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Abstract: Clinical data suggest that cardiosphere-derived cells (CDCs) could modify post-infarction
scar and ventricular remodeling and reduce the incidence of ventricular tachycardia (VT). This paper
assesses the effect of CDCs on VT substrate in a pig model of postinfarction monomorphic VT. We
studied the effect of CDCs on the electrophysiological properties and histological structure of dense
scar and heterogeneous tissue (HT). Optical mapping and histological evaluation were performed
16 weeks after the induction of a myocardial infarction by transient occlusion of the left anterior
descending (LAD) artery in 21 pigs. Four weeks after LAD occlusion, pigs were randomized to
receive intracoronary plus trans-myocardial CDCs (IC+TM group, n: 10) or to a control group. Optical
mapping (OM) showed an action potential duration (APD) gradient between HT and normal tissue
in both groups. CDCs increased conduction velocity (53 ± 5 vs. 45 ± 6 cm/s, p < 0.01), prolonged
APD (280 ± 30 ms vs. 220 ± 40 ms, p < 0.01) and decreased APD dispersion in the HT. During
OM, a VT was induced in one and seven of the IC+TM and control hearts (p = 0.03), respectively;
five of these VTs had their critical isthmus located in intra-scar HT found adjacent to the coronary
arteries. Histological evaluation of HT revealed less fibrosis (p < 0.01), lower density of myofibroblasts
(p = 0.001), and higher density of connexin-43 in the IC+TM group. Scar and left ventricular volumes
did not show differences between groups. Allogeneic CDCs early after myocardial infarction can
modify the structure and electrophysiology of post-infarction scar. These findings pave the way for
novel therapeutic properties of CDCs.

Keywords: stem cells; ventricular arrhythmias; post-infarction scar; ventricular tachycardia;
cardiosphere-derived cells; electrophysiology

1. Introduction

The risk of sudden death is increased in the first months after acute myocardial
infarction [1], and implantable cardioverter-defibrillator may not reduce total mortality
at this time point as the rate of non-sudden deaths offsets that of sudden deaths [2,3].
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The deleterious effect of shocks on the failing myocardium may partially explain these
findings [4]. Therefore, new strategies to prevent the formation of ventricular tachycardia
(VT) substrate early after myocardial infarction are needed.

Most post-infarction VTs have their origin in a reentrant circuit in which slow conduc-
tion pathways of heterogeneous tissue (HT) are embedded in an unexcitable dense scar.
This substrate can be eliminated by catheter ablation but can also be inactivated by bio-
logical therapies. Modification of the electrophysiological properties of the HT, including
prolongation of ventricular refractoriness and improvement in conduction velocity by gene
transfer therapy to modify potassium repolarization currents or connexin-43 expression,
have managed to reduce VT inducibility in postinfarction VT models [5,6]. Recent clinical
data suggest that stem cell therapy, specifically cardiosphere-derived cells (CDCs), modifies
the remodeling of the post-infarction scar. The CADUCEUS and ALLSTAR studies showed
that CDCs reduced post-infarction scar size and left ventricular volumes in comparison
with placebo [7,8]. These effects could explain the lower incidence of VT in treated patients,
which was observed in a meta-analysis that included all randomized studies in which
bone marrow-derived stem cells were used to treat post-infarction patients [9]. Neverthe-
less, no data on the electrophysiological effects of stem cells on VT substrate are reported.
Therefore, we do not know whether the lower incidence of VT is due to a reduction in
left ventricular volume or to a direct effect on the electrophysiological properties of the
arrhythmic substrate.

We hypothesized that, due to its anti-fibrotic and protective effects, stem cell therapy
could modify the structure and electrophysiological properties of dense scar and HT, thus
preventing the development of VT substrate.

The study presented is a subanalysis of a study evaluating different routes of CDC
administration on left ventricular remodeling. Specifically, this subanalysis compares the
histological and electrophysiological properties of dense scar and heterogeneous tissue
between a control group and a group that received CDCs via intracoronary and intramy-
ocardial routes.

An electrophysiological study including endocardial electroanatomical mapping, in
addition to epicardial optical mapping and histological analysis of the dense scar and HT,
was undertaken to evaluate the effects of CDCs on the arrhythmogenic substrate.

2. Results
2.1. Scar and Left Ventricle Volume Changes

Changes in scar (total scar, dense scar, HT) and left ventricle (LV) volumes between
weeks 4 and 16 are shown in Table 1. Total scar, dense scar and HT volumes increased in
both groups, and no differences were found at 16 weeks. Dense scar increase was larger in
the control group than in the Intracoronary–Transmyocardial (IC+TM) group (77 ± 70%
vs. 31 ± 12%, p = 0.05). The expansion of dense scars in both groups seems to follow
different mechanisms according to the relation of dense scar volume measured at 4 and
16 weeks (Figure 1). Left ventricular volumes and ejection fraction were not different
between groups.

2.2. Electrophysiological Study and Electro-Anatomical Mapping

VT inducibility was significantly higher in the control group (100%) than in the IC+TM
group (40%, p = 0.003). No differences were observed in the size of the endocardial scar.
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Table 1. Scar and ventricular volume changes between weeks 4 and 16. HT, heterogeneous tissue; IC,
intracoronary; TM, transmyocardial; LVEF, left ventricular ejection fraction; ns, not significant.

