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Abstract: Despite the use of intensive multimodality therapy, the majority of high-risk neuroblastoma
(NB) patients do not survive. Without significant improvements in delivery strategies, anticancer
agents used as a first-line treatment for high-risk tumors often fail to provide clinically meaningful
results in the settings of disseminated, recurrent, or refractory disease. By enhancing pharmacological
selectivity, favorably shifting biodistribution, strengthening tumor cell killing potency, and overcom-
ing drug resistance, nanocarrier-mediated delivery of topoisomerase I inhibitors of the camptothecin
family has the potential to dramatically improve treatment efficacy and minimize side effects. In this
study, a structurally enhanced camptothecin analog, SN22, reversibly coupled with a redox-silent
tocol derivative (tocopheryl oxamate) to allow its optimally stable encapsulation and controlled
release from PEGylated sub-100 nm nanoparticles (NP), exhibited strong NB cell growth inhibitory
activity, translating into rapid regression and durably suppressed regrowth of orthotopic, MYCN-
amplified NB tumors. The robust antitumor effects and markedly extended survival achieved in
preclinical models recapitulating different phases of high-risk disease (at diagnosis vs. at relapse with
an acquired loss of p53 function after intensive multiagent chemotherapy) demonstrate remarkable
potential of SN22 delivered in the form of a hydrolytically cleavable superhydrophobic prodrug
encapsulated in biodegradable nanocarriers as an experimental strategy for treating refractory solid
tumors in high-risk cancer patients.

Keywords: neuroblastoma; drug resistance; topoisomerase I inhibitor; SN22; high-risk disease;
nanoparticle; prodrug; mitocan; orthotopic xenograft model; bioluminescent imaging

1. Introduction

Neuroblastoma (NB), a neural crest-derived malignancy of the sympathetic nervous
system, is the most common and deadly extracranial solid tumor of childhood. It accounts
for 6–10% of all childhood cancers, and 12–15% of deaths from cancer in children [1].
Despite major improvements in the cure rates for other pediatric cancers, little progress
has been made in patients with aggressive forms of NB. Many high-risk patients have
advanced, metastatic tumors at diagnosis, and their disease often progresses relentlessly,
demonstrating no durable response to treatment. The intensive multimodality therapy
currently used in the clinic ultimately fails in over half of aggressive disease cases: 50–60%
experience a relapse with no curative rescue treatment options [2,3]. Amplification of the
MYCN oncogene encoding a transcription factor N-Myc is present in 18–20% of all NBs [4],
and is a high-risk feature predicting low chemosensitivity and poor therapeutic response [5].
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A MYCN-dependent oncogenic pathway plays a key role in promoting the aggressive,
intrinsically resistant disease phenotype [6], in part by modulating the expression of
ATP-binding cassette transporters driving active efflux of chemotherapeutics from tumor
cells [7]. Among other members of this exporter family representing downstream targets
of MYCN, ABCG2 is unique in its strong association with a cancer stem cell-enriched
tumor phenotype exhibiting inherently high resistance to chemotherapeutic agents [8].
While ABCG2 was demonstrated to be present in all NB cell subtypes [9], its increased
expression levels in NB tumors at diagnosis are an established adverse prognostic factor [10].
Susceptibility to ABCG2-driven efflux severely compromises the performance of different
classes of chemotherapeutics, including topoisomerase I inhibitors of the camptothecin
family clinically used as a first-line treatment for NB [11–14]. In this context, nanocarrier-
based delivery of SN22, a camptothecin analog protected from ABCG2-mediated export
and enzymatic inactivation, may offer a significant therapeutic benefit by combating drug
resistance in the MYCN-driven aggressive disease.

