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Abstract: The published literature makes a very strong case that a wide range of disease morbidity
associates with and may in part be due to epithelial barrier leak. An equally large body of published lit-
erature substantiates that a diverse group of micronutrients can reduce barrier leak across a wide array
of epithelial tissue types, stemming from both cell culture as well as animal and human tissue models.
Conversely, micronutrient deficiencies can exacerbate both barrier leak and morbidity. Focusing on
zinc, Vitamin A and Vitamin D, this review shows that at concentrations above RDA levels but well
below toxicity limits, these micronutrients can induce cell- and tissue-specific molecular-level changes
in tight junctional complexes (and by other mechanisms) that reduce barrier leak. An opportunity
now exists in critical care—but also medical prophylactic and therapeutic care in general—to consider
implementation of select micronutrients at elevated dosages as adjuvant therapeutics in a variety of
disease management. This consideration is particularly pointed amidst the COVID-19 pandemic.

Keywords: micronutrient; tight junction; claudin; zinc; Vitamin A; Vitamin D; barrier function;
inflammation; sepsis; virus; COVID; critical care

1. Introduction

If you were a patient in a hospital bed and your physician walks into your room and
tells you, “I have a formulation that won’t cure you, but it will improve your condition by
15%”, would you say, “Only 15%? No thanks”. No matter how mild your overall condition,
you would instead likely take that offer gladly. A marginal improvement of morbidity
is something anyone who has been in a hospital bed would not scoff at. For relatively
mild conditions it would be welcome, but for severe conditions such as certain infectious
diseases where mortality is an issue, a 15% improvement could be lifesaving, enabling
a patient to maintain their physiology while their immune system is still ramping up to
deliver the decisive blow against a pathogen.

A very diverse group of micronutrients have just this capability. Here we highlight the
ability of three of these compounds to improve epithelial barrier function, the compromise
of which is pivotal in the etiology of an extremely wide range of disease states. Epithelial
barrier leak is at the heart of a great deal of morbidity—and mortality—climaxing in
multiorgan failure that is such a battleground in critical care medicine. This is not surprising
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given that we—and animals generally—are physiologically a series and parallel array of
sacs and tubes in terms of our tissue and organ architecture. Anything that undermines
that compartmentation is an intrinsic threat to us. A plethora of diseases and pathogens do
just that. Research over the past 35 years has, however, increasingly shown that there are
naturally occurring compounds that support our intrinsic compartmentation, and work to
protect it when our homeostasis is threatened.

Even more remarkable is that these compounds are generally safe. In fact, the FDA
applies the GRAS (“Generally Recognized as Safe”) status on many of them. Moreover,
many are safe at levels above their RDA (Recommended Daily Allowance) level. Using
zinc as an example, this micronutrient—the second most abundant transition metal in
the body—has a typical dietary intake of 5–10 mg/day [1]. The blood level of zinc is
typically 10 micromolar (µM) [2]. Raising this level to 50 µM activates or amplifies cellular
signaling pathways that, among many other diverse actions, modify the tight junctional (TJ)
complexes around epithelial cells in diverse epithelial tissues (these seals being the lynchpin
to our tissue and organ level compartmentation). Based upon simple Michaelis–Menten
kinetics, zinc at a 5 µM concentration may have only negligible affinity for a binding site
on a random signaling intermediate protein, but zinc at 50 µM may exhibit significant
binding (and protein activation). In humans, this increased plasma zinc concentration is
safely achievable by increasing zinc intake to 50–60 mg/day, roughly 5–10 times our normal
dietary intake. What is thoroughly remarkable is that this elevated zinc level not only modifies
the TJ complexes, but also improves them. They are less leaky basally and they are less prone
to leakiness in disease states such as inflammatory cascades [3–5]. We say “remarkable”
because the TJ complex is indeed a complex array of over 26 different barrier proteins and
20 or more junctional-associated intracellular proteins [6,7]. To improve such a byzantine
structure by modifying its individual components is a huge biologically impressive feat.

The very safety and natural occurrence (and affordability) of these dietary compounds
is ironically the likely cause of their perceived banality in the realm of medical therapeutics.
“How important can zinc be?”, is a common unspoken thought by many a researcher
and physician. Added to that is the large amount of “bad science” and misconceptions
surrounding micronutrients. However, their very safety (and banality and affordability)
is key to their implementation—prophylactically and therapeutically—because of their
above-mentioned typical GRAS status and their well-studied toxicity limits. Any de novo
drug that targeted TJ complexes would have to clear many safety trials and regulatory
hurdles that GRAS compounds can bypass. What is pivotal to recognize, however, is that
these compounds are drugs when applied at levels above their RDA, although drugs that
have been “vetted” by our very evolution, given that we evolved over millennia with them
in our diet, and very possibly, at levels above current RDAs.

Many excellent reviews exist in the published literature dealing with the vital im-
portance of epithelial and endothelial barriers, and the disease implications of their com-
promise [8–12]. Functional barriers are vital physiologically because they underwrite the
very possibility of vectorial, unidirectional transepithelial/transendothelial transport; i.e.,
absorption and secretion at the tissue/organ level. However, in the case of epithelial barri-
ers, they are also essential because they invariably sequester an immunologically “nasty”
luminal (apical) compartment (often communicating with the outside environment) from
the pristine systemic bloodstream (basal-lateral) compartment on the opposite side of the
barrier. Those two worlds “mixing” in an unregulated manner is the genesis of a great deal
of morbidity, and not simply in infectious disease. (Figure 1.)

In its first section (below), our review initially points out a wide variety of diseases
that have barrier compromise at or near their core. We then pivot in the second section
to illustrate instances where a micronutrient deficiency can induce barrier leak. This is
followed in the third section by evidence where micronutrient supplementation (i.e., above
normal dietary levels) induces barrier improvement and/or protection. In the final sections
we discuss the application of these broad findings to actual clinical medicine.
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Figure 1. A very basic view of epithelial barrier function—separation of a multitude of different
luminal compartments from the vasculature. Communication of these luminal compartments in many
cases with the outside environment makes them rife with allergens and pathogens. The immune
system, being situated primarily in the vascular compartment, places an enormous premium on
barrier integrity segregating the immune system from its activators in these luminal compartments.
Failure to separate can then lead to severe and/or chronic inflammation.