Control (N = 11) IC+IM Cells (N = 9) p-Value

Scar 4W (cc) 7.4 ± 3.2 8.2 ± 3.0 ns
Scar 16W (cc) 11.0 ± 4.0 11.2 ± 4.0 ns

∆Scar (%) 80.0 ± 80.0 36.0 ± 17.0 0.1
Dense Scar 4W (cc) 3.9 ± 2.0 4.1 ± 2.2 ns
Dense Scar 16W (cc) 6.1 ± 1.7 5.5 ± 3.0 ns

∆Dense Scar (%) 77.0 ± 70.0 31.0 ± 12.0 0.02
HT 4W (cc) 3.5 ± 1.5 4.0 ± 1.1 ns
HT 16W (cc) 5.8 ± 2.7 5.6 ± 1.6 ns

∆HT (%) 64.0 ± 69.0 42.0 ± 31.0 ns
LVEF % (4W) 44.0 ± 6.0 40.0 ± 6.0 0.1
LVEF % (16W) 39.0 ± 5.0 40.0 ± 6.0 0.9

∆LVEF (%) −10 ± 14.0 1.0 ± 8.0 0.04
Scar 4W (cc) 7.4 ± 3.2 8.2 ± 3.0 ns
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Figure 1. Regression line showing the correlation of dense scar volume between week 4 and week 16.
(A): Dense scar correlation in the IC+TM CDCs group. (B): Dense scar correlation in the control group.
The regression line shows a strong association between dense scars at weeks 4 and 16 in IC+TM
group, suggesting scar growth is similar for all sizes of scars. In the control group, the smallest scars
grew the most. IC: Intracoronary; TM: Transmyocardial; CDC, Cardiosphere-derived cells.

2.3. Optical Mapping
2.3.1. Mapping during Epicardial Pacing

No differences in action potential (AP) amplitude and resting potential were observed
between the HT and normal zone (NZ) of myocardium. The APD was longer in the HT
than at the NZ in both the control (195 ± 43 vs. 168 ± 36 ms p = 0.001) and the IC+TM
group (273 ± 60 vs. 241 ± 53 ms, p = 0.01). This resulted in a gradient of APs in the scar
border zone (Figure 2).

A comparison between the control and IC+TM groups is shown in Figure 3. In the
IC+TM group, APD was longer and conduction velocity (CV) was faster in all areas. The
slowest CV was recorded in the intra-scar channels (ISC), but there were no differences
between groups (31 ± 7 vs. 30 ± 6 cm/s). The wavelength (V×APD) was shorter in the
control group both in the HT (9.5 ± 2.5 vs. 15.2 ± 2.8 cm, p = 0.0005) and in the epicardial
conduction channels (7.8 ± 2.8 vs. 10 ± 1.4 cm, p = 0.05).

Depolarization and repolarization isochrone maps of HT and NZ showed more disper-
sion of depolarization and repolarization times in the control group (central illustration).
The repolarization time/depolarization time ratio was significantly larger in the control
group, suggesting that CDCs have a more pronounced effect on repolarization than depo-
larization time.
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Figure 2. Upper panel: Optical mapping study showing the APD gradient around the scar. Blue lines
represent AP in NZ areas and red lines HT APs. (Upper panel): Epicardial surface of a heart from
the IC+TM treated group. The area that was optically mapped (shown inside the green rectangle)
includes dense scar (absence of muscle), HT (fibrotic strands separating myocytes bundles), and NZ
where no fibrosis is seen. Optical mapping of the area delimited by the green frame shows the APD
gradient between HT and NZ; the HT remains green (myocytes are still depolarized), whereas the
NZ has turned black (myocytes have repolarized). Below the optical mapping image, the AP of HT
and NZ are shown. APs from HT were longer but no differences in amplitude and resting membrane
potential were observed. (Lower panel): Optical mapping showing the APD gradient around the
scar. On the left, the epicardial surface of a control heart is presented with the area that was optically
mapped and delimited by a green rectangle. The figure shows the dense scar (absence of muscle)
with intra-scar channels running along epicardial arteries, the HT, characterized by fibrotic strands
separating myocytes bundles (red arrow marks the limits), and the NZ where no fibrosis is seen. The
optical mapping of the area delimited in green shows the APD gradient between HT and NZ; the HT
remains green (myocytes are still depolarized), whereas the NZ has turned black (myocytes have
repolarized). In this example, the HT is activated with some delay with respect to the NZ, as is shown
in the lower corner of the panel by the simultaneous recording of HT and NZ AP. No differences in
resting membrane potential were observed, but AP amplitude was slightly lower in the HT. APD,
action potential duration; HT, heterogeneous tissue; NZ, normal zone.
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Figure 3. Differences between control and IC+TM groups on action potential duration (A) and
conduction velocity (B) during optical mapping. (*) Statistically significant p value < 0.05. ISC,
epicardial intra-scar channel; HT, heterogeneous tissue; IC, intracoronary; TM, transmyocardial; NZ,
normal zone.

2.3.2. Mapping during VT

A VT was induced in one IC+TM and seven control hearts (p = 0.03). In the control
groups, the entire VT circuit was in the epicardium. In five VTs, the central isthmus was
an epicardial ISC. The ISC were corridors of surviving myocardium sheathing epicardial
coronary artery and surrounded by scar tissue (Figure 4, and Supplementary Video S1). The
remaining VTs were macroreentries around dense scar islets. In the IC+TM group, only one
VT was induced and the activation sequence suggested an intramural or endocardial origin.
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Figure 4. (A): Example of a control experiment showing two ISCs of surviving myocardium; the red
arrow shows the cross-section of one ISC, revealing viable muscle around the epicardial artery. These
channels course along epicardial arteries. These channels served as the central isthmus of an induced
VT whose isochron map is shown in (B) (See also Video S1 in online Supplementary Materials). ISCs,
intra-scar channels; VT, ventricular tachycardia.

2.4. Histological Analysis
2.4.1. Dense Scar

The most notable difference between the control group and the IC+TM group was the
density of myofibroblasts. In the control group, myofibroblasts were observed in 60.8 ± 22%
of squares vs. 35.3 ± 27% in the IC+TM group (p = 0.001); see Figure 5. This observation
is relevant as dense scar growing was related to the density of myofibroblasts: dense scar
volume increased 81 ± 66% in those animals showing myofibroblast in more than 50% of
squares vs. 22 ± 16% in the remaining animals (p = 0.01).
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Figure 5. This figure shows the histological differences in dense scars between the control and IC+TM
groups. (A): The control group is characterized by the presence of numerous myofibroblasts (brown
elongated cells; red arrows) that stain with anti-α-SMA antibodies and that are not related to vessels.
(B): In the IC+TM experiment, the anti-α-SMA antibodies only stain the walls of vessels (V) where
smooth muscle is present (blue arrow). α-SMA: α-smooth muscle actin.