SN22 is a topoisomerase I inhibitor with potent anticancer activity demonstrated in
early preclinical studies [15–17]. However, due to its lack of solubility in standard delivery
vehicles, its hydroxylated analog (SN38), amenable to hydrophilic modifications, was
chosen as the starting material for making a water-soluble carbamate derivative, irinotecan,
later implemented clinically [17,18]. Irinotecan itself is pharmacologically inactive, and
its conversion to SN38 takes place primarily in the liver [19,20] through an enzymatic
process with low but variable rates, typically not exceeding 3–4% [21]. Besides poor
bioavailability due to inefficient recovery from the precursor, it was later discovered that the
10-hydroxy substituent introduced into the structure of SN38 increased its affinity toward
ABCG2 [11,22], likely contributing to the unremarkable results observed with irinotecan in
preclinical models of immature neuroblastoma with MYCN amplification [23,24] and to a
lack of efficacy when tested in children with aggressive disease [25]. More recently, a search
for camptothecin analogs not susceptible to this resistance mechanism led to a “rediscovery”
of SN22 as a specific topoisomerase I inhibitor with potency similar or greater than that of
SN38, yet two orders of magnitude less prone to ABCG2-mediated efflux [22,26,27].

Besides addressing the solubility issue and allowing its convenient dosing, SN22
formulation and delivery in biodegradable nanocarriers can markedly improve efficacy and
safety of its use by (i) enabling control over the drug biodistribution through adjustments in
the nanocarrier design, (ii) extending tumor tissue exposure to therapeutically effective drug
levels, and (iii) preventing rapid clearance and activity loss by protecting the chemically
labile cargo from premature degradation and allowing for its sustained release from the
carrier in the tumor tissue. Through improving selectivity and enhancing potency of
its tumor cell killing activity, the nanocarrier-mediated delivery of SN22 can potentially
achieve robust and lasting on-target effects at lower or less frequently administered doses,
thus further protecting healthy tissues from exposure to toxic drug levels.

NP designed for cancer pharmacotherapy should combine the ability to stably entrap
their cargo after administration [28] with a uniform and small (sub-100 nm) size in order
to maximize their accumulation in the tumor tissue [29]. However, precise control over
the drug release rate from carriers sized in the sub-100 nm range poses a challenge, as
the resultant increase in the surface area/volume ratio together with the high diffusivity
of a small-molecule payload with moderate lipophilicity, such as SN22, will cause rapid
drug escape after systemic administration [30]. Preventing premature drug dissociation
and stabilizing carrier-cargo association can be accomplished by encapsulating the drug
in the form of its hydrophobized precursor (prodrug) with a bulkier molecular structure,
as has been shown by our group and by others [31–34]. However, the rate of the prodrug
activation needs to be coordinated with the time scale of NP uptake and retention in order
to allow sustained tumor exposure to therapeutically effective levels of the drug in its
biologically active form.

In the present study, we designed and characterized hydrophobized prodrugs of SN22
coupled with bulky tocol promoieties via cleavable ester linkages with different hydrolytic
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labilities controlled through the “electron displacement effect” [35]. Reversibly hydropho-
bizing and increasing the size of molecular cargoes through pharmacophore conjugation
with tocol residues offers an effective tool for improving drug encapsulation stability. In par-
ticular, we have shown that this approach could be successfully applied to stably load SN38
derivatives in PEGylated sub-100 nm NP with polylactide (PLA) cores. In these studies,
the redox-silent and carboxylated tocols, tocopheryl succinate and tocopheryl oxyacetate, were
used to create hydrolytically activatable prodrugs demonstrating excellent compatibility
with the particle-forming polymer and good drug recovery yields when formulated in
small-sized NP made of PLA-PEG co-polymer [31,34]. However, whereas coupling SN38
with these moderately acidic tocol derivatives (pKa = 5.6 and 3.6 for tocopheryl succinate
and oxyacetate, respectively [36,37]) can provide phenolic ester prodrugs with adequate
activation rates, a similar approach cannot be directly applied to the SN22 lacking the
phenolic 10-hydroxy group present in SN38 [38]. Attaching these tocol carboxylates to C-20
on the E-ring of the camptothecin pharmacophore, the only site accessible for esterification
in SN22, is expected to provide aliphatic conjugates exhibiting much slower activation
kinetics, resulting in significantly reduced amounts of the regenerated bioactive drug [31].
We reasoned that the hydrolytic lability of the prodrug could be restored by using a pro-
moiety constructed with a structurally distinct tocol acid contributing a powerful electron
withdrawing effect of an α-carbonyl group positioned adjacent to the ester linkage.