Writing this review in the time of the SARS-CoV-2 pandemic, it is worth highlighting
another very recent review that emphasizes the role in this pandemic of one particular
micronutrient deficiency—zinc—along with zinc’s role in epithelial barrier function, and
zinc’s ability to provide a cost-effective and easily applied remedy to decrease the number
of COVID cases, and the severity of these cases, globally [13]. Our current review deals
with both deficiency and supplementation of three micronutrients—zinc, Vitamin A and
Vitamin D—describing the significance of each in the fight against COVID, as well as other
diseases involving barrier compromise.

2. Is Epithelial Barrier Compromise a Common Occurrence in Disease?
2.1. Systemic Inflammation

There may be no better-described biological effector protein associated with transep-
ithelial barrier leak than the proinflammatory cytokine. There is an enormous basic re-
search literature describing the TJ-compromising activity of a variety of proinflamma-
tory cytokines—Tumor Necrosis Factor-α, Inerleukin-1-β, Interleukin-6, Interferon-γ, and
others—on a wide array of epithelial cell culture models [14–20]. There is similarly a
very large, clinical literature describing how elevated systemic and tissue levels of proin-
flammatory cytokines associate with barrier leak in vivo. Nowhere is this situation more
dramatically exhibited than in sepsis and its attendant multi-organ failure (MOF).

In any survey of the sepsis/MOF/cytokine published literature, the research con-
ducted by Mitchell Fink’s group features prominently. Focusing mostly on the intestinal ep-
ithelial barrier, Fink’s group early on highlighted the interplay between sepsis/MOF/proin-
flammatory cytokines and barrier leak [21,22]. Animal studies have shown that the associa-
tion holds for much more than simply the intestinal barrier. Huang and Gu [23,24] offer
examples of blood–brain barrier (BBB) compromise. Gonzales [25] address the pulmonary
barrier, both endothelial as well as epithelial. Rodrigues and Granger [26] deal more specif-
ically with endothelial barrier compromise by cytokines and other soluble mediators in
blood, as well as oxidation and reactive oxygen species. Mariano [27] focus on renal barrier
function in this context and highlight how severely burned patients fit very well into this
overall scenario of elevated cytokines, MOF and barrier leak.

An interesting clinical observation that links the phenomena of barrier leak, sepsis and
MOF is that circulating levels of the epithelial and endothelial TJ-associated protein, ZO-1,
show elevation in the blood stream of sepsis patients. Moreover, the degree of elevation
correlates with APACHE II scores and SOFA scores and is statistically higher in the blood
of sepsis patients who would go on to fail to recover from their condition [28,29].



Int. J. Mol. Sci. 2022, 23, 2995 4 of 42

2.2. Inflammatory Bowel Disease

There is absolutely no controversy over the fact that both CD and UC present with
gastrointestinal barrier defects, i.e., transmucosal leak, although the type of leak may vary
in the two diseases. Mankertz and Schulzke [30] characterize CD as being associated
with TJ strand breaks, discontinuities and altered TJ proteins, whereas UC associates with
upregulated epithelial apoptosis and micro erosions or “holes.” Perhaps no other disease is
so associated with epithelial barrier leak, attested to by the very large number of published
reviews dealing with the association of these two separate diseases with transepithelial leak.

Many of these reviews discuss the prevailing conundrum in IBD—which comes first,
the epithelial barrier leak or other disease manifestations, most notably inflammation,
that can generate such a leak. It is not an easily answered question because whereas
inflammation—and specifically proinflammatory cytokines—can generate barrier leak,
the leak itself can generate inflammation by virtue of allowing luminal antigens (and
pathogens) to cross into the subepithelial compartment of the tissue. The various reviews
invariably lean toward one mechanism or the other. It is quite a conundrum because no
one disputes that leak can generate inflammation nor that inflammation can generate leak.
Fakhoury [31] is an example of an IBD review that weighs both possibilities, and then
discusses the implications for treatment options.

Among the earliest reviews on this topic is a landmark. Hollander [32] proposed that
“increased intestinal permeability could allow the penetration of antigenic or infectious
agents into the intestinal wall and thus start the process which in susceptible individuals
culminates in Crohn’s disease”. He cites structurally abnormal tight junctions in even
non-inflamed tissue from CD patients, as well as functional permeability defects (leak)
in asymptomatic first-degree relatives of CD patients, as the basis for barrier leak being
primary. Schulzke [33] present a modern twist to the thesis by delineating the two types of
IBD leak described above and invoking the penetration of luminal antigens through such
leak, as a major driver of tissue inflammation. Specific components of this inflammation,
such as Interleukin-13, which they hold to be a major player in UC, in turn drive further
leak through TJ alteration and induction of apoptotic cell death. Luettig [34] describe how
claudin-2 is upregulated in IBD in both small and large intestine, resulting in TJ strand
discontinuities that allow for transepithelial permeation of luminal antigens (and ensuing
inflammation). Another example of reviews that lean toward barrier leak being primary is
Teshima [35], who point to a genetic basis for such leak, namely, mutation in the NOD2
gene, also citing studies showing that rodent colitis models indicate barrier leak preceding
inflammation. Takeuchi [36] had also explored a genetic base for IBD leak but point out
that the leak observed in asymptomatic first-degree relatives does not display classical
inheritance patterns.

Reviews leaning toward a primary role for inflammation (generating leak) in IBD are
exemplified by Luissint [37] who discuss the barrier being affected by the inflammatory
microenvironment and highlight particularly the role of leukocyte–epithelial interactions.
This theme was explored earlier in Bruewer [38], who highlighted the role of Interferon-γ
and TNF-α. Shen and Turner [39] describe the importance of mediation of effects by
inflammatory proteins via the actin cytoskeleton and especially Myosin Light Chain Kinase.
Odenwald and Turner [40] point out that animal studies show that barrier compromise is
insufficient to generate IBD and that clinical trials focused on barrier improvement have
not shown efficacy in IBD generally.

