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Abstract: Dysregulated energy metabolism is a major contributor to a multitude of pathologies,
including obesity and diabetes. Understanding the regulation of metabolic homeostasis is of utmost
importance for the identification of therapeutic targets for the treatment of metabolically driven
diseases. We previously identified the deubiquitinase OTUB1 as substrate for the cellular oxygen
sensor factor-inhibiting HIF (FIH) with regulatory effects on cellular energy metabolism, but the
physiological relevance of OTUB1 is unclear. Here, we report that the induced global deletion of
OTUB1 in adult mice (Otub1 iKO) elevated energy expenditure, reduced age-dependent body weight
gain, facilitated blood glucose clearance and lowered basal plasma insulin levels. The respiratory
exchange ratio was maintained, indicating an unaltered nutrient oxidation. In addition, Otub1
deletion in cells enhanced AKT activity, leading to a larger cell size, higher ATP levels and reduced
AMPK phosphorylation. AKT is an integral part of insulin-mediated signaling and Otub1 iKO mice
presented with increased AKT phosphorylation following acute insulin administration combined with
insulin hypersensitivity. We conclude that OTUB1 is an important regulator of metabolic homeostasis.

Keywords: deubiquitinating enzyme; energy expenditure; insulin; liver; ubiquitin system; FIH;
Hif1an; hypoxia

1. Introduction

Metabolic perturbations are associated with many common human diseases, including
obesity, heart failure, diabetes and cancer [1,2]. Pharmaceutical targeting of the bioenergetic
metabolism is a current focus in the development of novel treatment option for many of
these diseases [2]. For the identification of possible unknown therapeutic targets, it is of
key importance to improve our understanding of metabolic homeostasis as well as of the
underlying signaling pathways and proteins.

The ubiquitin system conjugates ubiquitin to cellular target proteins via an elaborate
functional interaction of Ub-conjugating enzymes (E1s, E2s, and E3s) [3]. Proteins of
virtually all known signaling pathways are regulated by the ubiquitin system, which hence
is an important contributor to cell and tissue homeostasis [3]. Poly-Ub chains can differ in
the amino acid residue(s) used to interconnect Ub proteins within the chains (either via the
Ub N-terminal methionine or through the seven different lysine residues), leading to distinct
three-dimensional chain structures and different downstream effects [4]. K48-linked poly-
ubiquitination is the most abundant Ub modification in cells, targeting modified proteins
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for proteasomal degradation [5]. K63-Ub poly-ubiquitination is the second most abundant
Ub modification [5], serving as inducible scaffold in multiple signaling pathways [6].

Deubiquitinases (DUBs) are negative regulators of ubiquitination, counteracting it via
trimming or removal of conjugated Ub chains from substrates [3,4]. DUBs are considered
as potential novel therapeutic targets for various diseases [3], but the function of many of
the approximately 100 known DUBs is only beginning to be unraveled. Ovarian tumor
(OTU) domain-containing ubiquitin aldehyde-binding protein 1 (OTUB1) is one of the most
highly expressed DUBs in cells [3,5]. OTUB1 is a unique DUB, displaying an enzymatic
and a non-enzymatic function. The enzymatic activity of OTUB1 removes K48-ubiquitin
chains, prolonging the half-life of the modified substrate protein [7,8]. Non-enzymatically,
OTUB1 inhibits E2 enzyme activity by direct protein–protein interaction, preventing the
conjugation of ubiquitin proteins to K48- and K63-linked ubiquitin chains [9–14].

We previously showed that the cellular oxygen sensor factor-inhibiting HIF (FIH)
interacts with OTUB1 [15–18] and hydroxylates asparagine 22, affecting OTUB1 substrate
targeting and cellular energy metabolism [18]. Furthermore, FIH and OTUB1 form a
denaturation-resistant protein–protein complex, regulating OTUB1 enzymatic activity [16].
Interestingly, deletion of the FIH encoding gene Hif1an in mice leads to an energy metabolic
phenotype, including a decreased body weight gain, decreased fat mass, increased insulin
sensitivity, increased food and water intake as well as an increased O2 consumption, CO2
production and energy expenditure with a maintained respiratory exchange ratio (RER) [19].
The underlying molecular mechanisms are unclear [19].

Constitutive whole-body deletion of Otub1 is lethal in mice during development [20–22],
caused by perinatal asphyxiation [22]. We showed that lack of Otub1 increases the pro-
liferation of major parenchymal and mesenchymal cell types in the lung, reducing the
available saccular air space, which likely prevents inhalation [22]. Otub1 deletion led to
an upregulation of mTOR signaling in lung tissue, which we proposed to cause the ob-
served lethality [22]. In addition, embryonic mice lacking Otub1 were significantly smaller
and lighter compared to littermates [22], which can also be caused by increased mTOR
signaling. The physiological relevance of OTUB1 is unknown in adult mice. Based on
the observed effect of Otub1 deletion on mTOR signaling during development as well as
due to the reported metabolic phenotype of Hif1an KO mice and the shown regulation
of OTUB1 by FIH, we assessed whether OTUB1 is relevant for the regulation of energy
metabolism in vivo by investigating the phenotype of adult mice with induced whole-body
OTUB1 deletion.