Toward this goal, we designed a prodrug of SN22 reversibly hydrophobized using a
novel tocopheryl oxamate derivative (SN22-TOx) and evaluated the drug release kinetics,
disassembly rate, and the in vitro NB cell growth inhibitory activity of its nanoparticulate
formulation. To elucidate the role of the TOx-based prodrug design, these properties were
examined in comparison to a structural analog, where SN22 was coupled with tocopheryl
oxyacetate as a hydrophobizing promoiety (SN22-TOA). In another series of experiments,
we investigated the therapeutic efficacy of the NP-encapsulated SN22-TOx, NP[SN22-TOx],
in the settings of MYCN-amplified disease, comparing the magnitude and longevity of
responses in preclinical models of newly diagnosed and relapsed, multidrug-resistant
NB featuring an acquired loss-of-function mutation in the tumor suppressor protein p53.
Learning about the impact of the prodrug design on the tumor cell killing activity of na-
noencapsulated SN22 and experimentally demonstrating its effectiveness in animal models
that are faithfully reproducing key histological and pathological features of aggressive
human disease is expected to inform the further development and implementation of an
NP/prodrug-based delivery as a clinically viable approach for treating refractory NB and
other aggressive solid tumors.

2. Results

Tocol-linked prodrugs, SN22-TOx and SN22-TOA (structures shown in Figure 1),
were produced by the direct coupling of SN22 to respective tocol acids with 63% and 95%
yields, respectively. The predicted organophilicities of both compounds (LogPoctanol/water
of 9.7 and 9.9, calculated as described in [39]) by far exceed that of the parent SN22 (3.6),
allowing their encapsulation in sub-100 nm sized PEGylated NP using a modification of
the nanoprecipitation method [40,41]. NP formulations of the structurally analogous and
similarly organophilic SN22-TOx and SN22-TOA exhibited comparably high entrapment
efficiencies (90–95%, corresponding to a loading of 16–17% w/w) and a uniform size in
the 70–85 nm range (Figure 1A). At the same time, a remarkable difference was observed
between their release profiles: after a negligible burst release in the first hour (Figure 1B),
the dissociation of SN22 encapsulated, as the rapidly activatable TOx conjugate occurred
at a significantly faster rate than that of the less hydrolytically labile TOA-linked prodrug
(8.0 ± 0.2% vs. 2.4 ± 0.4% after 96 h, p < 0.0001). Remarkably, we observed that, unlike
SN22-TOA, which remained largely chemically intact upon the release from NP (76 ± 2%
present in the prodrug form), the release medium samples collected from NP[SN22-TOx]
contained a significantly more sizeable fraction of regenerated SN22 (43 ± 1%).
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Figure 1. Schematically shown molecular design of SN22-tocol prodrugs with varying hydrolytic
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For disassembly kinetics studies, we produced sets of prodrug-loaded NP labeled with
the spectrally complementary fluorophores, BODIPY558/568 (donor) and BODIPY650/665-X
(acceptor), either singly or in combination. NP disintegration in serum was monitored in
situ using a quantitative assay based on Förster Resonance Energy Transfer (FRET). To
model fluorescence patterns at different stages of NP disassembly, we mixed dually and
singly labeled NP at different ratios, with 100% dual-labeled NP representing the initial
state of full integrity, and a 1:1 mixture of NP singly labeled with the donor or acceptor
BODIPY probe simulating the end result of the disintegration process with complete sepa-
ration of the fluorophores. Similar changes in the emission spectra reflecting progressively
declining energy transfer within the donor–acceptor pair and an increase in the donor
fluorophore emission at 575 nm upon simulated fluorophore separation were observed
regardless of the prodrug design (Figure 2A,B). Accordingly, the scale of these changes,
expressed as NFRET [42], was similar for both formulations and ranged from 0.40 ± 0.05 to
0.04 ± 0.02 for simulated NP disassembly degrees of 0% and 100%, respectively (Figure 2C).
When this correlation was applied to examine disassembly of the two formulations upon
incubation with serum, the prodrug-loaded NP revealed highly dissimilar kinetic patterns
that paralleled their different drug release rates: consistent with the faster release of its
cargo, the NP[SN22-TOx] formulation also exhibited a relatively high and steady rate of
disassembly of ca. 2.9 ± 0.3% per day (p < 0.001, Figure 2D). In contrast, NP formulated
with SN22-TOA remained initially intact showing no significant disintegration over the
first 2 weeks, but quickly caught up over the next 10 days (6.9 ± 0.6% disassembly per day,
p = 0.007). By day 23, both formulations showed a similar magnitude of integrity loss, with
75 ± 3% and 68 ± 12% disassembly determined for NP[SN22-TOx] and NP[SN22-TOA],
respectively, at this time point.
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Figure 2. Spectral properties of NP/prodrug formulations and Förster Resonance Energy Transfer
studies of NP disassembly. Changes in emission spectra (A,B) and NFRET (C) as a function of the NP
integrity status were simulated by combining NP co-labeled with donor and acceptor fluorophores
with a 1:1 mixture of singly labeled NP at ratios representing respective disintegration levels. Disas-
sembly of NP/prodrug formulations was monitored fluorimetrically in fetal bovine serum at 37 ◦C
(D) based on energy transfer efficiency measurements and the NFRET/NP integrity status correlation
shown in (C). Data in (C,D) are presented as mean ± SD.