2.4.2. Heterogeneous Tissue

The average area per slice covered by HT was significantly larger in the control group
than in the IC+TM group (36 ± 18 vs. 24 ± 9 mm2; p = 0.001). The area covered by fibrotic
strands was also larger in the control group (19.5 ± 12 vs. 12.2 ± 7 mm2; p = 0.01). The
fibrotic strands of the HT showed significant differences between the two groups. Firstly,
compact or very compact collagen occupied 77% of squares of fibrotic tissue in the control
group vs. 51% in the IC+TM group (p = 0.01). Secondly, myofibroblasts were observed
in six out of eight control animals (Figure 6), but were not observed in any of the pigs
receiving CDCs (p = 0.001). No differences in inflammatory response cells were observed
between groups.
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Figure 6. Characteristics of the fibrotic tissue at the HT in a control experiment. (A): Masson’s
Trichrome stains blue the collagen tracts that invade and separate the bundles of myocytes at the
border zone. (B): In the same area, anti-α-SMA antibodies reveal the presence of myofibroblasts
(brown elongated cells, red arrows) in the collagen tracts separating bundles of myocytes. α-SMA:
α-smooth muscle actin.

Myocyte viability was similar, as signs of degeneration were observed in 30% of
myocytes in both groups. CDCs seem to improve myocyte connectivity, as 82 ± 9% of
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myocytes were electrically coupled to other myocytes through connexin-43-containing gap
junctions in the intercalated discs in comparison to 72 ± 13% (p = 0.006) in the control
group (Figure 7).
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2.4.3. Subendocardium

The average area per slice of surviving subendocardium beneath the dense scar was
significantly larger in the IC+TM CDC group than in the control group (27 ± 14 vs. 16 ± 8 mm2,
p = 0.01). As observed in other areas, myofibroblasts were not present in any sample from
the IC+TM group but they were identified in three control samples (p = 0.01). Whereas in the
control group only a thin layer of almost normal myocytes survived, in the IC+TM group
these layers were thicker but contained more degenerated myocytes. This explains why, in
the control group, the subendocardium had fewer myocytes with signs of degeneration
(25% vs. 63%, p = 0.020) but better distribution of connexin-43 (74% vs. 64%, p = 0.040).

2.4.4. Epicardial Intra-Scar Channels

Myocyte degeneration seems to be less frequent in the IC+TM CDC group, in which
only 27% of myocytes showed signs of degeneration vs. 40% in the control group (p = 0.10).
Connexins 43 were normally distributed in 40 and 31% of myocytes in the IC+TM CDC
and control groups (p = 0.20), respectively. Myofibroblasts were only identified in two ISCs
of control pigs.

3. Discussion

This study describes for the first time the electrophysiological and structural remodel-
ing, as well as the effect of CDCs, in a model of postinfarction VT.

3.1. Structural and Electrophysiological Remodeling in Healed Infarct

In both groups, scar, dense scar and HT volumes increased between the first and
second magnetic resonance image (MRI). This implies that the scar is a dynamic entity
where the dense scar expands at the expense of HT and HT expands at the expense of
surrounding normal tissue. If the transformation of HT into a dense scar were the only
phenomenon taking place, HT volume at 16 weeks would have diminished. The expansion
of dense scars could be explained by two mechanisms:
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1. The dense scar replaces myocyte loss at the border zone. In this case, the primary
event is myocyte death.

2. Dense scar growth is the primary event, thus dense scar surrounds and isolates
myocytes, expediting cellular death somehow.

As scar growth was related to myofibroblast density in the dense scar, it seems that the
higher the density of myofibroblasts, the greater the capacity to infiltrate the surrounding
tissue. This fact could explain scar growth differences between groups.

The optical mapping provided relevant information on the electrophysiological char-
acteristics of the healed infarct. First, the APD was longer in ISCs and HT than in NZ. The
fact that the longest APD was recorded in ISCs could favor VT inducibility. Short-coupled
extra-stimuli that cross the HT reach the ISC when they are still depolarized, and thus can
set the stage for a unidirectional block at the entrance of ISCs, allowing the establishment
of a stable re-entry. We do not have a clear explanation for APD gradient, but a lower
sink effect due to borders in the unexcitable dense scar and heterogeneous distribution
of delayed rectifier K-currents in HT could be involved [10]. Conduction velocity that
was significantly slower in ISC and HT than at NZ could also favor VT inducibility. Slow
conduction velocity could be explained by the lateralization of connexin-43 and fibrosis
infiltration, given that no differences in AP amplitude or resting potential were observed.

The isthmuses of most VT were found in ISCs; these channels cross the dense scar
and create the substrate for reentry. ISCs are corridors of myocytes that survive because of
their proximity to epicardial coronary arteries. All VTs induced in the control group were
located in the epicardium, probably related to the pacing site being in the epicardium and
closer to the epicardial circuits and not due to the lack of other circuits in other locations.

3.2. Effects of CDCs on Structural and Electrophysiological Remodeling in Healed Infarct

This study showed that CDCs did not eliminate pre-existing scars but modified the
histology of the dense scar, and HT modified the mechanism of scar expansion as suggested
by the relation of dense scar volumes between weeks 4 and 16 (Figure 1). CDCs could
delay scar growth by blocking the infiltration of the surrounding tissue by dense scar. In
this sense, the mobilization of stem cells in the infarct area can protect and prevent the
advance of tissue deterioration [11]. Myofibroblasts were significantly more numerous
in the control group than in the IC+TM CDC group. Myofibroblasts in the dense scar
could favor the progression of fibrosis and increase collagen density and CDCs which may
delay the penetration of fibrosis into normal tissue by blocking the trans-differentiation
of fibroblasts into myofibroblasts [12]. In this sense, and despite the inflammatory effect
possibly reducing inflammatory response [13], we did not observe significant inflammatory
differences between groups. Myofibroblasts were also found in the HT of control animals,
but were not in contact with myocytes as they tend to be in the central parts of the fibrotic
strands. Therefore, the electrophysiological interaction between myocyte/myofibroblast
seems highly improbable [14].

