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Abstract: Plants are always exposed to the environment, polluted by multiple trace elements. Hydro-
gen sulfide (H2S), an endogenous gaseous transmitter in plant cells, can help plant combat single
elements with excess concentration. Until now, little has been known about the regulatory role of
H2S in response to combined stress of multiple elements. Here we found that combined exposure
of mercury (Hg) and selenium (Se) triggered endogenous H2S signal in the roots of Brasscia rapa.
However, neither Hg nor Se alone worked on it. In roots upon Hg + Se exposure, the defensive role
of endogenous H2S was associated to the decrease in reactive oxygen species (ROS) level, followed
by alleviating cell death and recovering root growth. Such findings extend our knowledge of plant
H2S in response to multiple stress conditions.
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1. Introduction

Heavy metal pollution poses a threat to biological systems, which is a serious problem
worldwide. Heavy metal exposure impacts plant growth and development [1]. Hg (mer-
cury) is one of the toxic metals even at low levels. Hg content increases continuously in the
environment because of natural release and anthropogenic activities. The average content
of soil Hg is 1.1 mg/kg worldwide. The polluted soils contain Hg at various levels even
more than 10 mg/kg or higher [2]. Hg2+ is the most toxic form of Hg. Hg2+ can be readily
taken up by plants to induce phytotoxicity. In hydroponic studies, plants exposed to levels
of Hg2+ (even at 1–5 µM) begin to exhibit toxic symptoms [3,4]. Hg-induced phytotoxicity
is associated with the accumulation of ROS (reactive oxygen species), followed by oxidative
stress, physiological disturbance, and cell death [3,5]. ROS accumulation is considered as
bio-indicator of Hg-induced phytotoxicity [4].

Se (selenium) is a beneficial micronutrient for plant growth. Se at proper concentra-
tions, e.g., 0.5–6.0 mg/L SeO3

2− (about 3.9–47 µM Se) can rescue plant from the toxicity of
heavy metals including Hg [6]. However, Se application with excess concentration shows
synergistic toxic effect with Hg [7]. Excessive Se is an emerging environmental problem [8].
Se and Hg frequently coexist in the environment [9]. Our previous study also found syner-
gistic toxic effect of Se and Hg on Brassica rapa, showing enhanced ROS accumulation and
aggravated growth inhibition as compared to Se or Hg alone [10]. However, we still rarely
know the plant signaling regulation in response to Hg + Se combined stress.

H2S (hydrogen sulfide) is an endogenous signaling molecule in plant cells. H2S can
be generated during sulfate assimilation. DES (L-cysteine desulfhydrase, EC4.4.1.1) is
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considered to be the main enzyme to produce H2S, regulating various plant physiological
processes [11]. H2S plays important roles in the modulation of plant development and
stress responses [12]. Few studies focus on the function of H2S in plants upon multiple
stress conditions at the same time. H2S regulates plant tolerance against heavy metal
stress, such as Cd (cadmium) [13], Al (aluminum) [14], Cr (chromium) [15], Pb (lead) [16],
and Hg [17], etc. These reports suggest that H2S protects plants from metal toxicity by
alleviating oxidative injury. We previously found that H2S was essential for plant combating
excessive Se stress [18]. However, whether and how endogenous H2S regulates plant
response upon Se + Hg combination remains elusive.

In this study, we identified the intensified H2S signaling in the root of B. rapa under
Hg + Se stress conditions. The results not only help reveal plant signaling regulation of
synergistic toxicity of Hg and Se, but also extend our knowledge of H2S in plant cells in
response to multiple stress conditions.

2. Results and Discussion

The roots of B. rapa were exposed to HgCl2 (mercury chloride) (1 µM), Na2SeO3
(sodium selenite) (4 µM), or their combination for 3 days. Treatment with Hg alone slightly
inhibited root growth (Figure 1A). This confirms the phytotoxic effect of Hg even at low
levels [19]. Se induces phytotoxicity only at high concentrations [20]. Here we found that
treatment with Se alone failed to affect root growth (Figure 1A), suggesting that Se at 4 µM
was safe for the growth of B. rapa seedlings. However, simultaneous treatment with Hg
and Se resulted in remarkable decrease in root length by 48.2% as compared to the control
(Figure 1A). Since Hg + Se, but not Hg or Se alone, impacted root growth, we further
performed time-course experiment to monitor root length upon Hg + Se exposure. Root
growth was significantly inhibited after treatment with Hg + Se for 6 h. Then root growth
speed declined with prolonged Hg + Se treatment (Figure 1B). Either Hg or Se was relative
safe for the growth of B. rapa (Hg showed slight toxicity), but Hg + Se induced severe
phytotoxicity. Treatment with Hg and Se together may overwhelm toxic threshold of single
element, which further impacting plant growth. Therefore, Se showed synergistic but not
antagonistic effect on Hg stress.
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Figure 1. Hg + Se inhibited root growth of B. rapa seedlings. (A) The effect of Se, Hg, or Se + Hg on
root length. Different lowercase letters indicated significant difference among different treatments
(one-way analysis of variance, ANOVA; n = 10; p < 0.05). (B) Time-course monitoring of root length
upon Se + Hg treatment. Asterisk indicated significant difference between control and Se + Hg
(ANOVA; n = 10; p < 0.05).