Zhu and Landy [41,42] offer a more general, neutral review regarding IBD and
leak that focuses on claudin dysregulation and expand the conversation to epithelial-
to-mesenchymal transition (EMT) of the tissue, along with its increased cancer risk. Fries
et al. [43] in their review highlight the potential direct causes of IBD in the context of treat-
ment options. The review by Larabi [44] focuses on less considered but highly germane
topics such as the role of altered microflora and of dysregulated epithelial autophagy in
IBD and its attendant barrier leak.
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Regardless of whichever is the primary driver responsible for IBD—leak or inflamma-
tion—it is beyond question that barrier leak is an intrinsic component of IBD etiology—both
UC and CD—though the type of leak involved in each may be different. Amid the “vicious
circle” scenario, which seems well supported in the IBD published literature, all of the
above reviews would seem to support a contention that amelioration of the leak would
help the clinical situation.

Specific original research publications touch on individual aspects of the barrier leak
and inflammation themes of IBD, but all appear to support the existence of transepithelial
leak in the disease. Marin [45] observed varying degrees of TJ fragmentation in terminal
ileal tissue of CD patients. Transmural electrical resistance was found to be 50% lower in
inflamed sigmoid colon tissue from UC patients [46]. This was accompanied by an impaired
TJ structure, namely, a decrease in strand count. Gitter [47] documented an increase in
transepithelial conductivity in both mild and moderate-to severely inflamed UC sigmoid
colon tissue. Foci of epithelial apoptosis contributed to leak in mild inflammation where
epithelium appeared largely intact. In higher degrees of inflammation, mucosal erosions
were major contributors to leak.

Numerous studies have investigated in more detail the changes to TJ proteins in IBD
patients. An increase in claudin-2, as well as a downregulation of claudins -4 and -7 were
observed in rectal epithelial mucosa biopsies from active UC patients [48]. Sigmoid colon
biopsies taken from active CD patients exhibited decreased barrier function—as evidenced
by a drop in epithelial resistance. Reduced and discontinuous TJ strands were seen in
electron microscopy, leading to analysis of specific TJ proteins. There was an upregulation
of claudin-2, whereas occludin, claudins -5 and -8 were downregulated [49]. Evaluating
biopsies from active CD and UC patients, Das [50] observed an increase in claudin-2, in
addition to reduced expression of ZO-1 and claudin-4. Lameris [51] saw an increase in
claudin-12 in CD ileum as well as a downregulation of claudin-2 in sigmoid colon. They
elaborate on various changes in claudin expression in UC and CD that are dependent on
the intestinal segment or degree of inflammation.

Several rodent models of IBD have been utilized. Xu [52] observed significantly lower
TER as well as an increase in claudins -1 and -2 in a dextran sodium sulfate (DSS) rat colitis
model at days 7, 14, and 21. In a TNBS-induced mouse model of colitis, expression of
claudin-18 was shown to be upregulated, a finding also seen in patients with UC [53]. In
a DSS mouse model, Eraković Haber [54] noted a decrease in claudin-1 and claudin-3 in
surface epithelium, and decreased claudin-8 in upper regions of crypts—a similar pattern
to what was observed in UC patient biopsies.

The potential drivers of leak in IBD are the subject of many published studies. Serum
zonulin, a biomarker of intestinal permeability, was found to be higher in IBD patients [55].
IL-10-deficient mice (a Crohn’s animal model) treated with the zonulin inhibitor, AT-1001,
exhibited less small intestinal leak, resulting in attenuation of colitis, implicating leak
as a contributing factor of disease induction [56]. In the SAMP mouse model of chronic
ileitis, Olson [57] detected increased claudin-2 mRNA in the ileum and decreased occludin
mRNA in the ileum and colon, additionally noting that increased permeability occurred
prior to development of inflammation. Similarly, in DSS-induced colitis in mice, Poritz [58]
measured an increased intestinal permeability accompanied by a loss of ZO-1 and increased
claudin-1. Given an early loss of ZO-1 prior to significant onset of inflammation, they
suggested that in this model it was possible for TJ abnormalities to precede inflammation.
In a succeeding experiment, Poritz [59] first exposed the IEC-18 cell culture model to
TNF-α, resulting in decreased TER, decreased occludin and increased claudin-1. Then,
using IBD patient tissue, they demonstrated a pattern of increased claudin/occludin ratio.
This was appreciated only in grossly diseased UC tissue; however, the ratio was elevated
regardless of inflammation in CD. Therefore, they proposed that fundamental TJ alterations
occur in CD. Another example of this occurred in IBD colorectal mucosal tissue, where
there was a decrease in ZO-1, claudin-1, and occludin in areas of active inflammation with
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transmigrating PMNs. However, in areas with only mild active inflammation, occludin was
still diminished [60].

Impaired barrier function also has implications in the clinical course of IBD. Söder-
holm [61] saw a larger increase in mucosal permeability in the distal ileum of CD patients in
response to sodium caprate exposure as compared to experimental controls, suggesting TJs
in CD are more susceptible to harmful luminal contents, thus implicating the influence of
luminal “environmental” factors. This genetic and environmental interaction is supported
in a prior study assessing L/M ratio patterns in CD patients, relatives and spouses after
acetylsalicylic acid ingestion. In CD patients in clinical remission, an increased L/M ratio
correlated with the probability of relapse [62–64]. Impaired intestinal permeability, as
measured endoscopically by confocal microscopy and fluorescein leak, correlated with
continued bowel symptoms in IBD even with endoscopic evidence of mucosal healing [65].