Consistent with their distinct release and activation rates, the prodrugs formulated in
NP exhibited different NB cell growth inhibitory efficiencies: the proliferation of highly
malignant, MYCN-amplified NB cells derived at diagnosis (IMR-32 [43]) was fully inhibited
over 7 days following a 24-h exposure to NP[SN22-TOx] at a low dose equivalent to 5 ng
SN22 per well, with potency similar to that of free SN22. In contrast, NP[SN22-TOA]
had only a limited tumor cell growth inhibitory effect under these conditions (Figure 3A).
Furthermore, whereas the NB cell killing activity of NP-encapsulated SN22-TOx was highly
robust at all tested concentrations, even at the shortest exposure of 30 min, the less rapidly
activatable SN22-TOA required 24 h of continuous exposure to drug concentrations greater
than 10 ng SN22 per well (>265 nM) in order to durably suppress the growth of IMR-32
cells (Figure 3B).

Therapeutic efficacy of SN22 encapsulated in NP, as the tocopheryl oxamate-linked
prodrug, was next tested in an orthotopic model of the MYCN-amplified, newly diagnosed
disease established using IMR-32 cells stably expressing luciferase. The tumor-associated
signal rapidly decreased in animals receiving either a single dose or five weekly doses of
systemically administered NP[SN22-TOx] and remained uniformly below the detection
threshold up to 8 and 20 weeks after treatment cessation, respectively (Figure 4). While
a markedly extended survival was observed after a single dose of the NP-encapsulated
prodrug corresponding to 10 mg SN22 per kg, all mice treated weekly over 5 weeks
survived beyond 25 weeks without exhibiting any adverse effects, confirming that local
levels of the bioactive SN22 sufficient for shrinking and durably suppressing regrowth of
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chemo-naïve MYCN-amplified tumors can be maintained with NP-encapsulated SN22-TOx
without causing significant systemic toxicity.
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Figure 3. In vitro growth inhibition studies in cultured MYCN-amplified neuroblastoma (IMR-32)
cells. The effect of NP loaded with SN22 prodrugs (5 ng/well, 24-h exposure) is shown in comparison
to ‘no treatment’ or free SN22 and blank NP controls applied to cells at equivalent doses (A). The
effect of prodrug-loaded NP on IMR-32 cell growth measured at 6 days post-treatment is shown as a
function of the drug dose and exposure duration in comparison to blank NP (B). Data are presented
as mean ± SD.
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Figure 4. Therapeutic efficacy of the NP-encapsulated SN22-tocopheryl oxamate prodrug in an
orthotopic xenograft model of the MYCN-amplified, newly diagnosed NB. Mice bearing xenografts
established using luciferase-expressing IMR-32 cells were administered with one of five weekly NP
doses equivalent to 10 mg SN22 per kg. Tumor growth was continuously monitored by biolumi-
nescent imaging over the course of treatment and after treatment cessation. Data are presented as
mean ± SD.