Optical mapping also showed that CDCs prolong APD and increase CV, resulting in a
longer wavelength, and therefore larger circuits are required to support stable reentries.
Moreover, CDCs reduced the repolarization time/depolarization time ratio, suggesting a
shortening of repolarization beyond the effect on depolarization. A short repolarization
time implies less APD dispersion during repolarization, and consequently reduces the
time during which a myocyte can re-excite other myocytes. Several mechanisms, such
as improvements in myocyte connectivity, the reduction of interstitial fibrosis, and the
generation of novel cardiomyocytes [15], could explain CDC-induced changes. The results
from our histological analyses (reduction of fibrosis at the border zone and better myocyte
connectivity) support these mechanisms.

3.3. Safety Concerns of Stem Cell Therapy

Previous reports concerning the effects of CDCs on VT inducibility are sparse and not
conclusive [16]. None of the animals included in the study experienced sudden death fol-
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lowing cell implantation. Only skeletal myoblasts and mesenchymal stem cells have been
associated with an increase in ventricular arrhythmias in the early postimplantation period [17].
Proarrhythmic effects have not been described with CDCs [7,8] or cardiac stem cells [18].

3.4. Limitations

The results of this study, including the differences in VT inducibility, should be taken
with caution due to the limited number of animals included. Optical mapping does not
explore the endocardium, so electrophysiological data at this level are lacking. Ventricular
stimulation was only performed from one site, therefore we do not have information
concerning the effect of the direction of the activation wavefront.

4. Materials and Methods

All experiments with live animals were approved by the Institutional Animal Care and
Use Committee (Centro de Cirugía de Mínima Invasión Jesús Usón). Animals were obtained
from the animal housing facility (Centro de Cirugía de Mínima Invasión Jesús Usón), which
has been certificated to produce and investigate laboratory animals in compliance with
Spanish and European Legislation. A detailed Methods section is provided in Appendix A.

4.1. Ventricular Tachycardia Substrate Evaluation Sub-Study

This sub-study was part of a study evaluating the effect of different CDC injection
routes on scar remodeling and ventricular function, and was conducted to determine the
effects of CDCs on the electrophysiology and structure of HT and dense scar of healed
infarcts (study and sub-study protocols are shown in Figure 8). A porcine model charac-
terized by large heterogeneous scars with high VT inducibility rates was used [19]. To
induce closed-chest myocardial infarction, the left anterior descending coronary artery
was occluded transiently by a balloon catheter placed immediately distal to the first di-
agonal branch for 150 min followed by reperfusion (Appendix A). A ce-MRI study was
performed at weeks 4 and 16 to determine the evolution of scar and ventricular volumes
and function (Appendix A). After the first ce-MRI, study animals were randomized. The
sub-study included 11 pigs randomized to the control group and 10 pigs randomized to
receive intracoronary and trans-myocardial CDC (IC+TM group). After the second ce-MRI,
endocardial electroanatomical mapping was performed. The heart was then explanted for
optical mapping and histological evaluation of the arrhythmic substrate.

4.2. Cell Isolation and Production

CDCs were produced in the Laboratory of Cell Biology at the CCMI. After the first
ce-MRI, CDCs were delivered using an intracoronary and trans-myocardial approach.

4.2.1. Isolation and Production of Porcine Cardiosphere-Derived Cells

CDCs were obtained from cardiac tissue explants of euthanized Large White pigs. Au-
ricular explants (1–2 g) were washed and mechanically disrupted into 1–2 mm3 fragments.
These fragments were washed again to eliminate cellular debris. The tissue was then
subjected to three successive enzymatic digestions with a solution of 0.2% trypsin and 0.2%
collagenase IV at 37 ◦C for 5 min each. The digested tissue was washed and cultured with
Complete Explant Medium (10% fetal bovine serum, 1% penicillin-streptomycin, 2 mM
L-glutamine, and 0.2 mM 2-mercaptoethanol in IMDM) at 37 ◦C and 5% CO2.

After 3 weeks, tissue fragments were discarded and fibroblasts-like cells migrating
from tissue explants were trypsinized and seeded in poly-D-lysine coated plates with
Cardiosphere Growing Medium (10% fetal bovine serum, 1% penicillin-streptomycin,
2 mM glutamine, and 0.1 mM 2-mercaptoethanol in 35% IMDM and 65% DMEM-Ham’s
F12). Under these conditions, suspended cell clusters called cardiospheres are formed, and
cells migrating from them are the CDC. These cells were selected and expanded at 37 ◦C
and 5% CO2. CDCs in passages 5 to 10 were used for the subsequent studies.
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4.2.2. Characterization of Cardiosphere-Derived Cells

The complete characterization of CDCs included a phenotypic analysis by flow cy-
tometry, a molecular analysis of the expression of relevant markers by RT-PCR, and an
analysis of the differentiation potential of CDCs toward adipogenic, chondrogenic, and
osteogenic lineages.

For flow cytometric analysis, the cells were stained with FITC-conjugated monoclonal
antibodies against human CD90 (porcine crossreactive), and FITC-conjugated porcine
monoclonal antibodies against CD29, CD31, CD44, CD45, CD61, CD105, CD117, Sca-1,
SLA-I (Swine Leukocyte Antigen class I) and SLA-II (Swine Leukocyte Antigen class II)
from Serotec. The phenotypic analysis was performed as follows: = 2 × 105 cells were
incubated for 30 min at 4 ◦C with appropriate concentrations of monoclonal antibodies. The
cells were washed and resuspended in PBS. The flow cytometric analysis was performed on
a FACScalibur cytometer (BD Biosciences, Franklin Lakes, NJ, USA) after the acquisition of
105 events. Cells were primarily selected using forward and side scatter characteristics and
fluorescence was analyzed using CellQuest software (BD Biosciences). Isotype-matched
negative control antibodies were used in all the experiments. The mean relative fluorescence
intensity was calculated by dividing the mean fluorescent intensity (MFI) by the MFI of its
negative control.