2. Results
2.1. Induced Otub1 Ablation Decreases Weight Gain and Fat Mass in Mice

Assessing possible gross phenotypes in adult mice with induced whole-body Otub1
deletion (Otub1 iKO), Otub1 was ablated by tamoxifen gavage over five consecutive days
and body weight (BW) progression was monitored for 122 days. The achieved KO efficiency
on mRNA level was 94% in pgWAT, 77% in iBAT, 92% in liver tissue, 98% in quadriceps,
90% in lung tissue, 67% in the spleen and 96% in heart tissue (each as average from three
animals) [22]. Mice without tamoxifen treatment (expressing Otub1; control) gained ap-
proximately 20 g within this time frame, while Otub1 iKO mice only gained approximately
11.5 g (Figure 1A). The body composition of the same mice was assessed by EchoMRI to
analyze possible causes of the reduced weight gain. The fat/lean mass ratio was decreased
3 and 4.5 months after Otub1 KO, indicating that the amount of adipose tissue was less in
Otub1 iKO mice compared to control (Figure 1B). Analyzing various excised adipose tissues,
we found that subcutaneous white adipose tissue (sWAT) weight was significantly lower
in Otub1 iKO mice and perigonadal (pgWAT) WAT showed a strong tendency towards
being decreased (Figure 1C). Interscapular brown adipose tissue (iBAT) and liver weight
(Figure 1C) as well as quadriceps, spleen and kidney weight (Figure S1A) were comparable
between the groups, and liver tissue showed no gross histological difference (Figure S1B).
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In summary, these results suggest that the reduced BW gain in Otub1 iKO mice was mainly
caused by decreased WAT accumulation during aging.
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Figure 1. Body weight gain, fat and liver mass in mice with induced whole-body Otub1 KO. (A) Body
weight (BW) development following vehicle application (control) or the induction of Otub1 KO in
the whole body by tamoxifen treatment (Otub1 iKO) in mice during months 1–5 (n = 5). Vehicle or
tamoxifen treatment by gavage was indicated by arrows. (B) Fat mass to lean mass ratio analyzed by
EchoMRI in the mice shown in (A) at the indicated time after Otub1 KO (4.5 and 6 months of age;
n = 5). (C) Weight of indicated organs (6 months after Otub1 KO; 8.5-month-old mice; 2.5-month-old
mice were gavaged with tamoxifen; control, n = 10; Otub1 iKO, n = 9). sWAT, subcutaneous WAT;
pgWAT, perigonadal WAT; iBAT, interscapular brown AT. All data are presented as the mean ± SEM.
*, p < 0.05; **, p < 0.01; ***, p < 0.001 by two-way ANOVA with Bonferroni post-test (A) or two-tailed
Student’s t-test (B,C).

2.2. Loss of Otub1 Leads to a Hypermetabolic State In Vivo

Next, we analyzed possible underlying causes of the observed BW and fat mass
decrease. Food and water intake showed a tendency to be increased in Otub1 iKO mice
(Figure 2A). In agreement with a higher food and water intake, feces weight and urine
volume were also increased (Figure 2A). The body temperature showed a tendency to
be higher in mice lacking Otub1 (Figure 2B). O2 consumption, CO2 production and thus
energy expenditure were increased during the light cycle in Otub1 iKO mice (Figure 2C).
The RER was not altered (Figure 2C), indicating that the oxidized nutrients were the same
between the groups. In the dark cycle, corresponding (albeit not significant) results were
observed to the light cycle (Figure S1C). Overall, these data suggest a hypermetabolic state
in Otub1 iKO mice.
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Figure 2. Energy metabolism in Otub1 iKO mice. (A) Analysis of food and water intake, feces weight 
and urine volume over 72 h (4.5 months after Otub1 KO; 6-month-old mice, n = 5). (B) Rectal body 
temperature (2.5 months after Otub1 deletion; 5-month-old mice; control, n = 6; Otub1 iKO, n = 5). 
(C) O2 consumption, CO2 production, energy expenditure (EE) and respiratory exchange ratio (RER) 
of 3 consecutive days during the light cycle (5 months after Otub1 deletion; 6.5-month-old mice; n = 
5). All data are presented as the mean ± SEM. *, p < 0.05; **, p < 0.01 by two-tailed Student’s t-test. 

2.3. Otub1 Deletion Increases AKT-Dependent Signaling 
To analyze possible molecular mechanisms underlying the observed changes in en-
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(Wt) mice and mice with constitutive Otub1 deletion (Otub1−/−; Figure S2A). Despite the 
high cellular expression of OTUB1, total levels of Ub chains, K48-linked and K63-linked 
Ub chains were not altered in MEFs (Figure 3A). Therefore, we concluded that Otub1 de-
letion did not affect general levels of Ub chains and we focused on the analysis of specific 
signaling pathways. 