The elongation of root tip determines root growth in response to environmental
stress [21]. H2S plays defensive roles in plants against environmental stress [12]. To
study the response of H2S in root tip, we used specific probe WSP-1 (3′-methoxy-3-oxo-
3H-spiro[isobenzofuran-1, 9′-xanthen]-6′-yl 2-(pyridin-2-yldisulfanyl)benzoate) to label
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endogenous H2S in situ. Neither Hg nor Se treatment alone affected endogenous H2S level
in root tip (Figure 2). Hg + Se treatment enhanced endogenous H2S remarkably (Figure 2A).
WSP-1 fluorescent density increased significantly by 7.71 fold in root tip upon Hg + Se as
compared to control (Figure 2B). The changing pattern of endogenous H2S was associated
with root growth inhibition upon stress conditions. Endogenous H2S were stimulated
by Hg + Se (inhibiting growth remarkably), but not Hg or Se alone (without remarkable
growth inhibition) (Figures 1A and 2B). The increase in endogenous H2S level has been
found in plant cells in response to growth-inhibited stimuli, such as salinity [22], cadmium
(Cd) [23], and chromium (Cr) [24]. Thus, the roots of B. rapa may enhance endogenous H2S
to sense Hg + Se stress.
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Figure 2. Hg + Se enhanced endogenous H2S level in the root tip of B. rapa seedlings. (A) Endogenous
H2S in root tip was indicated by WSP-1 fluorescence. (B) Calculated relative WSP-1 fluorescent density
in root tips. Different lowercase letters indicated significant difference among different treatments
(ANOVA; n = 3; p < 0.05).

Stress-induced endogenous H2S production is involved in plant tolerance against
abiotic stress [25,26]. Intensified endogenous H2S signal help sweet potato seedlings
against osmotic stress [27]. To further confirm the defensive role of H2S upon Hg + Se
stress, we applied pharmacological experiments to alter endogenous H2S level in roots.
Roots were pretreated with H2S donor NaHS (sodium hydrosulfide) for 6 h followed by
Hg + Se exposure. Applying NaHS promoted root growth under Hg + Se stress in a dose-
dependent manner, with maximal effect occurring at 2 mM NaHS (Figure 3A). Pretreat-
ment with H2S scavenger HT (hypotaurine) or DES inhibitor PAG (DL-propargylglicine)
aggravated growth retardation upon Hg + Se stress (Figure 3B,C). In addition, HT (4 µM)
or PAG (0.5 µM) counteracted the promoting effect of NaHS (2 mM) on root growth
upon Hg + Se stress (Figure 3D). In situ fluorescent detection showed that NaHS further
enhanced endogenous H2S level in root tip treated with Hg + Se, an effect reversed by
adding HT or PAG (Figure 3E,F). Hg + Se exposure increased root endogenous H2S, but
it was not sufficient to help plants combat stress condition. Further enhancing endoge-
nous H2S recovered root growth from subsequent Hg + Se stress. An adverse effect
was found by decreasing endogenous H2S through either scavenging already generated
H2S or impairing H2S biosynthesis. These results suggested a protective role of plant
endogenous H2S against Hg + Se stress.
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ROS can cause irreversible cell death in plants in response to stress [30]. Root tip cell 
death indicated by PI (propidium iodide) showed similar changing pattern to ROS under 
same treatment conditions (Figure 4C,D), suggesting that enhancing endogenous H2S at-
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Figure 3. Endogenous H2S is involved in recovering root growth of B. rapa seedlings under Hg + Se
stress. (A) Effect of pretreatment with NaHS on root growth under Hg + Se stress. (B) Effect of
pretreatment with HT on root growth under Hg + Se stress. (C) Effect of pretreatment with PAG
on root growth under Hg + Se stress. (D) Effect of combined pretreatment of NaHS, HT, and PAG
on root growth under Hg + Se stress. € Effect of combined pretreatment of NaHS, HT, and PAG on
endogenous H2S level indicated by WSP-1 fluorescence in root tips. (F) Calculated relative WSP-1
fluorescent density in root tips with respect € (E). Different lowercase letters in (A–D,F) indicated
significant difference among different treatments (ANOVA; n = 10 or 3; p < 0.05).