To analyze the expression of different markers by RT-PCR, the total RNA from CDCSs
was isolated. The cDNA was synthesized from 1 µg of RNA in a reverse transcription
reaction for 1 h at 37 ◦C using Superscript III reverse transcriptase (Invitrogen, Thermo
Fisher Scientific, Waltham, MA, USA) and appropriate primers designed for Sus scrofa.
Conventional PCR amplification was performed using the Taq DNA Polymerase Recombi-
nant kit (Invitrogen) in a PXE 0.2 thermocycler (Thermo Fisher Scientific, Waltham, MA,
USA). Gene expression levels were analyzed and normalized with the GeneTools software
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(Syngene, Synoptics group, Cambridge, UK) using beta-actin as a housekeeping gene. The
relative quantification was made by measuring the brightness intensity of each band using
the GeneSnap software (Syngene, Synoptics group, Cambridge, UK).

Finally, the differentiation assay of CDCSs was performed when the cells reached 80%
of confluence. Cells were maintained for 21 days with a standard medium (control) or
with specific differentiation media for adipogenic, chondrogenic, and osteogenic lineages.
Differentiation was evidenced by optical microscopy using specific stainings = Oil Red O
for adipocytes, Alcian Blue for chondrocytes, and Alizarin Red S for osteocytes.

4.3. Intracoronary and Transmyocardial Cell Delivery

Coronary artery cannulation was performed transfemorally (see Appendix A). Under
sterile conditions, right femoral arterial access was obtained using the modified Seldinger
technique, and a 7 Fr vascular sheath (Terumo, Inc., Tokyo, Japan) was placed in the
femoral artery. Under fluoroscopic guidance (Philips Mobile Digital Angiographic System-
BV Pulsera, Philips Medical Systems, Best, The Netherlands) a 6 Fr hockey stick guiding
catheter (Mach 1 ®, Boston Scientific Corporation, Natick, MA, USA) was introduced and
placed at the origin of the left coronary artery. For intracoronary (IC) delivery, a coaxial 21F
microcatheter (Micro Ferret Infusion Catheter, Cook Medical, Bloomington, IN, USA) was
placed upstream of the left anterior descending artery occlusion, and CDCs were injected
at a flow rate of 1 mL/minute (total dose 300.000 CDCs/kg). A coronary angiogram to
assess coronary flow was obtained 5 min after CDC injection. The arterial sheath was then
removed and hemostasis was obtained via manual compression of the puncture site for at
least 10 min.

For TM CDCs, the NOGA XP Cardiac Navigation System (NOGA® XP Cardiac Navi-
gation System, Biosense Webster, Diamond Bar, CA, USA) was used by an investigator with
certified training. Using the NOGASTAR catheter, a three-dimensional electroanatomical
map of the left ventricular endocardium was created, the border zone was identified on
voltage maps, and the areas with multicomponent and LP were marked for CDC injection
with the Myostar catheter. A total of 3 million CDCs were injected at 5 different sites (0.2 mL
per injection).

4.4. Electrophysiological Study and Electro-Anatomical Mapping

Animals underwent an electrophysiological study 2 days after the second ce-MRI.
This procedure has been previously described [19]. After voltage maps were obtained,
programmed electrical stimulation from the right and left ventricles was performed at
3 different cycle lengths with up to 4 extra stimuli [20]. Both sustained VT and VF induced
during PES were included in the analysis. Operators were blinded to the treatment group
and ce-MRI images.

4.5. Optical Mapping

Optical maps were obtained during continuous pacing and induced VT. Briefly, CV
and action potential duration (APD) were measured during epicardial right ventricle pacing.
The pacing protocol consisted of the application of a biphasic pulse of 10 V at 2 ms duration
with a cycle length of 800 ms from the right ventricle epicardium so that the propagation was
longitudinal to epicardial fiber orientation. APD of optical voltage signals was calculated
at 80% repolarization. CV was automatically estimated by calculating gradients of normal
vector fields on isochronal propagation lines [21]. CV and APD were measured in the
area covered by the camera where three areas were differentiated: (1) the NZ, (2) the HT
surrounding the dense scar, characterized by the presence of muscle fibers and fibrotic
strands and (3) the HT forming ISC. Side-by-side comparison of the epicardial image and
the optical map served to differentiate NZ, HT, and ISC, and the absence of fibrotic strands
upon visual inspection of the area covered by the camera served as the basis to differentiate
the NZ. Once the 3 previously described zones were outlined, a mean value of APD and CV
was obtained for each one of them on depolarization maps. The wavelength was calculated
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as CV × APD for both the border zone and the conduction channels. Activation and
repolarization maps were obtained to calculate the depolarization and repolarization times
in the area that included the NZ and HT. VT inducibility was tested with 10 pulse bursts
followed by extra-stimuli with decreasing coupling intervals. Once a VT was mapped and
terminated, the induction protocol was repeated to induce a different VT, but either the
previous VT or a polymorphic VT was induced.

4.6. Histological Analysis

The heart was cut into transverse slices from apex to base. Two to five slices (depending
on scar size) covering the whole scar were analyzed per animal. Each previous slice
was cut into new 4-µm thick slices which were used for Masson’s Trichrome stain and
immunohistochemistry with protein and cell-specific antibodies. With Masson’s Trichrome
stain, three types of tissue were differentiated: 1. dense scar, defined by the absence of
myocytes; 2. the HT, characterized by the presence of myocytes and strands of fibrosis that
separate or isolate the myocyte bundles; and 3. the NZ, defined by normal myocytes and
the absence of fibrosis. The infarcted area was differentiated into 4 substructures, which
were analyzed separately (Figure 9): 1. central dense scar; 2. the subendocardium, the
tissue spanning from the endocardium layer to the overlying dense scar; 3. The lateral
HT, including the HT surrounding the dense scar excluding the subendocardial; and
4. epicardial intra-scar channels (ISC).
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4. The intra-scar channels. HT: heterogeneous tissue; EISC, epicardial intra-scar channels.