OTUB1 has previously been linked to the regulation of IL-15-stimulated phosphory-
lation of the serine/threonine kinase AKT in CD8+ T cells and NK cells [24] as well as to 
mammalian target of rapamycin (mTOR) activity through regulation of DEPTOR in vitro 
[25]. AKT/mTOR signaling is a major determinant of cellular energy metabolism [26,27]. 
Hence, we analyzed whether OTUB1 affected AKT and/or mTOR in MEFs. In Otub1−/− 
MEFs, both AKT Thr308 and Ser473 phosphorylation were increased under basal condi-
tions (Figure 3B,C). Interestingly, combined depletion of FCS and amino acids (Figure 3B), 
or FCS depletion alone (Figure 3C), strongly reduced or abolished AKT phosphorylation 
in Wt cells. In Otub1−/− cells, AKT phosphorylation was detected in the absence of a stim-
ulus (Figure 3B,C) and it was further enhanced in comparison to Wt cells after re-addition 
of FCS to stimulate AKT phosphorylation (Figure 3B). 

Figure 2. Energy metabolism in Otub1 iKO mice. (A) Analysis of food and water intake, feces weight
and urine volume over 72 h (4.5 months after Otub1 KO; 6-month-old mice, n = 5). (B) Rectal body
temperature (2.5 months after Otub1 deletion; 5-month-old mice; control, n = 6; Otub1 iKO, n = 5).
(C) O2 consumption, CO2 production, energy expenditure (EE) and respiratory exchange ratio (RER)
of 3 consecutive days during the light cycle (5 months after Otub1 deletion; 6.5-month-old mice; n = 5).
All data are presented as the mean ± SEM. *, p < 0.05; **, p < 0.01 by two-tailed Student’s t-test.

Hypermetabolism can be caused by hyperthyroidism [23], and plasma levels of
thyroid-stimulating hormone (TSH) are commonly used as primary indicator for thy-
roid dysfunction [23]. However, plasma TSH levels were not altered between the groups
(Figure S1C), indicating a normal thyroid function. Thus, we excluded hyperthyroidism as
a possible cause of the observed hypermetabolic state.

2.3. Otub1 Deletion Increases AKT-Dependent Signaling

To analyze possible molecular mechanisms underlying the observed changes in energy
metabolism, mouse embryonic fibroblasts (MEFs) were generated from wild-type (Wt) mice
and mice with constitutive Otub1 deletion (Otub1−/−; Figure S2A). Despite the high cellular
expression of OTUB1, total levels of Ub chains, K48-linked and K63-linked Ub chains were
not altered in MEFs (Figure 3A). Therefore, we concluded that Otub1 deletion did not affect
general levels of Ub chains and we focused on the analysis of specific signaling pathways.



Int. J. Mol. Sci. 2022, 23, 1536 5 of 15
Int. J. Mol. Sci. 2022, 23, 1536 6 of 15 
 

 

 
Figure 3. AKT/mTOR signaling in Otub1−/− MEFs. (A,B) Immunoblotting of the indicated (phos-
pho)proteins in mouse embryonic fibroblasts (MEFs) derived from wild-type (Wt) and constitutive 
Otub1 homozygous KO (Otub1−/−) mice (n = 3). K63-Ub, K63-linked ubiquitin (Ub) chains; K48-Ub, 
K48-linked Ub chains; FCS, fetal calf serum; aa, amino acids; pre-treatment: 4 h. (C) Immunofluo-
rescence of the indicated (phospho)proteins in MEFs of the indicated genotype. Scale bar, 150 μm. 
(D) Analysis of the cell diameter of Wt and Otub1−/− MEFs. Each dot (n = 21) represents the analysis 
of 315 to 1197 single cells. (E) Intracellular ATP levels normalized to total protein content of MEFs 
(n = 4). (F) Immunoblotting of the indicated (phospho)proteins in Wt and Otub1−/− MEFs (AKT, green; 
pAKT (Ser473), red; DAPI, blue). exp, exposure time. Representative images are shown and data are 
presented as the mean ± SEM. Full-length immunoblots are shown in Figures S3–S5. *, p < 0.05; ***, 
p < 0.001 by two-tailed Student’s t-test. 

  