Additional evidence for genetic factor involvement in IBD also supports a causal role
for barrier defects in IBD. Hollander [66] identified a two-fold increase in permeability
(using polyethylene glycol maker) in CD patients and their healthy first-degree relatives.
Increased intestinal permeability in healthy relatives of CD patients was replicated in other
studies using the L/M ratio [67–69]. Peeters [69] also observed an increase in the L/M
ratio in healthy spouses, pointing to environmental as well as genetic factors. Prospective
studies following relatives of CD patients found a temporal correlation between increased
intestinal permeability and the development of CD [70,71]. A number of studies have
identified potential genes associated with increased IBD risk [72,73]. For example, muta-
tions in the NOD2 (CARD15) gene have been linked with an increased susceptibility to
IBD [74]. Furthermore, Buhner [75] reported that increased intestinal permeability in CD
and their first-degree relatives (measured by L/M ratio) was associated with a CARD15
3020insC mutation.

Contrasting original research literature focuses on the primary role of inflammation
and how inflammatory mediators perpetuate impaired barrier function and TJ complex
abnormalities. For example, Gassler [76] report a downregulation of occludin in actively
inflamed IBD tissue, inferring that alterations to the TJ complex are more likely a conse-
quence of a primary inflammatory process. Several proinflammatory mediators, as well
as potential molecular pathways have been investigated. In TNF-α-exposed Caco-2 cells,
Ma [77] observed a disruption of ZO-1, as well as increased permeability—potentially me-
diated through NF-kappa B activation. Moreover, TNF-α decreased paracellular resistance
of HT-29/B6 cells and increased claudin-2, which was thought to be mediated by the
PI3K pathway [78]. Lamina propria mononuclear cells from UC patients exhibit increased
production of IL-13. Exposure of HT-29/B6 cell layers to IL-13 results in decreased transep-
ithelial resistance, a 3-fold increase in mannitol flux, a 1.2-fold increase in PEG flux and
an increase in claudin-2 expression [79]. MLC phosphorylation has been shown to be
significantly increased in biopsies of active IBD [80]. TNF-α and IFN used in combination
decrease TER and increase MLC phosphorylation in Caco-2 and T84 cell layers [81,82]. This
was accompanied by a reduction in occludin, claudins -1, -2 and -4 in T84 cells; however,
claudin-1 increased slightly in the Caco-2 cell layers [82]. Prasad [83] also saw increased
permeability in T84 cell layers exposed to TNF-α, IFN-γ or IL-13. IFN-γ and TNF-α treat-
ment resulted in decreased claudin-3 and redistribution of claudin-4. An upregulation of
claudin-2 was seen in T84 cell layers exposed to IL-13. They achieved this same pattern of
results in sigmoid colon biopsies from IBD patients—a marked increase in claudin-2 with
a concurrent decrease in claudins -3 and -4. Heller [79] also saw this increased claudin-2
expression in specimens from UC patients.

Also supporting a primary role for inflammation, excessive reactive oxygen species
are known to promote intestinal inflammation (and barrier compromise) in IBD [84]. Mi-
crobiota have been found to contribute to this chronic inflammation. Bacteria producing
hydrogen peroxide may play a role in increasing inflammation [85]. Firmicutes and Enter-
obacteriaceae were found to be in higher abundance in samples from IBD patients, likely
contributing to oxidative stress pathways [86].
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In summary, although the issue of barrier leak or inflammation being the primary
cause in IBD is not settled, the reality of barrier leak in both CD and UC seems an established
fact. Given the magnitude of the published literature surrounding it, IBD is actually the
foremost example of barrier compromise being an integral element in a disease. The exact
types of transepithelial leak have moreover been determined for the two diseases. With
its well-developed human cell culture models and animal models, but also the ready
availability of human tissue samples through colonoscopy procedures, IBD will be at the
forefront of research involving epithelial barrier leak in disease.

2.3. Cancer

An often-overlooked property of lethal cancers is that approximately 95% are epithelial
in origin [87]. The paradigm properties of epithelia—their intrinsic polarity and their ability
to form TJ seals/functional barriers—thus become core issues in cancer biology. Effects
of cancer on epithelial polarity are nicely summarized in Saito [88] as well as Hinck and
Nathke [89]. The changed barrier aspect of neoplasia is our concentration here.

Basic research on epithelial cell culture models going back many years has shown
that transformation/neoplasia of epithelial cells proceeds with, among other changes,
alterations of their TJ complexes [90,91]. Evidence has been shown in hepatocellular,
mammary and colon adenocarcinoma [92–96]. Soler [96] in fact purported to show a
progression regarding increasing TJ leak, ranging from normal colon mucosa to junctions
of hyperplastic and adenomatous polyps to actual colon adenocarcinoma.

Certain TJ-associated proteins have been found to function as tumor suppressor pro-
teins [97–100]. In addition, the tumor promoter class of chemicals, such as TPA (12-O-
tetradecanoylphorbol 13-acetate)—intricately associated with the overall chemical carcino-
genesis process—has been observed to induce TJ leakiness through their activation of
Protein Kinase C isoforms [101–104]. The potent oncoprotein, TGF-β, has been shown to
disrupt epithelial TJs, as does activation of the erb-B2 receptor [105,106].

Just as beta-catenin is not simply a structural protein, there is a steadily growing
awareness that certain TJ barrier proteins and TJ-associated proteins possess roles that
extend beyond merely permeability and barrier function, a realization helped along by
changes in these proteins in cancer. It is true that the leak arising from the dysregulation
of a TJ barrier can lead to altered receptor-mediated signaling by virtue of altered tissue-
level compartmentation of growth factors and other ligands [107]. However, there is a
growing awareness that TJ and TJ-associated proteins can critically function as signal
transduction mediators in their own right. This has been well described for ZO-1 and
ZONAB [108,109]. It is also implicit in the existence and importance of “cytoplasmic” pools
of these proteins that are quite distinct from a cytoskeletal association [110]. This ability of
TJ proteins to function as “signaling intermediates” has been the subject of many recent
reviews [111–115].

