31] by Western blot. The LC3B band did not clearly separate into its two
isoforms (LC3BI and LC3BII). LC3BII is the most common marker for the autophagic pro-
cess [32]. We therefore calculated its levels based on the whole protein band. Interestingly,
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a lower production of autophagosomes provoked by both stress treatments was observed
in PLEKHM2[delAG] cells. These results support the non-significant trend observed in the
flow cytometry analysis (Figure 3A,B). Collectively, the data showed reduced autophagy
activity in PLEKHM2[delAG] cultures when compared to the control cultures.
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Figure 3. Reduced autophagic activity trend in PLEKHM2[delAG] cultures. (A–D), Autophagy
flux acquired by flow cytometry analysis during four stages of differentiation using the CYTO-
ID autophagy detection kit. iPSCs (A), NEP (B), MNPCs (C), and iMNs (D). Stress induction by
rapamycin and chloroquine (R + CQ) treatment, unless stated otherwise. Black and empty bars
represent control and PLEKHM2[delAG] cultures, respectively. Fold change calculated by median
fluorescent intensity after treatment normalized to untreated samples. The dashed red line marks the
2-fold change. Two-tailed student’s t-test was employed, presenting mean ± SEM n > 3. (E) Western
blot analysis of D6 culture autophagosome markers p62 and LC3B under two stress inductions,
R + CQ and nutrient limited media with chloroquine (NLM + CQ). * p = 0.0155 by two-tailed student’s
t-test. Bar graphs present mean ± SEM n = 5 (including 2–3 technical repetitions in at least two
independent experiments for each line) (F) Representative Western blots. Autophagosomal markers,
p62 and LC3B and housekeeping gene, GAPDH.

2.4. PLEKHM2[delAG] Culture Activity Peaks Later Than Its Control

To test whether PLEKHM2 is involved in functional maturation, neural cells from both
PLEKHM2[delAG] and healthy control were seeded and differentiated on an MEA plate
and spontaneous activity was monitored twice weekly during the course of five weeks.
The spontaneous activity peaked in the control cells during the third week (D15-D21) of
differentiation with an average of 15.3 spikes/min. The activity decreased and by the fifth
week only 0.72 spikes/min were recorded (Figure 4A). Interestingly, in PLEKHM2[delAG]
cells the neuronal activity peaked at a later stage, during the fifth week of differentiation
(D30–D33), and displayed elevated activity with an average of 40 spikes/min (Figure 4A).
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Additionally, PLEKHM2[delAG] lines fired action potentials at an irregular rate with
an increased frequency, while control lines rarely fired, but when doing so exhibited
great network connectivity indicated by simultaneous firing throughout all electrodes
(Figure 4B,C). Additionally, PLEKHM2[delAG] cultures showed an elevated inter-spike
interval (ISI) and higher burst percentage average when compared to control cultures
(Figure 4D,E). The synchrony index (ranging from 0—no synchrony to 1—highly synchro-
nized) serves as a measure for the connectivity of neurons in a culture [33,34]. Comparing
the synchrony index of weeks 3 and 5 revealed a significant difference in control and
PLEKHM2[delAG] connectivity. While control cultures become more synchronized from
week 3 to 5, PLEKHM2[delAG] lose their synchrony during that time period (Figure 4F).
The results showed that although both patient and control lines differentiated into active
neuronal cultures, PLEKHM2[delAG] cells present impaired functionality when compared
to control cells.
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Figure 4. Microelectrode array (MEA) functional assay of the cultures. (A) Number of spikes fired
during a 15 min recording. Based on at least four separate independent experiments (BGUi008A—2,
BGUi008B—2, BGUi009—2 and BGUi010—3) * p = 0.025 by one-way ANOVA with Sidak’s multiple-
comparisons test. (B) Mean firing rate * p = 0.0171 by two-tailed student’s t-test. Presenting
mean ± SEM. (C) Representative raster plots during the most active week in the culture. (D) Median
inter-spike interval (ISI) within bursts * p = 0.0214 by two-tailed student’s t-test. (E) Burst percentage
average * p = 0.0345 by two-tailed student’s t-test. All graphs presenting mean ± SEM. (F) Synchrony
index during weeks 3 and 5 * p = 0.0130, **** p < 0.0001, respectively, by two-tailed student’s t-test,
showing mean ± SEM. Week 3: ncontrol = 7, nPLEKHM2[delAG] = 3. Week 5: ncontrol = 2, nPLEKHM2[delAG] = 7.
(G) Protein expression of day 35 neural culture. Two-tailed student’s t-test, showing mean ± SEM,
n = 2.