Figure 3. AKT/mTOR signaling in Otub1−/− MEFs. (A,B) Immunoblotting of the indicated (phos-
pho)proteins in mouse embryonic fibroblasts (MEFs) derived from wild-type (Wt) and constitutive
Otub1 homozygous KO (Otub1−/−) mice (n = 3). K63-Ub, K63-linked ubiquitin (Ub) chains; K48-Ub,
K48-linked Ub chains; FCS, fetal calf serum; aa, amino acids; pre-treatment: 4 h. (C) Immunofluo-
rescence of the indicated (phospho)proteins in MEFs of the indicated genotype. Scale bar, 150 µm.
(D) Analysis of the cell diameter of Wt and Otub1−/− MEFs. Each dot (n = 21) represents the analysis
of 315 to 1197 single cells. (E) Intracellular ATP levels normalized to total protein content of MEFs
(n = 4). (F) Immunoblotting of the indicated (phospho)proteins in Wt and Otub1−/− MEFs (AKT,
green; pAKT (Ser473), red; DAPI, blue). exp, exposure time. Representative images are shown
and data are presented as the mean ± SEM. Full-length immunoblots are shown in Figures S3–S5.
*, p < 0.05; ***, p < 0.001 by two-tailed Student’s t-test.
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OTUB1 has previously been linked to the regulation of IL-15-stimulated phosphoryla-
tion of the serine/threonine kinase AKT in CD8+ T cells and NK cells [24] as well as to mam-
malian target of rapamycin (mTOR) activity through regulation of DEPTOR in vitro [25].
AKT/mTOR signaling is a major determinant of cellular energy metabolism [26,27]. Hence,
we analyzed whether OTUB1 affected AKT and/or mTOR in MEFs. In Otub1−/− MEFs,
both AKT Thr308 and Ser473 phosphorylation were increased under basal conditions (Fig-
ure 3B,C). Interestingly, combined depletion of FCS and amino acids (Figure 3B), or FCS
depletion alone (Figure 3C), strongly reduced or abolished AKT phosphorylation in Wt
cells. In Otub1−/− cells, AKT phosphorylation was detected in the absence of a stimulus
(Figure 3B,C) and it was further enhanced in comparison to Wt cells after re-addition of
FCS to stimulate AKT phosphorylation (Figure 3B).

To investigate mTOR activity, the phosphorylation status of the ribosomal protein
S6 kinase (S6K) Thr389 was analyzed, a direct target of mTOR complex 1 (mTORC1) [26].
Under baseline and combined FCS and amino acids depletion conditions, the phosphoryla-
tion of S6K Thr389 was comparable between Wt and Otub1−/− cells (Figure 3B). However,
following stimulation by FCS re-introduction, the phosphorylation of S6K was reduced in
Otub1−/− relative to Wt MEFs (Figure 3B), suggesting a decreased mTOR activity. OTUB1
has been reported to directly regulate DEPTOR protein stability [25], a negative regulator
of mTORC1 and mTORC2 [28]. In Otub1−/− MEFs, DEPTOR levels were increased (Figure
S2B), inconsistent with a direct regulation of the DEPTOR protein half-life by OTUB1, but
consistent with the observed decrease in mTOR activity.

To analyze the relevance of the OTUB1-dependent AKT regulation, MEF cell size and
metabolic energy status were determined. We observed an increase in cell size in Otub1−/−

MEFs (Figure 3C,D), in agreement with increased AKT activity [29,30]. Furthermore,
ATP levels were elevated (Figure 3E) and AMPK phosphorylation was downregulated
(Figure 3F), consistent with increased AKT activation [31].

2.4. Otub1 Deletion Increases Insulin Sensitivity

AKT can be activated by insulin and AKT activity plays a key role in insulin-regulated
metabolism [32]. Therefore, we next assessed insulin function in Otub1 iKO mice. In an
intraperitoneal glucose tolerance test (IPGTT), Otub1 iKO mice showed a decreased blood
glucose peak and faster glucose clearance compared with control mice (Figure 4A). An
intraperitoneal insulin tolerance test (IPITT) confirmed increased insulin sensitivity in
Otub1 iKO mice (Figure 4B). Furthermore, basal plasma insulin levels (after 4 h of fasting)
were decreased in Otub1 iKO mice (Figure 4C). This increased insulin sensitivity in Otub1
iKO mice is in agreement with the increased AKT activity found in MEFs.
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ANOVA with Bonferroni post-test (A,B) or two-tailed Mann–Whitney U test (C). 
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Next, we investigated insulin-dependent intracellular signaling in vivo. In the liver, 
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(analyzed 4 h after fasting; Figures 5A and S6A). There was also no difference in AKT 
phosphorylation in the heart under basal conditions, whereas S6K phosphorylation was 
increased (Figure S6B). However, the same mice had shown decreased basal insulin levels 
(Figure 4C). The maintained or increased AKT/mTOR signaling in the presence of de-
creased basal insulin levels indicated an enhanced sensitivity of AKT/mTOR signaling to 
insulin-dependent stimulation when Otub1 was absent. Consequently, we next analyzed 
the response of AKT/mTOR signaling to acute insulin stimulation. Therefore, mice were 
fasted overnight followed by insulin injection. Fifteen minutes after injection, the phos-
phorylation of AKT on Ser473 was increased in livers of Otub1 iKO mice (Figure 5B). The 
effect on AKT Thr308 was less clear (Figures 5B and S6C). The phosphorylation of S6K 
was not altered, but total levels of S6K showed a tendency to be decreased in both basal 
as well as stimulated conditions (Figure 5), indicating that additional regulatory pathways 
may be involved. In the hearts of the same animals, phosphorylation of AKT Ser473 was 
at least in some animals increased in response to insulin stimulation, which could also be 
observed for the phosphorylation of S6K (Figure S6D). 