2.4. Celiac Disease

Celiac Disease is an intestinal autoimmune disease triggered by the presence of a com-
ponent of the dietary gluten protein, gliadin, in the GI lumen of susceptible individuals, and
those presenting the human leukocyte antigen (HLA)-DQ2 and/or (HLA)-DQ8 haplotypes.
These haplotypes enable presentation of immunogenic gliadin peptides to gluten-specific
CD4+ T-cells in the lamina propria. This leads to an immune cascade in the lamina propria
which includes a proinflammatory cytokine upregulation. This inflammatory reaction
then induces mucosal changes such as villous atrophy, but also impairment of barrier
function [116]. There have been numerous excellent reviews identifying and describing
epithelial barrier compromise in Celiac Disease [116–124].

Although an intestinal barrier impairment in Celiac Disease is well established, it
is less clear whether the barrier impairment has a primary role in the disease or is only
the secondary result of an inflammatory cascade in the mucosa, a situation very like that
in IBD as described above. There are 39 gene loci showing variation in Celiac Disease
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patients, at least four of which are known to play roles in cell–cell adhesion (LPP, C1orf106,
PTPRK and PARD3), one piece of evidence suggesting a primary barrier defect may exist
in Celiac Disease [125,126]. The PARD3 gene may have a role in epithelial polarity and
TJ regulation as well [121]. Jauregi-Miguel [127] reported altered expression of the genes
CLDN2, PARD6A, ZAK, SYMPK, MYH14, ACTB, MAGI1, TJP1 (ZO-1) and PPP2R3A, which
could further support a primary role for barrier compromise.

Whether the barrier compromise is primary or secondary in Celiac Disease, structurally
altered TJ complexes and changes in TJ claudin composition are well documented. Evidence
exists of a decreased TJ strand number and increased strand discontinuities in duodenal
biopsies in Celiac Disease [128,129]. In addition, abundant functional evidence exists for
an altered barrier, ranging from increased lactulose/mannitol (L/M) ratios in urine [124]
to decreased transepithelial electrical resistance in ex vivo studies of intestinal biopsies in
Ussing chambers [130]. In another parallel to the situation in IBD, first-degree relatives of
Celiac Disease patients—themselves without manifestations of active disease—showed
increase functional intestinal barrier leak as evidenced in higher L/M ratios [131]. These
first-degree asymptomatic relatives also showed decreased levels of ZO-1 and occludin
in their intestinal biopsies, as well as TJ ultrastructural abnormalities. Similarly, although
TJ length was not altered in ultrastructural analyses of intestinal biopsies of very early
stage Celiac Disease patients (presence of Celiac Disease-specific autoantibodies in sera but
normal histology of the small intestine with increased number of IEL but no other features
of inflammation), alterations in the desmosomes and dilated intercellular spaces were
observed [132]. Downregulation of occludin in Celiac Disease is particularly noteworthy
because it has been associated with increased macromolecule leak across Caco-2 intestinal
barriers [133], a situation that would be permissive for paracellular leak of gliadin peptide
from the lumen into the lamina propria. Altered ZO-1 localization, phosphorylation and
expression is likewise commonly reported in active Celiac Disease [134,135]. Barmeyer [121]
demonstrated lower claudin-5 levels in active Celiac Disease. Goswami [136] reported
reduced expression of claudins -3 and -4, with overexpression of claudin-2. Szakál [137]
also reported overexpression of claudin-2.

This controversy of whether a barrier leak in Celiac Disease is primary or secondary,
may hinge on how and when gliadin and its component immunogenic peptides are able to
move across the intestinal barrier. One can ask how do gliadin and/or gliadin peptides enter
the lamina propria immunogenically intact in the first place? Hollon and Lammers [138,139]
showed using human intestinal biopsies that incubation of the tissue with gliadin could
compromise barrier function, establishing that gliadin peptide access to the lamina propria
can induce leak. Sander [140] had earlier shown this using Caco-2 cell layers—an induced
leak accompanied by changes in TJ barrier proteins. However, Ménard [141] had shown
that transcellular transport of gliadin peptides is increased in Celiac Disease patients, a
phenomenon that could give rise to leak without a primary paracellular defect.

There is also abundant literature showing increased tissue and serum levels of the
intestinal protein, zonulin, in active Celiac Disease [131,142]. Alterations in zonulin sig-
naling within intestinal epithelia may be pivotal in the observed barrier dysfunction in
Celiac Disease. Zonulin has been a key target in potential Celiac Disease therapy using the
compound, Larazotide, a compound that represents one of the first interventional attempts
at therapeutically redressing a barrier compromise [143].

2.5. Infectious Disease
2.5.1. Gastrointestinal Bacteria

The majority of research studies addressing the topic of bacterial effects on epithelial
barriers comes from gastrointestinal (GI) epithelial models and GI pathogens. Moreover,
the thrust of much of the research is directed at a single question—is infectious diarrhea
due to paracellular barrier leak or is it arising from a transcellular secretory mechanism, or
both? The answer is seemingly microbe specific.
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Campylobacter-induced enteritis is a highly common food-borne source of diarrhea
in humans. Work with colon biopsies and human GI epithelial cell culture models has
shown disruption of TJ complexes with localization changes in claudins -1, -3, -4, -5 and
-8 as well as induced focal cellular apoptosis and detachment, giving rise to two distinct
paracellular leaks with the macromolecule leak increased as well as decreased TER. In
addition, the ENaC sodium channel is affected, indicating that both transcellular and
paracellular pathways are involved in Campylobacter-driven diarrhea [144–146]. This
specific source of diarrhea and the mechanisms responsible for it are reviewed in Lobo de
Sa [147], including a consideration of the role played by elevated mucosal proinflammatory
cytokine levels.

Acrobacter butzleri infection of the HT-29/B6 cell layers was shown to both decrease
TER and increase transepithelial fluorescein-dextran (4 kDa) diffusion, along with decreased
expression of claudins -1, -5 and -8, as well as mislocalization of claudins -1 and -8. Focal
epithelial apoptosis was also increased [148,149].