To confirm that changes in electrophysiological activity were not due to cell detach-
ment or cell death, on the fifth week of differentiation, cells were lifted from the MEA
plates and subjected to flow cytometry analysis. Both control and PLEKHM2[delAG]
cultures contained mostly neurons with about 10% astrocytes (Figure 4G). The culture also
contained 10% of ChAT-positive motor neurons. No significant differences were found in
the number of cells per well (Supplementary Figure S2) nor in the differentiation potential
between control and PLEKHM2[delAG] cells. These results suggest that the differences in
the neuronal activity are not the consequence of differential cell differentiation or survival.

2.5. The Mutation in PLEKHM2 Leads to Lysosomal Dysfunction

PLEKHM2 participates in the association of the motor protein KINESIN-1 to the lyso-
some. In turn, KINESIN-1 propels anterograde movement towards the axon terminal [6,7,21].
To evaluate whether anterograde movement is PLEKHM2-dependent, lysosomes in iMN
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cultures were labeled by lysosomal-associated membrane protein 1 (LAMP1), a lysosomal
membrane marker [35], under basal conditions and following stress induction by R + CQ.
While LAMP1 marks lysosomes, it is also apparent in other cellular vesicles, mostly in late
endosomes, due to their transport to lysosomes in the endocytotic pathway [9]. We there-
fore refer to all LAMP1-positive vesicles as lysosomes. Stress induction treatment led to a
greater number of lysosomes per cell in control neurons, compared to PLEKHM2[delAG]
neurons (Figure 5A). Interestingly, the lysosome size in PLEKHM2[delAG] cells is increased
compared to controls by approximately 38% under basal conditions and by 21% following
treatment (Figure 5B). Additionally, the cellular distribution of lysosomes was affected by
the mutation (Figure 5C); PLEKHM2[delAG] neurons showed a perinuclear localization of
the lysosomes compared to control cells both under basal conditions and following stress
(Figure 5C). Specifically, in untreated PLEKHM2[delAG] cultures, lysosomes clustered
together, while in control cultures the lysosomes were distributed farther from the nuclei.
Post-treatment control neurons presented even greater dispersion of lysosomes, whereas
lysosomal clusters in PLEKHM2[delAG] neurons remained mostly perinuclear. Overall,
these results suggest that PLEKHM2 is involved in anterograde transport of lysosomes
and that, in PLEKHM2[delAG] neurons, this transport is attenuated. These differences
between the lysosomes in control and in PLEKHM2[delAG] cells may shed light on the
observed differences in the electrophysiology and autophagic activities and agree with
studies demonstrating that lysosome size, numbers and distribution impact neuronal
functions [36–39].
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Figure 5. Lysosomal distribution. (A) Number of lysosomes within each cell. The interquartile
range (IQR) is denoted by the black rectangle, white dots denote the median value * p = 0.0206 by
one-way ANOVA Sidak’s multiple-comparisons test. (B) Lysosome size distribution in baseline and
following stress induction. *** p < 0.007, **** p < 0.0001 by one-way ANOVA with Kruskal–Wallis
multiple-comparisons test. (C) The distance of lysosomes from the nucleus is measured. * p = 0.0213,
**** p < 0.0001 by one-way ANOVA with Kruskal–Wallis multiple-comparisons test. (D) Representa-
tive images of cells during basal conditions and following R + CQ treatment. White arrows point
to lysosomes far from the nucleus in control cultures or perinuclear in PLEKHM2[delAG] cultures.
n = 11–14 cells from two independent experiments. Scale bar—10 µm. Blue—DAPI, green—TUJ1α,
red—LAMP1.