The response of chemo-naïve IMR-32 cells to SN22 was compared to that of the BE(2)C
cell line, which originates from a MYCN-amplified NB tumor with a loss-of-function
mutation in p53 acquired after a non-curative treatment [44]. Whereas IMR-32 cells were
highly sensitive to SN22 at all tested exposure durations (30 min, 4 h and 24 h) with
>75% growth inhibition at drug concentrations within the examined 20–100 nM range,
BE(2)C cells retained up to 50% of their viability after a 30-min exposure to 40 nM of SN22
(Figure 5B vs. Figure 5A). Four and 24 h of exposure to the drug were required to achieve
lasting BE(2)C cell growth inhibition greater than 75% and 90%, respectively.
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Figure 5. The growth inhibitory effect of SN22 on IMR-32 (A) and BE(2)C (B) MYCN-amplified
NB cells derived pre-therapy and at relapse shown at 6 days post-treatment as a function of drug
concentration and exposure duration. Cell growth was monitored by bioluminescence using untreated
cells as a reference. The weaker response of the BE(2)C cell line in comparison to the chemo-naïve
IMR-32 cells reflects a loss of chemosensitivity due to a mutation in the tumor suppressor protein p53
acquired following a course of intensive chemoradiotherapy. Data are presented as mean ± SD.

In agreement with the highly chemoresistant phenotype of the BE(2)C cell line [45],
irinotecan administered twice a week at 15 mg/kg was ineffective at inhibiting the growth
of BE(2)C xenografts, with all animals reaching the endpoint within less than 5 weeks
(Figure 6A,B). In contrast, NP[SN22-TOx] administered weekly over four weeks caused
rapid regression of the BE(2)C orthotopic xenografts and markedly reduced the rate of
tumor regrowth, extending survival of most animals in this group beyond 26 weeks after
the treatment initiation (Figure 6).
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Figure 6. Tumor regression and survival extension in an orthotopic xenograft model of recurrent
MYCN-amplified NB with acquired chemoresistance in response to the SN22-tocopheryl oxamate
prodrug formulated in sub-100 nm PLA-PEG-based NP. Mice orthotopically inoculated with using
luciferase-expressing BE(2)C cells were administered with four weekly doses of the NP/prodrug
formulation equivalent to 10 mg SN22 per kg, and irinotecan administered twice a week at the equiv-
alent dose (15 mg/kg) was included as a control (5 animals per group). Tumor growth quantitatively
determined by bioluminescent imaging (A) is shown until the elimination of the first animal in the
cohort. Event-free survival was monitored as another therapeutically relevant endpoint (B). Data in
(A) Ftabare presented as mean ± SD.

3. Discussion

NB, with its highly diverse etiology and prevalence of genetically unfavorable variants,
poses a need for more efficient treatment strategies, as the intensive, multimodality therapy
currently used in the clinic fails to eradicate the disease in over half of high-risk patients [2,3].
Potent, broad-spectrum therapeutics, such as topoisomerase I inhibitors of the camptothecin
family currently used in the clinic as a first-line treatment [46], continue to yield poor results
in patients with high-risk NB due to rapid clearance, non-specific biodistribution leading
to dose-limiting adverse effects [19,20,47], and drug resistance acquired in the course of
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treatment [8,11]. In relapsed or refractory NB patients, treatment failure was shown to be
associated with an increase in threshold drug levels required for effectively suppressing
NB cell growth by 1–3 orders of magnitude, reaching values not achievable clinically [48].
Thus, to combat high-risk NB, there is a need for alternative delivery approaches that
will enhance tumor localization of a drug and maintain its therapeutically effective levels
without increasing systemic exposure, while sensitizing the tumor to the pharmacological
effect by suppressing chemoresistance. Our study demonstrates that these requirements can
be addressed with NP-mediated delivery of a structurally optimized camptothecin analog,
SN22, formulated as a hydrolytically activatable tocopheryl oxamate-linked prodrug.