The next step was to study how endogenous H2S help plants detoxify Hg + Se. Our
previous study found that Hg + Se induced more severe oxidative injury than that of
Hg or Se alone in B. rapa [10]. We studied the effect of altering endogenous H2S on
oxidative injury in roots upon Hg + Se stress. Plant development needs to maintain
the homeostasis of ROS at proper levels as it is an important signaling molecule. ROS
overaccumulation is harmful to plants [28]. Total ROS in root tip were detected in vivo
with specific fluorescent probe DCFH-DA (2′,7′-dichlorofluorescein diacetate) [29]. Hg + Se
exposure led to remarkable increase in ROS level in root tip as compared to the low level
of ROS in control. Pretreatment with NaHS significantly decreased ROS level in root
tips under Hg + Se exposure. Further adding PAG or HT resulted in ROS accumulation
(Figure 4A,B). These results suggested that enhancing endogenous H2S was able to inhibit
ROS accumulation induced by Hg + Se stress.

ROS can cause irreversible cell death in plants in response to stress [30]. Root tip cell
death indicated by PI (propidium iodide) showed similar changing pattern to ROS under
same treatment conditions (Figure 4C,D), suggesting that enhancing endogenous H2S
attenuated cell death in root treated with (Hg + Se). Root length was negatively correlated
to ROS and cell death, respectively, under the condition of altering endogenous H2S level
(Figure 4E,F). Therefore, H2S-supressed ROS accumulation and cell death may contribute
to the recovery of root elongation from Hg + Se stress.
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root tip of B. rapa seedlings upon Hg + Se stress. (A) In situ detection of ROS accumulation with DCF
fluorescence in root tip. (B) Calculated relative DCF fluorescent density in root tips. (C) In situ detection
of ROS accumulation with PI fluorescence in root tip. (D) Calculated relative PI fluorescent density
in root tips. (E) Correlation analysis between root length and DCF fluorescent density. (F) Correlation
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ROS can attack cell membrane lipid, leading to loss of membrane integrity. This is one
of the typical consequences of oxidative injury [31]. We applied histochemical staining to
evaluate oxidative injury in roots. Lipid peroxidation (indicated by Schiff’s reagent) and
loss of membrane integrity (indicated by Evans blue) showed pink and blue, respectively
(Figure 5). Hg + Se resulted in extensive staining as compared to light staining in control.
Pretreatment with NaHS let to lighter staining in roots treated with Hg + Se, an effect
reversed by further adding PAG or HT (Figure 5). These results suggested that endogenous
H2S was important for plants to combat oxidative induced by Hg + Se stress. Linking the
above results provides an important clue that endogenous H2S protects plant from Hg + Se
stress by suppressing ROS accumulation followed by the alleviation of oxidative injury
and cell death.
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The antioxidant role of H2S has been associated with its ability of limiting ROS
accumulation in response to abiotic stress [32]. H2S limits ROS accumulation probably
through two ways. First, H2S can scavenge already generated ROS by activating both
antioxidative enzymes (enzymatic system) and antioxidants (non-enzymatic system) [33].
Second, H2S is able to suppress ROS generation. Superoxide radical and hydrogen peroxide
are two typical ROS. NADPH oxidase and PAO (polyamine oxidase) generate superoxide
radical and hydrogen peroxide, respectively, in plants upon abiotic stress [34,35]. Excessive
Se alone induces PAO- and NADPH oxidase-dependent ROS accumulation in plants [36,37].
Hg stress alone can induce NADPH oxidase-dependent ROS burst in plants as well [38].
It has been reported that H2S can protect both plant and mammalian cells from oxidative
stress by repressing NADPH oxidase-dependent ROS generation [39,40]. Further studies
are needed to understand whether H2S decreases ROS accumulation in plants against
Hg + Se stress through the similar mechanisms mentioned above.

The synergistic toxicity of Hg and Se may directly result from the protein disfunc-
tion. The -SH in cystine (Cys) play important roles to maintain functional structure of
the proteins. Hg2+ has strong affinity to -SH groups in functional proteins [41]. Cys in
proteins can be easily replaced by SeCys [8]. Both actions are detrimental to the proteins.
The combination of Hg and Se stress may aggravate the disturbance of the structure of
functional proteins, further leading to negative physiological responses in plants. Recent
studies have revealed that H2S improves protein function via persulfidation of Cys [42,43].
Whether H2S-mediated protein modification may help overcome the toxicity of Hg + Se
needs further studies.

In sum, we found that endogenous H2S could be triggered as a defensive signal in
response to synergistic toxicity of Hg and Se in B. rapa. Neither Hg nor Se alone worked
on it. Further studies are needed to reveal the molecular mechanism for H2S-mediated
detoxification of Hg + Se, our current results propose a novel role of endogenous H2S in
regulating plant adaption upon multiple stress conditions at the same time.