Int. J. Mol. Sci. 2022, 23, 16092 8 of 17

3. Discussion

Autophagy dysregulation has been associated with the stimulation of neurodegenera-
tive disease progression [14,17,24,28,40]. PLEKHM2 was linked to autophagy regulation
in the context of cardiovascular disease [5], however its role in the context of neurodegen-
eration remains largely unknown. Clinical neurodegeneration has not been reported in
homozygous PLEKHM2[delAG] patients, though it might be as a result of the premature
death of these patients due to heart failure. Here, we used our previously established set of
PLEKHM2[delAG] patient-specific iPSCs and their associated healthy heterozygous control,
to interrogate the role of PLEKHM2 in neuronal development, maturation and function.

We first examined attributes of the mutation in PLEKHM2 on the development of
iPSC-derived neural cultures and demonstrated that the PLEKHM2 mutation does not
affect the differentiation potential of iPSCs into a neural lineage. These results suggest
that PLEKHM2 is not involved in neural differentiation, in line with the lack of early
neurological phenotypes in PLEKHM2[delAG] patients [5]. Cellular ability to regulate
autophagosomes directly influences autophagic processes. Either accumulation or insuffi-
cient formation of autophagosomes is witnessed in various pathologies such as PD [41,42],
AD [43,44], chronic kidney disease [45], ovarian cancer and melanoma [46]. Primary
PLEKHM2[delAG] fibroblasts were previously shown to present reduced autophagic flux
following leupeptin treatment [5]. Similarly, we demonstrated that PLEKHM2[delAG] NEP
cultures also exhibit reduced autophagic flux. This could be due to mechanisms such as the
inability to produce sufficient autophagosomes [47,48], failure of autophagosomes and au-
tolysosomes to decompose their content at the required rate [49,50], or high levels of basal
autophagosomes that interfere with proper autophagic induction—only generating a minis-
cule flux [51–53]; all these possibilities may affect cellular homeostasis. Such a deviation
might be disastrous for neurons and has been proven to provoke neurodegeneration in AD,
PD, ALS and FTD [17,20,41,43]. DCM-LVNC patients died before any neurological disorder
was detected; it is known that many neurodegenerative diseases are age related [15,54]
and therefore reduction in autophagic flux may have a cumulative effect, especially since
PLEKHM2 transcripts are highly expressed in the brain [5]. Activation of autophagy, on the
other hand, has improved health and prolonged the life span of Drosophila [55], yeast [56]
and even mice [57–59].

To test the possible role of PLEKHM2 in neuronal functions, we next interrogated the
electrophysiological activity throughout the differentiation of iPSCs into iMNs on MEA
plates. Electrophysiological analysis showed that both control and PLEKHM2[delAG]
cultures contained active viable neurons, but they differed in their functional performance.
PLEKHM2[delAG] iMN cultures displayed a delayed peak in spontaneous electrophysio-
logical activity. Similar electrophysiological phenotypes have been previously linked to
delayed neuronal maturation [60], thus, our results suggest a possible role for PLEKHM2
in functional neuronal maturation. Furthermore, PLEKHM2[delAG] neural cultures were
highly active, their firing of action potentials were unsynchronized and showed many rapid
consecutive spikes followed by quiescent short intervals between firing of additional action
potentials. Additionally, action potentials in patient cell cultures rose considerably later
than in control cultures. The dysregulation in PLEKHM2[delAG] cultures activity is remi-
niscent of the neural behavior in epilepsy [61–63], autism spectrum disorder (ASD) [64] or
ALS/FTD [20]. Interestingly, despite elevated spontaneous activity in PLEKHM2[delAG]
cells, the neuronal PLEKHM2[delAG] cultures displayed decreased synchrony within
the neuronal network. These results suggest that PLEKHM2 plays a role in neuronal
connectivity. Intercellular neuronal communication is mediated chiefly through chemical
synapses [65,66], thus suggesting that PLEKHM2 may promote synaptic functions. Simi-
larly, impaired neuronal communication has been linked to synaptic dysfunctions [67–69].