The histological analysis of dense scar included the semiquantitative characteristics
of collagen fibers, the density of vessels, and the type and density of different cells. The
subendocardium, lateral HT, and the ISC analysis comprised the measurement of the area
in the transverse slide, the area covered by fibrosis, and within the fibrosis the density of
vessels and the type and density of different cells. In myocytes, we analyzed viability and
connectivity. Myocyte viability was defined by the absence of hypertrophy, myocytolysis,
edema, and vacuolar degeneration. To define myocyte connectivity, a specific marker for
connexin-43 (Cx43) was used and two variables were measured: 1. percentage of myocytes
in the HT with a normal distribution of connexins, and 2. percentage of myocytes in the
HT that were disconnected from other myocytes. For the identification and quantifica-
tion of the different types of cells (myocytes, fibroblasts, myofibroblasts, vascular and
non-vascular smooth muscle cells (SMC), vascular endothelial cells, proliferation, and
inflammatory response cells) we used cell-type-specific markers for myosin heavy chain 6
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(α-MYH6), myosin heavy chain 7 (β-MYH7), myosin light chain (MLC), α-smooth muscle
actin (α-SMA), CD31, Von Willebrand factor (vWF), Ki67, CD3, and CD20.

Measurements were made with a transparent grid of 20 × 40 mm, divided into
1250 squares (0.64 mm2 per square). The presence of collagen was determined by the
Masson’s Trichrome stained sections under polarized light. Dense scar, subendocardium,
lateral HT, and epicardial ISC areas were measured by counting the number of squares and
multiplying by 0.64 mm2. To compare myocyte viability and connectivity, all myocytes in
the grid (20 × 40 mm) were counted and the percentage of normally preserved myocytes
(absence of vacuoles, edema, myocytolysis) and the percentage of myocytes with a normal
distribution of connexin-43 along their longitudinal axis, were determined. The spreading
of different types of cells (fibroblasts, myofibroblasts, vascular and non-vascular smooth
muscle cells, endothelial cells, and inflammatory response cells) was quantified by calculat-
ing the percentage of squares showing a particular cell. The investigators were blinded to
the treatment group.

4.7. Statistical Analysis

Continuous variables are presented as mean ± SD, and categorical data are summa-
rized as frequencies and percentages. Statistical significance of the differences between
groups was assessed using Student’s t-test for normally distributed data or Wilcoxon’s
test for non-normally distributed variables. Categorical data were compared using Chi-
squared and Fisher’s tests. A 2-sided p value of <0.05 was considered to indicate statistical
significance. Statistical analysis was performed using the JMP statistical software package
(JMP Inc., Cary, NC, USA).

5. Conclusions

Allogeneic CDCs early after myocardial infarction modify the structure and electrophys-
iology of post-infarction scar. These findings suggest novel therapeutic actions of CDCs.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/ijms232416211/s1: Video S1: From the experiment in Figure 4.
Optical mapping was obtained during VT from the scar shown in the image of the left superior corner.
The video shows the activation sequence during reentry in which two channels within the scar act as
the VT isthmus. These channels run parallel to epicardial vessels.
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Appendix A

The study protocol was approved by the Institutional Animal Care and Use Committee
(Centro de Cirugía de Mínima Invasión Jesús Usón), in full compliance with the Guidelines
for the Care and Use of Laboratory Animals. Before inclusion in the protocol, all animals
underwent a complete physical examination and serum biochemical analyses. Animals
received 500 mg aspirin and 300 mg clopidogrel 24 h before model creation and, to reduce
acute ischemia-related arrhythmias, 400 mg oral amiodarone from 5 days before infarct
induction to 3 days after. Antithrombotic medications were continued throughout the study
until euthanasia was performed (500 mg aspirin and 75 mg clopidogrel). All procedures
were performed under general inhaled anesthesia.

Appendix A.1 Anesthesia and Monitoring Protocols for Infarct Induction, MRI Examination, and
Electrophysiological Studies

After fasting for 24 h, animals were premedicated with a combination of diazepam
(0.4 mg/kg) and ketamine (15 mg/kg) injected intramuscularly (IM). Then, 10 min after
premedication, access to an ear marginal vein was obtained and anesthesia was induced
with intravenous (IV) 1% propofol (3 mg/kg). Endotracheal intubation was performed
using cuffed endotracheal tubes (sizes 6.5–9, depending on the animal’s weight). Anesthesia
was maintained using sevoflurane in 100% oxygen to an end-tidal sevoflurane concentration
of 1.8–2%. Endotracheal tubes were connected to a semi-closed circular anesthetic circuit
attached to a ventilator with a fresh gas flow rate of 3 L/min. Once the correct anesthetic
depth was reached, the fresh gas flow rate was adjusted to 0.5 L/min. Controlled ventilation
was established with a tidal volume of 8–10 mL/kg to obtain normocapnia (with a CO2
pressure of 35–40 mmHg).

Intraoperative analgesia was assured by the IV administration of a bolus of a combi-
nation of 1 mg/kg of ketorolac with 2 mg/kg of tramadol at the beginning of the study,
followed by the same combination administered as a continuous infusion at 1 mg/kg/h
and 2 mg/kg/h, respectively. During anesthesia, physiologic saline was administered
through the ear marginal vein at a rate of 5–10 mL/kg/h.

Anesthetic monitoring included cardiovascular and hemodynamic parameters such
as heart rate, electrocardiography, pulse oximetry, and invasive arterial blood pressure
monitoring. Ventilatory parameters registered were respiratory rate, oximetry, airways
pressure, inspired and end-tidal CO2 concentration, capnography, and inspired and end-
tidal sevoflurane.

At the end of the procedures, the vaporizer was switched off and the fresh gas flow
rate was increased to 4–5 L/min of 100% oxygen. During recovery, animals were observed
to register the time to reflex recovery, spontaneous ventilation, first movements, and sternal
decubitus. Once the electrophysiological study was completed, animals were euthanized
using a lethal dose of potassium chloride (1–2 mmol/kg) while under deep anesthesia,
as recommended by the American Veterinary Medical Association Panel on Euthanasia.
Afterward, hearts were extracted for the anatomical examination of the infarcted area, and
photographs were obtained for side-by-side comparison with SI and Voltage maps.