Yersinia enterocolitica also decreased TER dramatically in HT-29/B6 cell layers, and
was accompanied by increased transepithelial diffusion of 14C-D-mannitol and fluorescein.
Decreased expression of claudins -2, -3, -8 and -10 accompanied these changes as well as
focal necrosis (increased LDH release) with cellular redistribution of claudins -3, -4 and
-8 off from the TJ complex in the specific regions of focal leak, all providing evidence for
paracellular leak-driven diarrhea [150].

The aerolysin toxin produced by Aeromanas hydrophila both induced chloride secretion
as well as increased FITC-dextran (4 kDa) transepithelial diffusion across HT-29/B6 cell
layers, processes seemingly transduced by altered myosin light chain kinase and intracellu-
lar Ca++ signaling [151]. This provides evidence for both secretory and leak-flux diarrhea
for this infectious microbe.

Alpha-hemolysin-expressing E. coli induced barrier compromise of porcine colon
tissue as exhibited by reduced TER. This associated with both focal leak formation (cell
extrusions) as well as modification of the junctional barrier proteins, claudins -4 and -5 [152].
Similar results were seen in mouse colon and in E. coli—exposed HT-29/B6 cell layers [153].

Staphylococcus aureus enterotoxin B induced barrier leak across rat jejunum as exempli-
fied by decreased TER and increased horseradish peroxidase transepithelial permeation.
The effect was attributed to TJ barrier compromise with reduced TJ protein expression [154].

Exposure of Group A Streptococcus to Caco-2 intestinal cell layers dramatically re-
duced TER and reduced expression of occludin and tricellulin. Plasminogen was found to
be a molecular bridge between bacterial surface enolase and the cell layer. More specifically,
site-directed mutagenesis experiments showed lysine residues on the extracellular loop of
tricellulin to be the cellular point of contact [155].

Curiously, exposure of T84 cell layers to Neisseria meningitides resulted in both de-
creased TER and increased 3H-inulin leak but was thought to be without accompanying TJ
barrier change, as evidenced by no change in ZO-1 localization [156].

Perhaps the best studied of the GI pathogenic bacteria with regard to targeting the TJ
is Clostridium perfringens, and specifically its enterotoxin. Work from notably the McClane
group has shown the highly precise targeting of the TJ complex by this pathogen. Specif-
ically, the C-terminal portion of the enterotoxin has specific interactions with the ECL-1
and ECL-2 extracellular loops of specific claudins [157]. Paracellular pores were formed
in the TJ complex in Caco-2 cell layers by aggregate interactions of the enterotoxin with
specific claudins [158]. Perturbation of the TJ complex by prior treatment with calcium
chelators or even TNF-α enhanced this pore formation [159]. Claudin-4 is held to be one of
the receptive claudins in the TJ complex [160].

2.5.2. Non-Gastrointestinal Bacteria

For evidence of non-GI epithelial barrier compromise by bacterial pathogens, nasal
epithelia have been a frequent model. In an early study on the process of transepithelial
invasion of nasopharyngeal epithelial organ cultures, Hemophilus influenza type b was
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observed to induce TJ compromise followed by paracellular migration of bacteria. However,
Neisseria meningitidis was observed to transmigrate transcellularly with intact TJ complexes
in electron micrographs [161]. H. influenzae was later found to induce downregulation of
claudins -7 and -10 by a TLR- and SNAIL-dependent mechanism in the nasal epithelium, a
phenomenon also observed with exposure to Streptococcus pneumoniae [162]. Staphylococcus
aureus caused a decrease in electrical impedance and a mislocalization of ZO-1 in the
nasal epithelium, with actual TJ discontinuity in electron micrographs [163]. Martens [164]
observed decreased ZO-1 and occludin expression with Staphylococcus aureus exposure to
nasal epithelium, and also evidenced a TLR-dependent mechanism.

In human keratinocyte cell layers, Staphylococcus aureus downregulated not only the
TJ proteins but also atypical Protein Kinase C, coincident with reduced transepithelial
TER. Interestingly, Staphyloccoccus epidermidis had a much weaker effect [165]. In uterine
epithelial cell layers, Neisseria gonorrhea curiously had no effect on either occludin or ZO-1
expression or localization, even though there was a dramatic effect on E-cadherin localiza-
tion [166]. In brain microvascular endothelial cell layers, Staphyloccocus aureus exposure
induced barrier compromise as well as reduced expression of claudin-5 and ZO-1 [167]. In
capillary endothelia exposure to anthrax toxin also induced barrier compromise (increased
leak of 3 kDa dextran) while also inhibiting p38 signaling [168]. In a different vascular
endothelial cell culture model, E. coli induced dramatic transendothelial leak to 40 kDa
dextran accompanied by significant elevation of intracellular calcium [169].

A noteworthy and counterintuitive study comes from work on human gingival ep-
ithelial cell layers. When these cell layers were exposed to the oral commensal bacteria,
Streptococcus gordonii, upregulation of ZO-1, ZO-2, JAM-A and occludin occurred, along
with improved barrier function as revealed by reduced leak of fluorescent-labeled dextran,
highlighting the very finely tuned nature of microbial regulation of our epithelial and
endothelial barriers [170].

Additional excellent and more extensive reviews can be found on barrier compromise
by various bacterial pathogens in a variety of epithelial barrier cell types [159,171–173].

2.5.3. Viral Pathogens

Viruses have evolved to utilize several mechanisms for efficient entry into host cells
and subsequent spread across host barriers. Depending on the viral family, the mechanism
differs, but the end goal remains the same: maximize spread and infectivity into host
tissues. The coxsackievirus and adenovirus receptor (CAR) was the first TJ protein to
be identified as a viral receptor for adenoviruses and coxsackie B viruses (reviewed by
Freimuth [174]). Since then, many studies have sought to identify how other viruses engage
with the TJ complex during infection [175]. Here, we highlight key findings from studies
on how rotaviruses, flaviviruses, influenza viruses and coronaviruses interact with host TJ
proteins and epithelial barriers during infection. One is left to conclude that virus evolution
has focused intensely and elegantly on disruption of the endothelial and epithelial barriers
to enhance virus spread through an organism.