To find a link between the mutation in PLEKHM2, which functions as a mediator for
lysosomal anterograde motion, and the impaired electrophysiological functions of the iPSC-
derived neurons cells, we examined the lysosome size and distribution. PLEKHM2[delAG]
neurons had increased lysosome size under both basal and stress conditions compared
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to the control neurons (Figure 6B(ii)). Enlarged lysosomes might indicate defective au-
tophagic lysosomal reformation (ALR) [70]. Loss-of-function of alfa-1 (c9orf72 ortholog in
Caenorhabditis elegans), which is related to lysosome regulation, has been found to damage
ALR [20] and an increased expression of proteins participating in autolysosomal fusion,
such as Rab7 [70,71], also discouraged reformation and resulted in larger lysosomes [70].
Interference in anterograde motion, which assists ALR by initiating tubulation in the sepa-
ration of the autophagosome and the lysosome [70] may, as a result of mutated PLEKHM2,
consequently generate enlarged organelles as shown in PLEKHM2[delAG] neuronal cul-
tures. Larger lysosomes could be indicative of their acidity as shown, for example, in the
case where an addition of weak basic compounds to a macrophage culture inflated the
lysosomes [72]. The process involves alkalizing lysosomal pH by promoting absorption
of water into the organelles and subsequently inhibiting lysosomal hydrolases activity.
Since PLEKHM2[delAG] organelles are enlarged, it is plausible that they are less acidic
and therefore less active in protein degradation [73,74]. Basal autophagy is crucial, es-
pecially in postmitotic cells such as neurons and cardiomyocytes [24,75,76] in which the
irregularity stemming from defective ALR or less acidic lysosomes is potentially harmful
to the cells. Lysosomal positioning also relates to the cellular state. Under normal condi-
tions anterograde motion is upregulated, thus organelles should disperse through the cell.
CQ simulates such conditions as it alkalizes lysosomal pH. However, under starvation,
retrograde motion is upregulated and perinuclear displacement of autophagosomes and
lysosomes is expected [73]. PLEKHM2[delAG] iMN cultures presented reduced distribu-
tion of lysosomes throughout the cells under basal conditions. R + CQ treatment dispersed
the lysosomes in control cultures, while in PLEKHM2[delAG] cultures lysosomes remained
perinuclear, suggesting that PLEKHM2[delAG] cells are experiencing stress even before R +
CQ treatment (Figure 6). Lysosome positioning also controls autophagosome formation rate
through the mTOR pathway; specifically, perinuclear placement encourages autophago-
some genesis to favor auto-lysosomal fusion [77]. Indeed, both abnormal lysosomes size
and localization observed in PLEKHM2[delAG] neurons suggest a mechanistic explanation
for the impaired function of PLEKHM2[delAG] cultures.

Additionally, motor protein–vesicle complex formation proteins control much of the
cellular distribution of vesicles. Interference with the BORC-ARL8-PLEKHM2-KINESIN-1
ensemble has been shown to downregulate the anterograde axonal transport of lysosomes,
which is essential for axonal growth cone dynamics [21]. Lysosomes participate in synaptic
maturation and neurotransmission, however, these neuronal processes do not rely solely
on lysosomal function, but are supported by other vesicles such as pre-synaptic vesicle
precursors (SVPs) carrying neurotransmitters and presynaptic active zone (AZ) proteins.
A mutation in BORC resulted in lysosomal perinuclear positioning, while SVPs were still
able to reach pre-synaptic terminals [9]. On the other hand, ARL8 decrease or loss-of-
function halted both synaptic vesicle (SV) and AZ proteins’ anterograde movement [78–80].
Furthermore, such SVs were larger and mostly static in C. elegans motoneurons [9]. Con-
sequently, all proteins involved in vesicle motility may affect interactions differently, but
each performs a specialized role, which is particularly important in polarized cells such
as neurons.