Appendix A.2 Infarct Induction

For infarct creation, animals were fixed at the table in the dorsal decubitus with a
caudal extension of the hind limbs, and the groin area was prepared for access. Systemic
heparin was injected IV (150 IU/kg) 5 min before percutaneous sheath placement. Under
sterile conditions, a right femoral arterial access was established using the Seldinger tech-
nique and a 7 Fr introducer sheath (Terumo, Inc., Tokyo, Japan) was placed percutaneously
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into the femoral artery. Under fluoroscopic guidance (Philips Mobile Digital Angiographic
System-BV Pulsera, Philips Medical Systems, Best, The Netherlands) a 6 Fr hockey stick
guiding catheter (Mach 1 ®, Boston Scientific Corporation, Natick, MA, USA) was intro-
duced and placed at the origin of the left main coronary artery. Coronary angiograms were
obtained in the 40◦ left anterior oblique (LAO) projection to better demonstrate the length
of the left anterior descending (LAD) coronary artery, and a 0.014” guidewire (Hi-torque.
Abbott Vascular, Santa Clara, CA, USA) was advanced inside the LAD. After measuring
the diameter of the LAD immediately below the origin of the first diagonal branch, a
PTCA balloon of appropriate diameter (typically 3 mm) was advanced to this location.
Before occluding the artery, a bolus of 2% lidocaine (1 mg/kg) was administered, and the
balloon was then inflated. Correct occlusion was assessed by contrast injection through the
guiding catheter immediately after balloon inflation and before deflation. The occlusion
was maintained for 150 min. In the event of the animals developing ventricular fibrillation
during the occlusion, manual chest compressions and 200 J biphasic defibrillation shocks
and pharmacological therapy when needed were used to revert them. After balloon defla-
tion and removal, a postprocedural coronary angiogram was obtained to assess coronary
patency and TIMI flow. Animals were kept under anesthesia with lidocaine infusion at a
rate of 1 mg/kg/h for another hour, and then were recovered and sent back to the animal
housing facility for postoperative observation. Postoperative analgesia was assured with
10 µg/kg/12 h of IM Buprenorphine during the first 24 h. A fentanyl transdermic release
patch (25 µg/h) was used to assure correct analgesia in the immediate postoperative period.
Prophylactic antibiotics were administered in all cases for 5 days after infarct induction
(ceftiofur hydrochloride).

Appendix A.3 Magnetic Resonance Imaging

The animals underwent ce-MRI with a 1.5-T scanner (Intera, Philips Medical Systems,
Best, The Netherlands), and a 5-element dedicated cardiac coil was used. For the MRI scan,
anesthetics were maintained using a continuous propofol infusion (8–12 mg/kg/h). Ani-
mals were connected to an MRI-compatible ventilator (TransPAC T200, Smiths Industries
Medical Systems, UK) and pressure-controlled mechanical ventilation was established with
100% oxygen to assure normocapnia.

The MRI study consisted of cine steady-state free-precession imaging of left ventricular
function (SENSE × 2, repetition time 2.4 ms, echo time 1.2 ms, average in-plane spatial
resolution 1.6 × 2 mm, 30 phases per cycle, 8-mm slice thickness without gap) and late
enhancement imaging of myocardial scar tissue (3D inversion recovery turbo gradient
echo sequence, prepulse delay optimized for maximal myocardial signal suppression;
SENSE × 2, flip angle 15◦, repetition time 3.4 ms, echo time 1.3 ms, actual spatial resolution
1.47 × 1.66 mm, interpolated spatial resolution 1.29 × 1.29 mm, 5-mm actual slice thickness
(reconstructed to 2.5 mm), inversion time 200–300 ms, acquisition window was set to
150–170 ms and the breath-holding length was 13–14 s depending on heart rate).

Both cine images and late enhancement images were obtained in the same short-axis
views (10 to 14 contiguous slices) and 4-chamber, 2-chamber, and 3-chamber views. Late
enhancement was performed 10 to 15 min after a total injection of 0.2 mmol/kg gadobutrol
(Gadovist, Bayer Shering Pharma AG, Berlin, Germany).

Cine and late enhancement images were analyzed offline in DICOM (Digital Imag-
ing and Communications in Medicine) format with specialized software (QMass MR 7.0,
MEDIS, The Netherlands). Left ventricular end-diastolic and end-systolic volumes were
assessed according to Simpson’s rule, and the ejection fraction was calculated. Left ven-
tricular mass was calculated by subtracting the endocardial volume from the epicardial
volume at the end of the diastole, and then multiplying it by the tissue density (1.05 g/mL).

Late gadolinium-enhanced images were used for infarct characterization. We used
signal-intensity (SI) thresholds to quantify two different areas within the infarct zone:
(1) the core area defined by an SI > 3 SD above remote normal myocardium, and (2) the
heterogeneous tissue, i.e., grey zone, defined by an SI of between 2 and 3 SD 3,4.
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Appendix A.4 Magnetic Resonance-Based Endo-Epicardial Signal Intensity Mapping

LV ventricular endocardial/epicardial contours were manually defined on contigu-
ous short-axis slices using QMass MR 7.0 and imported into a proprietary designed tool;
3D endocardial and epicardial reconstructions were computed off-line from short-axis
ce-MRI image volume using custom software developed in the MATLAB environment
(Mathworks, Natick, MA, USA). The myocardial wall was divided into two equal parts,
subendocardium, and subepicardium. The averaged SI of the entire subendocardium
(ENDO) and the entire subepicardium (EPI) were projected, respectively, onto 3D endo-
cardial and epicardial shell reconstructions of the left ventricle to assess endocardial and
epicardial scar extension. Left ventricular endocardial/epicardial contours were manually
defined on contiguous short-axis slices using QMass MR 7.0, and imported into our tool
in which 3D endocardial/epicardial reconstructions were computed off-line from a short
axis ce-MRI image volume using custom software developed in the MATLAB environ-
ment (Mathworks, Natick, MA, USA). The 3D visualization interface was implemented
in Java (Sun Microsystems, Santa Clara, CA, USA) using VTK (Kitware, Clifton Park, NY,
USA) visualization algorithms. These two surface maps were analyzed to determine the
structure of the scar (endo-epicardial SI mapping). These surfaces were color-coded to
provide information on signal intensity: the red area represented dense scar and was
defined by an SI ≥ the minimal SI in the core of the scar; the magenta area represented
normal myocardium (SI ≤ peak SI in the normal myocardium) and the area between these
extremes represented HT. In all SI maps, the extension of scar, dense scar, and HT was
measured using custom-developed software. Two independent investigators blind to the
electrophysiological study analyzed SI maps.