Rotaviruses

Rotaviruses (RRV) are nonenveloped double-stranded RNA viruses that can cause
severe gastroenteritis in infants worldwide. Diarrhea being a major manifestation of RRV
infection, the human GI Caco-2 cell model has been used to study the effect of RRV infection
on epithelial barrier function. Key studies demonstrated that expression of RRV protein,
VP8, led to disorganization of occludin in TJs [176], and additional studies revealed that
VP8 could also alter the cellular location of TJ proteins ZO-1 and claudin-3 [177]. These
studies concluded that expression of VP8 allows the virus to generate ‘leaky’ TJs that
permits RRV in an apical/luminal compartment to permeate paracellularly to its host
receptor proteins, the integrins, located on the basal-lateral cell surface, thereby allowing
efficient viral entry into the cell. Although RRV infects mature enterocytes in the intestinal
epithelium, some studies utilized cultures of MA104 (epithelial monkey kidney cells),
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since these cells are highly permissive for virus replication. These studies showed that TJ
proteins JAM-A, ZO-1 and occludin were required for RRV entry into this cell type [178],
and that the RRV spike protein engaged JAM-A as a coreceptor for entry. Lastly, in addition
to roles for VP8 and Spike proteins in TJ interactions, the RRV NSP5 protein, a secreted
enterotoxin, was shown to induce leak across MDCK-1 renal epithelial cell layers [179].
These authors concluded that certain RRV viral proteins can function as complex entry
machinery that results in multiple routes of cellular infection by first impairing normal
function of TJs. Interestingly, low zinc serum levels have been associated with a higher risk
of RRV infection, regardless of rotavirus vaccine status [180], while Vitamin D has been
shown to alleviate RRV infection [181], indicating that micronutrient supplementation may
be useful as a prophylactic treatment against RRV.

Flaviviruses

Many of the enveloped, positive-sense RNA viruses within the Flavivirus family are
transmitted by arthropod vectors, such as the mosquito-borne pathogens, Zika virus (ZIKV),
West Nile virus (WNV) and the four dengue virus serotypes (DENV1–DENV4). The severe
form of the disease caused by DENV is referred to as dengue hemorrhagic fever (DHF),
in which a drastic increase in endothelial permeability can lead to hypovolemic shock in
patients. Viruses detected in brain microvascular endothelial cells led to the investiga-
tion of DENV infection in human dermal microvascular endothelial cells (HMEC-1). This
showed actin cytoskeleton rearrangements and displacement of occludin from TJs in this
cell type [182]. Further studies identified that the secreted form of the flaviviral protein,
NS1, acts a pathogen-associated molecular pattern (PAMP) to induce pro-inflammatory
cytokines that lead to increased vascular leak in vitro and in vivo [183,184]. DENV NS1
was also shown to directly alter endothelial barrier function by disruption of the endothe-
lial glycocalyx-like layer in cultured human pulmonary microvascular endothelial cells
(HPMEC) [185].

Interestingly, the NS1 protein is well conserved among flaviviruses. NS1 from DENV,
ZIKV, WNV, Japanese encephalitis (JEV) and yellow fever viruses (YFV) was found to
bind tissue-specific endothelial cells and alter transendothelial permeability based on the
tropism of each virus [186]. In addition to NS1, the WNV capsid protein was shown to be
sufficient to downregulate expression of the TJ protein, claudin-2, in the proximal tubules
of the kidney in mice, while the TJ proteins, claudin-1 and JAM-1, were shown to be
degraded in Caco-2, MDCK and HUVEC cell monolayers infected with WNV [187,188].
Similarly, in ZIKV-infected placentae, paracellular permeability was found to increase,
with claudin-4 protein levels being reduced at the basal surface of the syncytiotrophoblast
layer, suggesting that ZIKV alters the composition of placental TJs to enhance spread [189].
Since ZIKV infection causes microcephaly in infants, studies have also focused on ZIKV
infection of primary human brain microvascular endothelial cells (BMECs). Although
BMEC permeability was not affected by ZIKV infection, Leda et. al. showed that both
occludin and claudin-5 levels were significantly downregulated during infection [190].
These studies show that regulation of TJ proteins and reduction in barrier function are
strategies utilized by many members of the Flavivirus family.

This family also includes the hepaciviruses, such as the Hepatitis C virus (HCV)
that causes viral hepatitis. TJ protein, claudin-1, was first shown to be necessary for cell
culture-replicating HCV entry into human hepatoma cell lines, as well as retroviral particles
pseudotyped with HCV E1 and E2 [191]. Later studies confirmed the role of claudin-1 in
HCV entry and additionally found that claudins -6 and -9 also functioned well as cofactors
for entry into CD81+ human endothelial cells but functioned poorly in hepatoma cells [192].
Additionally, HCV infection altered TJ function with changes in localization of occludin
and claudin-1 in hepatoma Huh7 cells, with occludin being required for HCV pseudotyped
particles entry [193,194]. In an elegant study from Baktash [195], single particle imaging
then confirmed HCV accumulation colocalized with claudin1 and occludin at TJs, resulting
in internalization of particles via clathrin-mediated endocytosis into a three-dimensional
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polarized hepatoma system [195]. Additionally, the role of micronutrients such as zinc,
vitamin A and D in both acute and chronic infection of HCV is nicely summarized in a
review by Gupta [196], who highlight that combined vitamin A and D deficiency was found
to be a strong predictor of patients non-response to HCV antiviral therapy.