Furthermore, during neuronal and synapse maturation, lysosomes localize to the
axons and dendrites, assisting with membrane remodeling through elongation and exocy-
tosis [81–84]. The perinuclear localization in neurons of PLEKHM2[delAG] iMN cultures
implies that synapse maturation did not initiate in these cells and therefore supports the
latency in neural activity compared to the control lines. Moreover, larger lysosomes have
been associated with less-active neural cultures, as they performed less exocytosis [85].
Downregulation of exocytosis can interfere with neural connectivity as neurotransmitters
are secreted at a lower rate. For example, in Mucopolysaccharidosis type VII (MPS VII), an
autosomal recessive lysosomal storage disease, neural cultures contained less astrocytes,
which are known to regulate neurotransmitter metabolism, and presented low network
connectivity [86].
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Figure 6. Suggested mechanism: large perinuclear lysosomes lead to abnormal electrophysiological
activity in (A) healthy and (B) PLEKHM2[delAG] cells. (i) Lysosome binds to KINESIN-1 motor pro-
tein through PLEKHM2. Healthy control translation of the protein allows for the desired regulation
of anterograde motion, while PLEKHM2[delAG] transcripts are translated into two shorter variants.
The first skips exon 11 but all three domains are translated. Translation of the latter halts at the
mutation site (AG deletion). The shorter variants probably interfere with the required anterograde
motion. (ii) Lysosomal biodistribution under basal conditions and after stress induction. Translation
of PLEKHM2 protein results in lysosomes spreading throughout the cell, while most remain in
the soma. Applied stress signals the lysosomes to move anterogradely to the neurites in control
cultures, whereas PLEKHM2[delAG] protein variants allow for a transient interaction between
KINESIN-1 and the lysosome, and consequentially, a more perinuclear localization persists. Bigger
lysosomes indicate either autolysosomal conformation or inactive alkalinized lysosomes. Stress
induction allows a modest spreading of the lysosomes, without enlargement of the organelles. (iii) A
summary of the differences recorded between the cultures. Control cultures presented a smaller
average size of lysosomes which were synchronized and, after stress induction, had stimulated
autophagic flux. mPLEHM2 cultures had larger lysosomes which clustered by the nucleus under
basal conditions and stress induction. These cultures were unsynchronized and fired frequently. The
autophagic flux registered was lower than control cultures. Figure partially created with BioRender
(https://biorender.com/, accessed on 13 December 2022).

Indeed, our study shows that while neurons in control iMN cultures were able to highly
synchronize, PLEKHM2[delAG] neurons failed to do so. Furthermore, frequent spikes and

https://biorender.com/
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high median ISI within bursts and burst percentage also suggest inconsistent exocytosis and
neurotransmitter exertion rates due to faulty anterograde lysosomal movement. In Atg7
deficient dopaminergic neurons, the reduction in autophagy leads to quicker presynaptic
recovery and evoked dopamine release [87], resembling the results exhibited in this study
for PLEKHM2[delAG] cells.

Collectively, our results suggest a model (Figure 6) in which lysosomes in PLEKHM2[delAG]
cells do not scatter to the periphery, leading to the impairment of autophagy, downregula-
tion of exocytosis and, consequently, a lower rate of neurotransmitter secretion. Altogether,
this leads to abnormal neural connectivity. We therefore conclude that PLEKHM2-mediated
anterograde lysosomal movement during neural development plays an important role in
proper autophagy and, consequently, in functional neuronal maturation.