The phosphorylation of ERK1/2, another component of the insulin signaling pathway 
[33], was not altered in the liver under basal conditions (Figure 5A). In response to insulin 
stimulation, ERK1/2 phosphorylation was increased in Otub1 iKO livers (Figure 5B), indi-
cating that the OTUB1-dependent regulation of insulin signaling was either not confined 
to AKT or occurred upstream of the bifurcation point of both signaling cascades. The 
phosphorylation of ERK1/2 showed a tendency to be decreased in Otub1 iKO mice hearts 

Figure 4. Insulin sensitivity of adult mice with induced Otub1 KO. (A) Intraperitoneal (IP) glucose
tolerance test (IPGTT; 2 mg glucose/g; control, n = 4; Otub1 iKO, n = 5) and (B) IP insulin tolerance
test (IPITT; 0.75 mU insulin/g; 4 months after Otub1 KO; 5.5-month-old mice; n = 5). (C) Plasma
insulin levels in the mice shown in (A) and (B) (5 months after Otub1 KO; 6.5-month-old mice; n = 5)
following 4 h of starvation during the light cycle. *, p < 0.05; **, p < 0.01; ***, p < 0.001 by two-way
ANOVA with Bonferroni post-test (A,B) or two-tailed Mann–Whitney U test (C).

2.5. Otub1 Deletion Increases Insulin-Dependent Signaling

Next, we investigated insulin-dependent intracellular signaling in vivo. In the liver,
no difference was observed in the phosphorylation of AKT or S6K under basal conditions
(analyzed 4 h after fasting; Figures 5A and S6A). There was also no difference in AKT
phosphorylation in the heart under basal conditions, whereas S6K phosphorylation was
increased (Figure S6B). However, the same mice had shown decreased basal insulin levels
(Figure 4C). The maintained or increased AKT/mTOR signaling in the presence of de-
creased basal insulin levels indicated an enhanced sensitivity of AKT/mTOR signaling to
insulin-dependent stimulation when Otub1 was absent. Consequently, we next analyzed
the response of AKT/mTOR signaling to acute insulin stimulation. Therefore, mice were
fasted overnight followed by insulin injection. Fifteen minutes after injection, the phospho-
rylation of AKT on Ser473 was increased in livers of Otub1 iKO mice (Figure 5B). The effect
on AKT Thr308 was less clear (Figures 5B and S6C). The phosphorylation of S6K was not
altered, but total levels of S6K showed a tendency to be decreased in both basal as well as
stimulated conditions (Figure 5), indicating that additional regulatory pathways may be
involved. In the hearts of the same animals, phosphorylation of AKT Ser473 was at least in
some animals increased in response to insulin stimulation, which could also be observed
for the phosphorylation of S6K (Figure S6D).
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Figure 5. Basal and stimulated insulin receptor-dependent signaling in the liver with induced
Otub1 deletion. (A) Immunoblotting and quantification (normalized to loading control and the
indicated proteins) of liver lysates from the mice shown in Figure 4C (n = 3). (B) Immunoblotting and
quantification (normalized to loading control and the indicated proteins) of liver lysates from mice
(10 days after Otub1 KO; 2-month-old mice; n = 3) starved overnight (16 h) followed by intraperitoneal
insulin application (0.75 mU insulin/g) 15 min prior to tissue harvest. #animal, animal number. (A,B)
For pS6K, S6K, pERK1/2 and ERK1/2, both indicated immunoblot signals were quantified for the
depicted quantification results. Full-length immunoblots are shown in Figures S7 and S8.

The phosphorylation of ERK1/2, another component of the insulin signaling path-
way [33], was not altered in the liver under basal conditions (Figure 5A). In response to in-
sulin stimulation, ERK1/2 phosphorylation was increased in Otub1 iKO livers
(Figure 5B), indicating that the OTUB1-dependent regulation of insulin signaling was
either not confined to AKT or occurred upstream of the bifurcation point of both signal-
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ing cascades. The phosphorylation of ERK1/2 showed a tendency to be decreased in
Otub1 iKO mice hearts following insulin stimulation, supporting a tissue-specific effect of
OTUB1 on insulin-dependent signaling (Figure S6D). In summary, Otub1 deletion led to
increased insulin-dependent signaling under basal and stimulated conditions, which likely
contributed to the hypermetabolic phenotype.

3. Discussion

Our results demonstrate that the DUB OTUB1 is essential for the homeostasis of energy
metabolism and for the regulation of insulin-dependent signaling. Otub1−/− cells showed
increased ATP levels and decreased AMPK phosphorylation, which is in agreement with
our previous in vitro observation that OTUB1 overexpression elevates AMPK phosphoryla-
tion [18]. The here presented results suggest that OTUB1 defines a set-point for whole-body
glucose metabolism in mice, with Otub1 deletion leading to increased glucose utilization
and a hypermetabolic state.