The tocopheryl oxamate, used here to form a hydrophobic precursor of SN22 suit-
able for encapsulation in PLA-based NP, is structurally related to a group of redox-silent
tocol derivatives (mitocans) previously shown to enhance antitumor effects of different
types of chemotherapeutics in vitro and in vivo [49–52] and to exert strong cytotoxic ac-
tivity on poorly differentiated NB cells [51]. The most extensively studied examples of
mitocans, tocopheryl succinate and tocopheryl oxyacetate, are carboxylated derivatives of the
highly organophilic α-tocopherol [53–55]. When incorporated as promoieties in a prodrug
molecule, they strengthen the carrier–cargo association by increasing hydrophobicity of
the construct to levels sufficient for its stable entrapment in parenterally administered
formulations [56]. The choice of the tocol acid is a key element in construction of such
in situ activatable prodrugs, as it controls the rate of the ester bond cleavage [35,57] and
thus can be used to maximize drug recovery within the target tissue. Although providing
a comparable degree of hydrophobization, tocopheryl oxamate is distinct in being an
α-carbonyl derivative. This feature allows it to outbalance the relative deficit in the electron-
withdrawing effect when coupled with the aliphatic alcohol, SN22, providing otherwise
unachievable high rates of prodrug activation. Remarkably, our results suggest that the pro-
cess of SN22-TOx cleavage may take place concomitantly with dissociation from the carrier
and accelerate the release of the payload by breaking the superhydrophobic conjugate into
moderately hydrophobic fragments (tocopheryl oxamate and activated SN22), exhibiting
significantly lower affinities toward the particle-forming polymer. The faster release of the
cargo, making the particle core more accessible to water can, in turn, contribute toward the
earlier initiation of the carrier disassembly observed with NP[SN22-TOx]. It is, therefore,
likely that payload release from this formulation initially dominated by prodrug cleavage,
both promotes and is itself accelerated by the particle matrix decomposition process at
later times. This is in contrast to the release of the SN22-TOA rate-limited by the slow
diffusion of the uncleaved, superhydrophobic conjugate from intact NP that fully retain
their integrity over several days. Thus, the rapidly activatable design of SN22-TOx appears
to play a key role by maximizing the recovery of the active SN22 and controlling the drug
release from the nanoparticulate formulation.

The importance of the rapidly activatable prodrug construction is evident from the
robust killing effect of NP[SN22-TOx] on cultured IMR-32 cells, translating in vivo into
rapid regression of IMR-32 orthotopic xenografts and markedly extended survival after five
weeks of treatment with the NP/prodrug formulation at a low, non-toxic drug dose. The
profound and lasting antitumor effects on IMR-32 cells and xenografts observed with SN22
in our study are in agreement with the relatively high chemosensitivity of MYCN-amplified
NB cells derived pre-therapy [45,58]. However, a combination of MYCN amplification with
acquired drug resistance in recurrent NB tumors results in a major shift in responsiveness
to several families of chemotherapeutics, including topoisomerase I inhibitors [44,48]. Our
in vitro results demonstrate a similar difference in sensitivity toward SN22 between chemo-
naïve IMR-32 cells derived at diagnosis and the BE(2)C cell line originating from a NB
tumor recurring after intensive multiagent chemotherapy. It is, therefore, remarkable, that
the NP[SN22-TOx] administered in four weekly doses to mice bearing orthotopic BE(2)C
xenografts achieved rapid regression of the disease and durably suppressed regrowth
of the refractory tumors, showing only a marginal response to irinotecan. Notably, the
lasting antitumor effects and long-term survival were achieved in this model of recurrent,
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multidrug-resistant NB integrating several high-risk features (MYCN amplification and an
acquired loss of p53 function) with low drug doses administered once a week and causing
no adverse effects during and after the treatment period.

Tocol mitocans have previously been demonstrated to sensitize NB cells to chemother-
apeutics by several mechanisms [49,51], including potent inhibition of MYCN expression
driving the aggressive clinical behavior and poor therapeutic response in high-risk dis-
ease [59]. Thus, applied in combination with other anticancer agents, they can help achieve
stronger and more durable response in the settings of MYCN-driven high-risk disease.
The new redox-silent tocol derivative, tocopheryl oxamate, employed in our study as an
element of the prodrug design enabling efficient encapsulation of SN22 and its controlled
release from systemically given biodegradable NP, also possesses the defining chemical
characteristics of a mitocan [50,60]. Therefore, the likely possibility that TOx and SN22,
synchronously regenerated from the common molecular precursor, SN22-TOx, act coop-
eratively toward greater antitumor effects, warrants further investigation. In summary,
the results of the present study demonstrate feasibility and remarkable efficiency of the
NP/prodrug delivery strategy applied to the structurally optimized camptothecin analog
SN22. Rapid tumor regression and the long-term survival demonstrated in clinically rele-
vant models of pre-therapy and relapsed forms of MYCN-amplified disease highlight the
potential of NP-encapsulated SN22-TOx as a safe and efficient therapy for high-risk NB
and other aggressive solid tumors.