4. Materials and Methods
4.1. Cell Culture

iPSC lines were previously described in detail [23]. Cells were cultured in NutriStem
hESC XF medium (Biological Industries, Kibbutz Beit Haemek, Israel) in feeder-free condi-
tions on Matrigel-coated plates (BD Biosciences, San Jose, CA, USA). The pluripotency of
the various iPSC lines was routinely assessed by flow cytometry analysis of the pluripotent
marker OCT3/4 and a mycoplasma test (Hy-Mycoplasma PCR, hylabs) was performed
monthly. All cells were cultured under standard conditions at 37 ◦C and 5% CO2, in a
humidified incubator.

4.2. Neuronal Differentiation

Differentiation of iPSCs into motor neurons was performed as previously described
with minor modifications [27]. iPSCs were cultured in NutriStem medium on Matrigel and
passaged weekly at 80% confluence at a ratio of 1:6 to 1:15 using Versene (GIBCO, Gaithers-
burg, MD, USA). For differentiation generating neuroepithelium (NEP) stock, split iPSCs
were seeded on 6-well Matrigel-coated plates at a density of 104 or 1.5 × 104 cells/cm2 for
control and PLEKHM2[delAG] lines, respectively, since the latter required another day
to reach confluence. Neural induction to generate NEP was initiated at 30–40% conflu-
ence: Stage 1 medium (S1M), containing Iscove’s modified Dulbecco’s medium (IMDM):
F12 1:1, 2% B27, 1% N2, MEM non-essential amino acids solution (NEAA) and Penicillin–
Streptomycin–Amphotericin B (PSA), 10 µM SB-431542 (SB), 3 µM CHIR-99021 (CHIR) and
0.2 µM LDN-193189 (LDN). Medium was replaced daily for 6 days. On day 6 (D6), cells
were cryopreserved, following 5 min dissociation with Accutase (GIBCO, Gaithersburg,
MD, USA). Cell pellets were generated at 250 g for 7 min and kept in freezing medium
containing 90% fetal bovine serum (FBS) and 10% Dimethyl sulfoxide (DMSO). Stage 2
medium (S2M) contained S1M constituents with an addition of 0.1 µM all-trans retinoic
acid (RA) and 1 µM smoothened agonist (SAG). On D6, single NEP cells were dissociated
using Accutase for 5 min and seeded at 1.25 × 105 cells/cm2 in S2M on 5 µg/cm2 laminin-
coated wells. When thawed, cells were seeded at a concentration of 1.5 × 105 cells/cm2

and 5 µM ROCK inhibitor (Y-27632) was added. For imaging purposes, cells were seeded
at 5 × 104 cells/cm2. Half media was exchanged every other day for 6 days. On D12, all
medium was replaced with Stage 3 medium (S3M) to promote maturation. S3M medium
contained IMDM: F12 1:1, 2% B27, 1% N2, NEAA and PSA, 2.5 µM γ-secretase inhibitor
(DAPT), 0.5 µM RA, 0.1 µM compound E, dibutyryl cyclic AMP (db-cAMP) and SAG,
200 ng/mL ascorbic acid (AA) and 10 ng/mL brain-derived neurotrophic factor (BDNF)
and glial-derived neurotrophic factor (GDNF). Half of S3M was exchanged every other day
for the remainder of the differentiation.