In this study, tamoxifen was used to induce the deletion of Otub1. Tamoxifen had
previously been reported to transiently affect body weight, body composition and glucose
metabolism in mice; however, such investigations were generally performed within short
time frames after tamoxifen treatment (days to a few weeks) [34,35]. All of the here
described in vivo results (except the analysis of insulin-mediated signaling) were obtained
at least 2.5 months after tamoxifen treatment, at which time tamoxifen does not affect
murine metabolism any longer (if such an effect occurs) [35,36]. Moreover, the animals
in our investigations obtained tamoxifen via gavage and oral tamoxifen application does
not affect glucose metabolism [34]. In addition, the observed in vivo effect of tamo-xifen-
induced Otub1 deletion on cellular signaling was reproducible in cells in vitro, which
were never treated with tamoxifen (constitutive Otub1 deletion). Thus, the here described
alterations were not caused by tamoxifen treatment but by Otub1 deletion.

Otub1 iKO mice presented with an increased energy expenditure combined with a
tendency towards a higher body temperature. This can be explained by a simultaneous
increase in catabolic and anabolic metabolism and/or by mitochondrial uncoupling, which
had previously been reported for Hif1an KO mice [19]. Future investigations will therefore
need to analyze whether deletion of Otub1 affects protein levels of enzymes that are
involved in mitochondrial uncoupling, such as uncoupling proteins (UCPs). Furthermore,
ATP levels were increased in MEFs, indicating an increase in catabolic cellular energy
metabolism, which is in agreement with the observed increase in food intake in mice with
Otub1 deletion. Interestingly, the RER showed no difference, supporting an increased
utilization of the same nutrients through the same metabolic pathways in Otub1 iKO mice
compared to control.

Lack of Otub1 generally enhanced AKT signaling in MEF cells and in the investigated
organs. AKT signaling is known to affect cellular ATP levels and AMPK phosphoryla-
tion [31], and to regulate cell size [29,30]. In adult mice, increased AKT signaling leads to
decreased body weight and fat mass, increased oxygen consumption, improved glucose
clearance and insulin sensitivity as well as decreased serum insulin levels [37,38]. Therefore,
we conclude that OTUB1 is a negative regulator of basal and stimulated AKT signaling in
cells and tissues, and that an increased AKT signaling at least partially contributes to the
observed phenotypes in Otub1 iKO mice.

Following stimulation by IL-15, OTUB1 has been reported to directly regulate AKT
K63-linked ubiquitination in CD8+ T cells and NK cells, which is necessary for AKT
membrane recruitment and the subsequent phosphorylation of AKT [24]. However, it
remained unclear how exactly OTUB1 regulated IL-15-mediated AKT ubiquitination. It
has previously been reported that the E2 enzymes UBC13 and/or UBCH5c are necessary
for AKT ubiquitination following stimulation with insulin or epidermal growth factor
(EGF) [39,40]. Both E2s can be inhibited by OTUB1 [9,12]. Hence, OTUB1 may be a negative
regulator of insulin-dependent AKT ubiquitination by inhibiting UBC13 and/or UBCH5c.
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Interestingly, the protein WTG1/OsOTUB1, a homologue of mouse and human
OTUB1, regulates grain size and weight in rice [41–43]. This effect was linked to the
regulation of sucrose metabolism and starch biosynthesis [41], indicating that the regula-
tion of carbohydrate metabolism by OTUB1 was conserved during evolution.

We previously reported that the oxygen sensor FIH regulates cellular energy metabolism
through hydroxylation of OTUB1 [18]. Deletion of Hif1an in mice led to a metabolic phe-
notype, but the underlying molecular mechanisms remained to be elucidated [19]. Re-
markably, the reported phenotype of the Hif1an KO mice is virtually identical with our
observations in Otub1 iKO mice (decreased body weight gain, decreased fat mass, increased
insulin sensitivity, increased food and water intake, increased O2 consumption, CO2 pro-
duction and energy expenditure, a maintained RER, increased intracellular ATP levels,
decreased pAMPKα levels), leading to the hypothesis that OTUB1 is a physiologically
relevant target of FIH.

In summary, OTUB1 plays an essential role for the regulation of cellular and whole-
body energy metabolism, at least in part through the regulation of AKT activity and insulin
signaling. Our results highlight the physiological relevance of this DUB, indicate that
OTUB1 is a relevant target protein of FIH in vivo and suggest that OTUB1 may be a novel
therapeutic target for the treatment of type 2 diabetes, which needs to be investigated
further in the future.

4. Materials and Methods
4.1. Mice

To obtain mice with induced global Otub1 deletion, mice were obtained from the
EUCOMM consortium http://www.mousephenotype.org (accessed on 4 January 2022) [44]
via the EMMA repository https://www.infrafrontier.eu/ (accessed on 4 January 2022) and
provided by the Institut Clinique de la Souris, ICS, Illkirch, France) as well as from The
Jackson Laboratory (www.jax.org/, accessed on 4 January 2022), and crossed as previously
described [22]. For our analyses, female mice (littermates) were randomly selected and
gavaged with vehicle or 200 µg tamoxifen/g (Sigma-Aldrich, St. Louis, MO, USA) at
1.5 months of age (if not specified otherwise). Standard chow diet (Provimi Kliba, Gossau,
Switzerland) and water were provided ad libitum, with 12 h light/dark cycles at 21 ± 1 ◦C
under optimal hygienic conditions (OHC), unless indicated otherwise. For the assessment
of insulin-dependent signaling in vivo, 0.75 U/kg insulin were intraperitoneally injected,
following an overnight fasting period. Organs were harvested 15 min after injection and
proteins were extracted. Investigators were blinded during analysis of in vivo data. Animal
experiments were approved by the veterinary office of the canton Zurich, Switzerland (li-
cense numbers ZH035/16 [approved June 2016], ZH095/19 [approved December 2019]) and
all experiments were performed in accordance with the relevant guidelines and regulations.