4. Materials and Methods
4.1. Prodrug Synthesis

To make SN22-TOx, N-(2-D-α-tocopheryloxy)ethyloxamic acid was first prepared
in an overall yield of 79% from D-α-tocopherol treated with tetrabutylammonium hy-
droxide and reacted with bromoacetonitrile in 1-methyl-2-pyrrolidone. The resulting
D-α-tocopheryloxyacetonitrile was then reduced to 2-(D-α-tocopheryloxy)ethylamine with
lithium aluminium hydride in ethyl ether. The amine was acylated with methyl chlorooxoac-
etate, forming methyl N-(2-D-α-tocopheryloxy)ethyloxamate, which was subsequently
hydrolyzed with water/potassium carbonate to form N-(2-D-α-tocopheryloxy)ethyloxamic
acid. Conjugation of this acid to SN22 was carried out by direct coupling in dichloromethane
as a solvent, induced by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride
(EDC) and catalyzed by 4-dimethylaminopyridine tosylate (DPTS). The structure and purity
of the conjugate were confirmed by 1H NMR and TLC (yield: 63%).

SN22-TOA was obtained by acylating SN22 with D-α-tocopheryloxyacetic acid and
prepared as previously described [36]. Conjugation was carried out using EDC as a
promoter and DPTS as a catalyst. The structure and purity were confirmed by 1H NMR
and TLC (yield: 95%).

4.2. NP[Prodrug] Formulation and Characterization

The prodrug-loaded NP was formulated using a previously reported method adapted
for producing uniformly sized, sub-100 nm nanocarriers [16,50]. In brief, 20 mg of Pluronic
F-68, 20 mg of the SN22 prodrug constructs, and a total of 100 mg of the particle-forming
polymer (poly(D,L-lactide)-b-poly(ethylene glycol) with methoxy-terminated poly(ethylene
glycol) block, 5000:5000, polydispersity: 1.12, purchased from JenKem Technology USA,
Plano, TX, USA) were dissolved in 20 mL of an ethanol/acetone 1:1 mixture. The obtained
organic solution was added with stirring to 50 mL of deionized water. The solvents and
excess water were removed under gradually reduced pressure. Glucose and hydroxypropyl-
β-cyclodextrin (5% w/v each) were added to adjust tonicity and as cryoprotectants. NP
were sterilized by passing through a 0.2 µm membrane (Minisart, Sartorius, Bohemia,
NY, USA), lyophilized, stored at −80 ◦C and reconstituted in deionized water before
use. Entrapment yields were determined spectrophotometrically after extraction in sec-
butanol [16] from baseline-adjusted signals as follows: OD370 − (OD410 + OD330)/2, where
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OD represents absorbance at an indicated wavelength. NP size was measured by dynamic
light scattering and expressed as intensity.

NP disassembly rates were determined using a previously reported in situ approach based
on changes in FRET between two spectrally complementary fluorophores initially co-localized
in the particle matrix [61]. NP disintegration increases the distance between labeled polymer
fragments, thereby reducing the energy transfer efficiency between the donor and acceptor
probes (BODIPY558/568 and BODIPY650/665-X, respectively). This separation results in readily
quantifiable changes in normalized FRET efficiency (NFRET), a validated parameter developed
for global FRET analysis [42,62]. NFRET was calculated as previously reported [61,62] from
NP[don/acc] emission intensities at λex/λem = 540 nm/640 nm, λex/λem = 540 nm/575 nm and
λex/λem = 590 nm/640 nm (Idon/acc