4.3. Flow Cytometry Quantification

Cells were dissociated into a single-cell suspension using Versene for undifferentiated
iPSCs or Accutase for differentiated cells and fixed using the Foxp3/Transcription Factor
Staining Buffer Set (eBioscience, San Diego, CA, USA), according to the manufacturer’s
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instructions. Cellular marker quantification was performed using NovoCyte NovoSampler
Pro (Acea Biosciences, Santa Clara, CA, USA), utilizing FlowJoTM software (BD Life Sci-
ences, Franklin Lakes, NJ, USA). Primary antibodies used were anti OCT3/4 (sc-2004, 1:100,
Santa Cruz, Dallas, TX, USA), SOX1 (ab87775, 1:500, Abcam, Cambridge, UK), NESTIN
(ABD69, 1:500, Sigma-Aldrich, Saint Louis, MO, USA), TUJ1α (T8660, 1:1000, Sigma-
Aldrich, Saint Louis, MO, USA), GFAP (ab7260, 1:1000, Abcam) ISL1 (ab178400, 1:100,
Abcam, Cambridge, UK), MAP2ab (M1406,1:500, Sigma-Aldrich, Saint Louis, MO, USA)
or ChAT (GTX113164, 1:500, GeneTex, Irvine, CA, USA). Secondary antibodies were goat
anti-mouse Alexa Fluor 488 (A-11029, 1:500, Thermo Fisher, Waltham, MA, USA), goat
anti-Rabbit Alexa Fluor 633 (A-21071, 1:500, Thermo Fisher, Waltham, MA, USA).

4.4. Autophagy Flux Detection

For autophagy measurements, iPSCs and differentiated neural cultures were assessed
using the CYTO-ID Autophagy detection kit (Enzo Life Sciences, Farmingdale, NY, USA),
to identify autophagosomes in living cells according to the manufacturer’s protocol, sim-
ilarly to [88]. Briefly, iPSCs were seeded in 12-well plates at a density of 4 × 104 or
4.5 × 104 cells/ cm2 for control and PLEKHM2[delAG], respectively. Two days after seed-
ing, stress induction was applied. Differentiated cells were seeded according to the dif-
ferentiation protocol described above and treated 1 day prior to the experiment. Stress
treatments inducing autophagy consisted of 500 nM rapamycin and 20 µM chloroquine for
20 h or F12 (HAM) nutrient media (termed here nutrient limited media (NLM)) and 20 µM
chloroquine for 4 h, DMSO was used as a vehicle control. The iPSCs and differentiated
cells were detached using Versene and Accutase, respectively, washed with assay buffer X1
supplemented with 5% FBS and pelleted at 250 g for 5 min. The pellet was then incubated
for 30 min at 37 ◦C, 5% CO2 with CYTO-ID Green Detection Reagent (1:2000), washed with
assay bufferX1 supplemented with 5% FBS and analyzed using flow cytometry. Median
fluorescence intensity (MFI) was calculated for each representative histogram, and the fold
change was calculated by dividing results of treated by vehicle controls.

4.5. Microelectrode Array (MEA) Assay

At D6 NEP were plated on 24-well MEA plates (Axion BioSystems, Atlanta, GA, USA)
coated with 0.1% polyethyleneimine (PEI) and 5µg/cm2 laminin at a density of 1.25 × 105 cells/cm2

or 1.5 × 105 cells/cm2 when thawed and differentiated according to the protocol stated
above (Section 4.2). Spontaneous activity was measured every 2–3 days for 15 min using a
Maestro Edge apparatus (Axion BioSystems, Atlanta, GA, USA). Waveform events were
identified using adaptive spike threshold crossing with a standard deviation (SD) of elec-
trode noise set at 6. A minimum of five spikes per minute was used to include events
for analysis.