4.2. Cell Culture

Mouse embryonic fibroblasts (MEFs) were isolated from wild-type (C57BL/6N, Charles
River, MA, USA) and Otub1−/− mice (obtained by crossing of heterozygous C57BL/6N-
Otub1tm1b(EUCOMM)Hmgu/H mice; purchased via the EMMA repository, from the EUCOMM
consortium) at day 12.5 of gestation. The Mary Lyon Centre at MRC Harwell (http:
//www.har.mrc.ac.uk, accessed on 4 January 2022; UK) provided Mouse Contract Services.
MEFs were kept in culture until they spontaneously immortalized. MEFs were maintained
in high-glucose DMEM containing 10% heat-inactivated fetal calf serum (FCS; Gibco by
Life Technologies, Carlsbad, CA, USA), 1% GlutaMAX (Gibco), 200 µM 2-mercaptoethanol
(Gibco), 100 µg/mL streptomycin and 100 U/mL penicillin (Sigma-Aldrich) in a humidified
atmosphere at 37 ◦C with 5% O2 and 5% CO2. For FCS deprivation, MEFs were grown in
DMEM as described above, but in the absence of FCS. For the reintroduction of FCS, the
medium was exchanged with the same DMEM, but including 10% FCS. For combined FCS
and amino acid deprivation, MEFs were kept in RPMI 1640 medium containing glucose
but no FCS or amino acids for 4 h. To reintroduce FCS, the medium was exchanged with

http://www.mousephenotype.org
https://www.infrafrontier.eu/
www.jax.org/
http://www.har.mrc.ac.uk
http://www.har.mrc.ac.uk
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RPMI 1640 containing 10% FCS and the cells were harvested at the indicated time points.
Cells were regularly tested for potential contamination with mycoplasma.

4.3. Protein Extraction

Lysis buffer for protein extraction contained 150 mM NaCl, 1 mM EDTA, 25 mM
Tris-HCl pH 8.0, 1% NP-40, 1 mM Na3VO4, 1 mM PMSF and 1 mM NaF. For lysis of cells,
protease inhibitor cocktail (Sigma-Aldrich) was included in the lysis buffer. For lysis of
tissue, 1 µg/mL pepstatin A, 1 µg/mL aprotinin and 1 µg/mL leupeptin were added to the
lysis buffer. A polytron homogenizer (VWR International, Amsterdam, The Netherlands)
was used to homogenize tissue samples. For the analysis of poly-ubiquitin chains, the
deubiquitinase inhibitor [45] N-ethylmaleimide (50 mM; Sigma-Aldrich) was added to the
lysis buffer. The BCA assay (Thermo Fisher Scientific, Waltham, MA, USA) was used to
determine protein concentrations.

4.4. ATP Assay

Intracellular ATP levels were measured with the CellTiter-Glo 2.0 Assay according
to the manufacturer’s description (Promega, Madison, WI, USA). Cells were lysed with
Passive Lysis Buffer (Promega) and diluted 1:100 in cell culture media. Samples were mixed
with equal amounts of CellTiter-Glo 2.0 reagent for 2 min on an orbital shaker followed by
additional 10 min of incubation at room temperature. Luminescence was determined in a
microplate luminometer (Berthold Technologies, Bad Wildbach, Germany) and normalized
to protein concentration determined by the Bradford method [46].