Appendix A.5 Optical Mapping

Experiments were carried out in Large White pigs (n = 18) at the Centro de Cirugía
de Mínima Invasión Jesús Usón in Cáceres (Spain) after the approval of the ethics and
animal research committee and following the indications of the Helsinki convention
as well as the European and Spanish regulations on the subject. In particular, hearts
were isolated by thoracotomy after the general anesthesia of the animals by pentobarbi-
tal. After isolation, hearts were immersed in cardioplegic solution at 4 ◦C for transport
(in mM = 140 NaCl; 5.4 KCl; 1 MgCl2; 5 HEPES; 11 Glucose; 1.8 CaCl2 with a pH of 7.4).
After the removal of coronary blood, hearts were retrogradely perfused through the aorta
using a cannula with a constant flow of modified Krebs solution at 36.5 ◦C (in mM = NaCl,
120, NaHCO3, 25, CaCl2, 1.8, KCl, 5.4, MgCl2, 1, glucose, 5.5, H2PO4H2O, 1.2, pH 7.4). The
medium was continuously oxygenated by the bubbling of carbogen. All compounds were
purchased from Sigma-Aldrich (Dorset, UK). Hearts were infused with a 100 uL bolus of di-
4-ANEPPS (Biotium, Inc. Hayward, CA, USA) of 4.16 mM (in DMSO), applied over 5 min
following electromechanical dissociation by the administration of 10 mM of 2,3-butanedione
monoxime (Biotium). To excite di-4-ANEPPS, hearts were illuminated with a filtered green
LED light source = LED = CBT-90-G (peak power output 58 W; peak wavelength 524 nm;
Lu-minus Devices, Billerica, MA, USA), plano-convex lens (LA1951; focal length = 25.4 mm;
Thorlabs, NJ, USA) and a green excitation filter (D540/25X; Chroma Technology, Bellows
Falls, VT, USA). Three such light sources were used to achieve homogeneous illumina-
tion. To excite di-4-ANEPPS, hearts were illuminated with a filtered green LED light
source = LED = CBT-90-G (peak power output 58 W; peak wavelength 524 nm; Lu-minus
Devices, Billerica, MA, USA), plano-convex lens (LA1951; focal length = 25.4 mm; Thorlabs,
NJ, USA) and a green excitation filter (D540/25X; Chroma Technology, Bellows Falls, VT,
USA). Custom software written in MATLAB and based on Micro-Manager Open-Source
Software was used to perform optical mapping image recording and processing.

The pacing protocol consisted of the application of a biphasic pulse of 10 V at 2 ms
duration with a cycle length of 800 ms from the right ventricle epicardium, so that the prop-
agation was longitudinal to epicardial fiber orientation. Inducibility tests were performed
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with a series of 10 pacing pulses at 600 ms followed by shorter pulses from 300 to 8 ms in
steps of 20 ms.

Appendix A.6 Histological Analysis

Histological studies were performed in ten IC+IM animals and eight control animals.
The heart was cut into transverse slices from apex to base, and two to five slices per
animal, spanning the scar, were analyzed. With Masson’s Trichrome stain, a scar was
differentiated into a dense scar, defined by the absence of myocytes, and HT was the tissue
between the dense scar and normal tissue. Normal tissue was defined in the cross-section
as the zone in which no collagen was observed at any level from the endocardium to
epicardium and all myocytes showed normal characteristics. To assess the effect of CDC,
we analyzed the scar structure, types of cells found in dense scar and HT, and myocyte
viability and connectivity. Changes in the structure of the scar were assessed by measuring
the following variables: 1. the surface of the dense scar and HT; 2. percentage of HT area
not covered by myocytes, collagen, edema, and non-myocyte cells; and 3. spreading of
collagen on the HT. These morphometric parameters were measured in each section. For the
identification of the different types of cells found in the scar and HT (myocytes, fibroblasts,
myofibroblasts, vascular and non-vascular smooth muscle cells (SMC), vascular endothelial
cells, proliferation and inflammatory response cells), we used cell-type-specific markers
for myosin heavy chain 6 (α-MYH6), myosin heavy chain 7 (β-MYH7), myosin light chain
(MLC), α-smooth muscle actin (α-SMA), CD31, Von Willebrand factor (vWF), Ki67, CD3,
and CD20. Myocyte viability was defined by the absence of hypertrophy, myocytolysis,
edema, and vacuolar degeneration. To define myocyte connectivity a specific marker for
connexin-43 (Cx43) was used and two variables were measured: 1. percentage of myocytes
in the HT with a normal distribution of connexins, and 2. percentage of myocytes in the
HT that were disconnected from other myocytes.

For comparisons, the scar was divided into four compartments which were analyzed
separately: 1. central dense scar; 2. subendocardial HT (the tissue spanning from the
endocardium layer to the overlying dense scar); 3. the HT border zone, including the whole
HT surrounding the dense scar, excluding the subendocardium and epicardial HT channels;
and 4. epicardial HT channels.

For quantitative and semi-quantitative comparisons, we used a transparent grid of
20 × 40 mm, divided into 1250 squares (0.64 mm2 per square). Dense scar, subendocardial
HT, HT border zone, and epicardial HT channel areas were quantitatively compared by
counting the number of squares and multiplying by 0.64 mm2. The presence of collagen
in the HT was determined by the Masson’s Trichrome stained sections under polarized
light. Spreading of collagen, fibroblasts, myofibroblasts, vascular and non-vascular smooth
muscle cells, vascular endothelial cells, and proliferation of inflammatory response cells
were semi-quantitatively compared using a scale from 0 (absence of the cell of interest
in all examined squares) to 5, in which more than the 80% of squares showed the above-
mentioned cells.

To compare myocyte viability and connectivity, all myocytes in the grid (20 × 40 mm)
were counted and the percentage of normally preserved myocytes (absence of vacuoles,
edema, myocytolysis) and the percentage of myocytes with a normal distribution of con-
nexins were determined.
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