4.6. Western Blot

Cells were collected for protein extraction in ice-cold radioimmunoprecipitation (RIPA)
buffer (Cell Signaling, Danvers, MA, USA) supplemented with 1 mM phenylmethylsulfonyl
fluoride (PMSF). Total protein quantification was performed using micro-BCA protein assay
kit (Pierce Biotechnology, Waltham, MA, USA). Next, 20 µg total protein samples were sep-
arated on a mini-PROTEAN TGX gel (Bio-Rad, Hercules, CA, USA) for 75 min under 100 V
current, and then transferred to a nitrocellulose membrane (Bio-Rad, Hercules, CA, USA)
45 min, 100 V. The membrane was incubated for 1 h in 5% bovine serum albumin (BSA)
(Millipore, Bedford, MA, USA) blocking solution, followed by an overnight incubation with
primary antibodies: anti-LC3B (nb100-2220, 1:500, Novus Biologicals, Littleton, CO, USA),
anti-p62 (P0067, 1:500, Sigma-Aldrich, Saint Louis, MO, USA) and anti-GAPDH (G9545,
1:1000, Sigma-Aldrich, Saint Louis, MO, USA). Later, the membrane was incubated with
a secondary antibody goat anti-rabbit IgG-HRP (sc-2004, 1:5000, Santa Cruz) for 1 h and
then with EZ-ECL kit (20–500, Biological Industries, Kibbutz Beit Haemek, Israel). The
signal was detected using Fusion Solo X (Vilber Lourmat, Collegien, France) and densito-
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metric analysis was carried out using ImageJ software (U. S. National Institutes of Health,
Bethesda, MD, USA, http://imagej.nih.gov/ij/, accessed on 3 May 2021). Band intensity
was normalized to GAPDH.

4.7. Immunocytochemistry

Cells were fixed with 4% formaldehyde for 15 min at room temperature, washed
and blocked for 1 h in 5% BSA (Millipore, Bedford, MA, USA) with 0.1% Triton-X 100
in PBS. Then, cells were incubated overnight with primary antibodies against LAMP1
(D2D11, 1:500, Cell Signaling Technology, Danvers, MA, USA) and TUJ1α (T8660,1:1000,
Sigma-Aldrich Aldrich, Saint Louis, MO, USA) at 4 ◦C. Followed by a 2 h incubation at
room temperature with donkey anti-rabbit Alexa Fluor 594 antibody (711-585-152, 1:500,
Jackson ImmunoResearch, West Grove, PA, USA) and donkey anti-mouse Alexa Fluor
488 antibody (715-545-150, 1:500, Jackson ImmunoResearch, West Grove, PA, USA). Af-
ter a brief wash, samples were stained with NucBlue (R37605, Themo Fisher Scientific,
Waltham, MA, USA) for nuclei detection. Fluorescent images were acquired using Nikon
C1si laser scanning confocal microscope abb. LSCM (Nikon, Tokyo, Japan) and EVOS FL
(AMG, Bothell, WA, USA).

4.8. Biodistribution Assay

Coverslips were first coated with poly-L-ornithine 1 mg/mL overnight in an incubator,
then with a drop of laminin 50 µg/mL for 1 hr. NEP cells were plated at a concentration of
2 × 106 cells/mL and differentiated to an immature motor neurons (iMN) culture. Stress
was induced with 500 nM rapamycin and 20 µM chloroquine for 20 h and the culture was
stained for neurons (TUJ1α) and lysosomes (LAMP1). Image acquisition and analysis were
performed similarly to a previous study [80] with minor modifications. Lysosomes were
automatically identified according to size using the particle analysis tool in ImageJ. Those
particles were manually attributed to neurons using the neuron image channel. Only fields
in which neurons could be visually separated were taken. A minimum of seven fields
were taken using a confocal microscope ×63 AyrScan Laser Scanning Microscopy with
Super-Resolution (Zeiss LSM880 Airyscan) and analyzed using ImageJ. Particles ranging in
a size of 0.008–1.2 µm2 were considered as lysosomes.

4.9. Statistical Analysis

Statistical analysis was performed with GraphPad Prism version 6.07 for Windows
(GraphPad Software, San Diego, CA, USA). Results are presented as mean ± SEM of
two clones per genotype (control or PLEKHM2[delAG]) from at least two independent
experiments. Two-tailed student’s t-test and for repeated measures, distribution normality
was tested using Kolmogrov–Smirnov test with the Dallal–Wiloksinson–Lilliefor corrected
p value. Normal distributions were tested using one-way ANOVA with Sidak’s multiple
comparison post hoc test. Data sets which were not normally distributed were analyzed
using Kruskal–Wallis non-parametric test with Dunn’s multiple comparison post hoc test.
Values of p < 0.05 were considered significant.
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