540/640, Idon/acc
540/575, and Idon/acc

590/640, respectively) using singly labeled
NP to obtain channel bleed-through coefficients (Idon

540/640/Idon
540/575 and Iacc

540/640/Iacc
590/640 ratios

measured for PLA-BODIPY558/568- and PLA-BODIPY650/665-X-labeled NP, respectively) shown
as a and b in the equation below:

NFRET =
Idon/acc
540/640 − Idon/acc

540/575 × a − Idon/acc
590/640 × b√

Idon/acc
540/575 × Idon/acc

590/640

(1)

For NP disassembly studies, NP/prodrug formulations were prepared as above with
the inclusion of fluorescently labeled polylactide conjugates (PLA-BODIPY558/568 and
PLA-BODIPY650/665-X [61]), 2 mg each, within the total of 100 mg of the particle-forming
polymer. Singly labeled particles applied as channel bleed-through controls were prepared
with omission of one of the PLA-BODIPY conjugates.

A correlation between NFRET and NP disassembly was first established for each
NP/prodrug formulation by combining co-labeled NP with increasing ratios of a 1:1 mix-
ture of singly labeled NP to model progressive dissociation of the FRET pair-forming
fluorophores. This correlation was then applied to calculate the integrity status of prodrug-
loaded NP incubated in fetal bovine serum (FBS) at 37 ◦C, based on NFRET values obtained
in situ at predetermined time points.

Release kinetics were measured under perfect sink conditions using an external sink
method [41,63]. Prodrug-loaded NP were incubated with a chemically inert and water-
immiscible acceptor medium (methyl tert-butyl ether and n-heptane, 1:1 v/v) and the release
rates were determined spectrophotometrically by monitoring baseline-adjusted signals
[OD360 − (OD410 + OD310)/2] in acceptor medium samples withdrawn at predetermined
time points. Acceptor medium samples were additionally analyzed by TLC/densitometry
for the presence of regenerated SN22.

4.3. Cell Culture Studies

The effect of prodrug-loaded NP and free SN22 on NB cell viability and growth was
measured longitudinally as a function of drug concentration and exposure duration using
firefly luciferase-expressing, MYCN-amplified cell lines, as previously reported [45]. IMR-
32 and SK-N-BE(2)C cells purchased from the American Type Culture Collection (Manassas,
VA, USA) were seeded at ~3500 cells/well on day −1 on 96-well plates using DMEM or
DMEM/F-12 (1:1) supplemented with 10% FBS as the medium for the respective cell lines.
At indicated times, cells were carefully washed, and their incubation was continued in
fresh medium containing D-luciferin potassium salt (PerkinElmer, Bridgeville, PA, USA) as
a substrate (50 µg/mL). Cell bioluminescence was measured daily, and % growth inhibition
was calculated and plotted at 6 days post treatment for different drug doses and exposure
intervals using untreated cells as a reference.

4.4. Therapeutic Efficacy Studies in Preclinical Models of High-Risk NB

Animal studies were performed in accordance with protocols approved by the In-
stitutional Animal Care and Use Committee of the Children’s Hospital of Philadelphia
(IAC 20-001140). For orthotopic inoculation, one million of luciferase-expressing IMR-32
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or BE(2)C cells suspended in 20 µL of Cultrex Basement Membrane Extract (Trevigen,
Gaithersburg, MD, USA) were implanted into the adipose tissue surrounding the adrenal
capsule of athymic nude (nu/nu) mice [64]. Tumor burden was monitored by biolumines-
cent imaging using a Xenogen IVIS Imaging System (Caliper Life Sciences, Hopkinton,
MA, USA). Tumor-bearing animals were intravenously administered with an indicated
number of weekly doses of NP[SN22-TOx], corresponding to 10 mg SN22 per kg. Control
animals were injected either with saline or with irinotecan (15 mg/kg, 2 × week). The
tumor size and body weights of all animals were regularly checked, and changes in tumor-
associated bioluminescent signal over time were used to compare tumor progression rates
and therapeutic responses.

4.5. Statistical Analysis

Release and cell growth data were compared by regression analysis. Experimental
data are expressed as mean ± standard deviation. Differences were termed significant at
p < 0.05.
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