4.5. Immunoblot Analysis

Equal protein amounts were separated by SDS-PAGE and electro-transferred to nitro-
cellulose or polyvinylidene difluoride membranes. Specific proteins were detected using
the following antibodies: anti-OTUB1 (Cell Signaling, Danvers, MA, USA; 3783; 1:1000),
anti-p70 S6 kinase (Cell Signaling; CST9202; 1:1000), anti-phospho-p70 S6 kinase (Cell
Signaling; 9234; 1:1000), anti-DEPTOR (Novus Biologicals; nbp1-49674; 1:1000), anti-AKT
(pan; Cell Signaling; 2920; 1:1000), anti-phospho-Akt (Ser473; Cell Signaling; 4060; 1:1000),
anti-phospho-AKT (Thr308; Cell Signaling; 2965; 1:1000), anti-p44/42 MAPK (Erk1/2;
Cell Signaling, 4695), anti-phospho-p44/42 MAPK (Erk1/2; Thr202/Tyr204; Cell Signal-
ing; 4376), anti-AMPK (Cell Signaling; 2603; 1:1000), anti-phospho-AMPK (Thr172; Cell
Signaling; 2535; 1:1000), anti-poly-ubiquitin (clone P4D1; Cell Signaling; 3936; 1:1000),
anti-Lys48-linked poly-ubiquitin chains (Millipore, Darmstadt, Germany; 05-1307; 1:1000),
anti-Lys-63-linked poly-ubiquitin chains (Millipore; 05-1308; 1:1000), anti-β-actin (Sigma-
Aldrich; A5441; 1:5000), anti-α-tubulin (Cell Signaling; 2144; 1:1000), and horseradish
peroxidase (HRP)-coupled secondary antibodies (Thermo Fisher Scientific; 31,430, 31,460;
1:5000). Chemiluminescence was achieved with Supersignal West Dura (Thermo Fisher
Scientific) and detected with a CCD camera (LAS-4000; GE Healthcare, Chalfont, St. Giles,
UK) as described previously [47]. ImageQuant TL gel analysis software (GE Healthcare,
Version 8.1) was used for quantification.

4.6. Immunofluorescence

Cells were fixed in 4% paraformaldehyde (Sigma-Aldrich) for 20 min at room temper-
ature and permeabilized with 0.5% saponine (Sigma-Aldrich) in PBS. Following incubation
in 5% bovine serum albumin (BSA) with 0.1% saponine for 20 min at room temperature to
block unspecific protein–protein interactions, specific cellular proteins were detected using
anti-AKT (pan; Cell Signaling; 2920; 1:50), anti-phospho-AKT (Ser473; Cell Signaling; 4060;
1:400) and secondary antibodies coupled with Alexa Fluor 488 (Thermo Fisher Scientific;
A11001; 1:500) or Alexa Fluor 568 (Thermo Fisher Scientific; A11011; 1:500). DNA was
stained with DAPI (1 µg/mL; Sigma-Aldrich) for 20 min and cells were mounted in Mowiol
(Millipore) and DABCO (Sigma-Aldrich) medium. Fluorescence was recorded using an
Eclipse Ts2R microscope (Nikon, Amsterdam, The Netherlands).
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4.7. Liver Histology

Liver tissue was fixed in 4% formaldehyde for 24 h (Sigma-Aldrich) and deparaffi-
nated with xylene, followed by rehydration with decreasing ethanol concentrations. Tissue
sections (3–5 µm in thickness) were stained with periodic acid-Schiff (PAS). Lipidosis and
extramedullary hematopoiesis (EMH) were analyzed by a certified mouse pathologist
in a blinded manner (0, no abnormality; 1, minimal abnormality; 2, mild abnormality;
3, moderate abnormality; 4, severe abnormality; 5, very severe abnormality).

4.8. Intraperitoneal Glucose and Insulin Tolerance Tests

After fasting for 16 h over night, 2 mg of glucose/g (20% w/v; Braun, Hessen, Germany)
or 0.75 IU/kg insulin (Lilly Humalog, Indianapolis, IN, USA) were intraperito-neally
injected. Blood samples from the tip of the tail were analyzed after the indicated time
points using a StatStrip Xpress glucose meter (Nova Biomedical).

4.9. ELISAs

Basal insulin levels were determined in plasma taken from mice starved for 4 h during
the light cycle using an anti-insulin enzyme-linked immunosorbent assay (ELISA) follow-
ing the manufacturer’s description (Mercodia, Uppsala, Sweden). Thyroid-stimulating
hormone (TSH) plasma values were analyzed with an anti-TSH ELISA following the
manufacturer’s description (Cloud-clone Corporation, Katy, TX, USA). Absorbance was
determined with a microplate reader (Infinite 200 Pro, Tecan, Maennedorf, Switzerland).

4.10. Body Composition Analysis

An EchoMRI whole-body composition analyzer was used to analyze lean and fat
mass non-invasively according to the manufacturer’s instructions (Echo Medical systems,
Houston, TX, USA).

4.11. Indirect Calorimetry

Animals were single housed in acrylic glass airtight metabolic cages attached to an
open calorimetry system (TSE Systems, Bad Homburg, Germany). Food and water were
provided ad libitum. O2 consumption and CO2 production were measured during 3 days
and the average was calculated. Energy expenditure was calculated according to the Weir
equation and normalized to the corresponding lean mass + 0.2 times the fat mass, as
determined by body composition analysis by EchoMRI [48,49].

4.12. Food/Water Intake, Urine/Feces Production

Mice were single housed in metabolic cages with grid surfaces (Techniplast, Schw-
erzenbach, Switzerland) and food, water, urine, feces and BW were monitored every 24 h
for 72 h. Urine was collected under light mineral oil (Sigma-Aldrich) to avoid evaporation.

4.13. Statistical Analysis

Two-tailed Student’s t-test or Mann–Whitney test were applied for the analysis of two
different data points as indicated. Comparison of more than two data points were carried
out by two-way ANOVA followed by Bonferroni post-test.
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