3. Materials and Methods
3.1. Plant Culture, Treatment, and Chemicals

B. rapa seeds (Lvling) were obtained from Jiangsu Academy of Agricultural Sciences,
China. NaClO (sodium hypochlorite) solution (1%) were used to sterilize the surface of
seeds for 10 min. After washing with distilled water, the seeds were soaked with distilled
water for 3 h, and allowed for germination in darkness for 1 day. Then the seedlings were
transferred into 1/4 strength Hoagland solution. The chamber for seedling growth was set
at photoperiod of 12 h, photosynthetic active radiation of 200 µmol/m2/s, and temperature
at 25 ◦C. [44]. After growing for another 3 days, we selected 30 identical seedlings with
root length at 1.5 cm for each treatment. Different chemicals were added to the nutrient
solution to treat seedling roots according to different experimental designs. Basically, the
seedlings were treated for 3 days. The seedling only had a primary root without appearing
lateral roots. So, we evaluated root growth by only measuring the length of primary root.

Na2SeO3(sodium selenite) (4 µM) and HgCl2 (mercury chloride) (1 µM) were ap-
plied for root treatment according to our previous study [10]. NaHS (sodium sulfide)
(0.1–16 mM), PAG (DL-propargylglicine) (0.05–4 µM), and HT (hypotaurine) (1–32 µM)
were applied as H2S donor, H2S biosynthesis inhibitor, and H2S scavenger, respectively [18].
All the reagents at analytical purity were obtained from China National Pharmaceutical
Group Co., Ltd. (Sinopharm Chemical Reagent Co., Ltd., Beijing, China).

We designed several experiments in this study. First, the roots were exposed to Hg,
or Hg + Se, respectively, for 72 h, followed by measuring root length and endogenous
H2S level. Second, the root length were monitored at 6, 12, 24, 48, and 72 h, respectively,
upon Hg + Se exposure. Third, roots were pretreated with NaHS, PAG, or HT, respectively,
for 6 h. Then roots were exposed to Hg + Se for another 72 h, followed by measuring
root length. This helped us to identify the proper concentration of NaHS (2 mM), PAG
(0.5 µM), and HT (4 µM) for the following experiment. Fourth, roots were pretreated with
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PAG + NaHS or HT + NaHS, respectively, for 6 h. Then roots were exposed to Hg + Se for
another 72 h, followed by measuring root length, root tip endogenous H2S level, root tip
endogenous ROS level, and root tip cell death.

3.2. Evaluation of Endogenous H2S Level in Root Tip

Fluorescent probe WSP-1 (3′-methoxy-3-oxo-3H-spiro[isobenzofuran-1, 9′-xanthen]-
6′-yl 2-(pyridin-2-yldisulfanyl)benzoate) was applied to track root tip endogenous H2S in
situ [45,46]. Roots were incubated in WSP-1 solution (15 µM) at 25 ◦C for 40 min followed by
rinsing with distilled water. Then root tips were observed and captured with a fluorescent
microscope (ECLIPSE, TE2000-S, Nikon, Melville, NY, USA) with setting of excitation
480–490 nm/emission 515–525 nm.

3.3. Evaluation of Total ROS Level in Root Tip

Fluorescent probe DCFH-DA (2′,7′-dichlorofluorescein diacetate) was applied to detect
root tip ROS in situ [29]. Roots were incubated in DCFH-DA solution (10 µM) at 25 ◦C
for 10 min followed by rinsing with distilled water. Then root tips were observed and
captured with a fluorescent microscope (ECLIPSE, TE2000-S) with setting of excitation
480–490 nm/emission 515–525 nm.

3.4. Evaluation of Cell Death in Root Tip

Fluorescent probe PI was used to detect root tip cell death in situ [47]. Roots were
incubated in PI (propidium iodide) solution (20 µM) at 25 ◦C for 20 min followed by rinsing
with distilled water. Then the root tips were observed and captured with a fluorescent
microscope (ECLIPSE, TE2000-S) with setting of excitation 530–540 nm/emission 610–620 nm.

3.5. Evaluation of Oxidative Injury in Root Tip

Schiff’s reagent was used to detect root lipid peroxidation in situ [48]. Roots were
stained with Schiff’s reagent for 20 min followed by rinsing with 0.5% (w/v) K2S2O5
(prepared in 0.05 M of HCl) until the color became light red. Then roots were photographed
with a digital camera.

Evans blue was used to detect loss of membrane integrity in root cells in situ [49].
Roots were stained with Schiff’s reagent (0.025%, w/v) for 20 min followed by rinsing with
distilled water. Then roots were photographed with a digital camera.

3.6. Statistical Analysis

Each result was presented as mean ± SD (standard deviation) of at 3–10 replicates.
Least significant difference test (LSD) was performed on data following ANOVA tests to
test for significant (p < 0.05) differences among treatments. The significant difference at
p < 0.05 level between two designated treatments was compared using ANOVA with F test.
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