Influenza Viruses

Influenza viruses belong to the Orthomyxoviridae family and are classified into A,
B and C types based on their core proteins. The Influenza A virus (IAV) is a respiratory
pathogen that infects both humans and animals [197]. The IAV NS1 protein contains PDZ-
binding motifs (PBMs) located at the C-terminal, consisting of four amino acid residues,
which bind to cellular proteins that contain PDZ domains [198]. The avian strain, H5N1
NS1 protein contains a PBM with the sequence ESEV that was found to associate with PDZ
proteins, MAGI-1, MAGI-2, MAGI-3, Scribble and Dlg1. Infection of MDCK cells with this
strain showed a decrease in TJ integrity and an increase in paracellular permeability over
the course of infection, while strains containing other PBM sequences, such as ESEA, did
not display similar TJ disruption [198,199]. Further studies with H5N1 and H1N1 strains
of IAV showed that infection of co-cultures of epithelial and endothelial cells as a model
for the alveolar epithelial–endothelial barrier resulted in loss of the TJ protein, claudin-4,
in only the epithelial NCl-H441 cells [200]. Interestingly, a meta-analysis of studies on the
effects of Vitamin D and zinc on influenza infection concluded that both micronutrients
reduced the duration of symptoms as compared to no supplementation [201].

Coronaviruses

Coronaviruses (CoV) are a family of viruses that infect a wide range of species and are
associated with respiratory, GI and/or neurological diseases. Mouse hepatitis virus (MHV)
infection causes primary hepatic, respiratory, or enteric disease, followed by neurological
disorders in mice [202], and is often used as an animal model of CoV neuroinvasion.
In a study by Bleau [203], a highly hepatotropic MHV3 strain increased blood–brain
barrier permeability and lowered ZO-1, VE-cadherin and occludin, but not claudin-5
protein expression in murine BMEC cells [203]. Similarly, infection of porcine intestinal
epithelial cells (IPEC-J2) with porcine epidemic diarrhea virus (PEDV) and transmissible
gastroenteritis virus (TGEV) altered expression of ZO-1 and occludin, 1 h post infection,
which correlated with increased permeability across the epithelial cell layer [204]. Further
study of PEDV determined that occludin expression is increased but also displaced from the
TJ complex during PEDV infection, with occludin possibly serving a scaffolding function
after virus attachment to IPEC-J2 cells [205]. It should be noted that due to the prevalence of
PEDV and TGEV in the pork industry, several studies have looked at the effect of Vitamin
D and zinc supplementation on piglet disease progression [206–210], emphasizing the
importance of translational medicine research into micronutrients on viral infection.

The 2020–2022 global virus pandemic was caused by the human CoV called Severe
Acute Respiratory Syndrome-2 (SARS-CoV-2), named for its genetic similarity to the SARS-
CoV-1 virus outbreak in 2002 [211]. Both SARS-CoV viruses target the epithelial cells of the
respiratory tract, and in severe cases, patients develop diffuse alveolar damage and consoli-
dation of the lungs, suggestive of a leaky pulmonary barrier [212,213] Teoh [214] showed
that the small Envelope (E) protein from SARS-CoV-1 interacted with the TJ-associated
protein, PALS1, via a PBM at its C-terminus. Ectopic expression of E redistributes PALS-1
away from the TJ complex in Vero E6 cells and delays formation of TJs [214]. Follow-up
studies on the E protein from SARS-CoV-2 predict improved binding and increased affinity
of the novel viral E protein to PALS-1, which may account for the enhanced infectivity
and spread of SARS-CoV-2 [215–217]. Additionally, the PBM of the SARS-CoV-2 E protein
has been shown to interact with the PDZ domain-containing TJ protein, ZO-1 [218]. This
interaction is predicted to compromise epithelial barriers and cause TJ damage in cell layers,
leading to enhanced virus spread and respiratory morbidity in patients.
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Regardless of the role played by TJ modulation, micronutrients such as Vitamin D are
thought to play a useful role in reducing COVID morbidity, as a timely example of micronu-
trient action on viral infection [219]. An inhibitory effect of Vitamin D on SARS-CoV-2
replication in fact has been advanced and ascribed to Vitamin D binding to the viral pro-
teins, Mpro (main protease) and RdRP (RNA-dependent RNA polymerase) [220]. Binding
of Vitamin D to the endoribonuclease, Nsp15, has also been reported [221]. Zinc, another
micronutrient believed useful in reducing COVID severity, also binds to SARS-CoV-2 Mpro,
an action that is potentiated by the micronutrient quercetin [222].

2.6. Diabetes

There is an enormous, published literature showing that increased leak across ep-
ithelial and endothelial barriers is an integral part of diabetes. In keeping with diabetes’
systemic presentation, the leak appears to encompass any endothelial or epithelial tissue
that one can think of. The blood–brain barrier (BBB) and blood–retinal barrier (BRB) are two
very prominently researched examples, but the phenomenon appears universal throughout
the human body. The BRB leak is one of the oldest reported examples in the literature, with
analyses of altered BRB TJs in diabetic rats by electron microscopy being one example [223].
The Antonetti group has published a great deal on the BRB phenomenon, early on reporting
the decreased occludin content and increased paracellular leak that accompanies it [224].
Frey and Antonetti [225] have more recently reviewed the assembly of cellular and molecu-
lar mediators of this phenomenon. Klassen [226] reminds us that typical of the complexity
of diabetes, however, it is not that simple, and dysregulated transcellular transport is at
play here as well. Ocular pathology is not limited to the BRB either, as compromised barrier
function—and altered TJ proteins—have been shown in mouse and human corneal models
as well [227].

For the BBB, numerous reviews describing barrier compromise and TJ alteration exist,
such as Banks [228] and Prasad [229], which moreover show that the theme of barrier
compromise is associated with both type-1 and type-2 forms of the disease. As in other
tissues, the TJ alteration induced by the diabetic state (decreased occludin, claudin-5
and ZO-1) may follow from an induced proinflammatory state in the barrier cells, as
dysregulation of NF-kB, IL-1β, IL-6 and TNF-α have been observed [230,231].

The GI tract has been a focus of diabetes-associated barrier leak for two separate
reasons. The first and simplest is that this is yet another barrier that manifests leak in
diabetes. For example, in a mouse model a high-fat dietary-induced prediabetic state
showed a significant reduction in claudins -1, -2 and -3, in ZO-1 in the duodenum and
jejunum, but increased duodenal paracellular leak [232]. Streptozotocin-induced diabetes
in rats also associated with decreased expression of several TJ proteins and increased
barrier leak of 14C-sucrose [233]. In humans, obesity-linked type-2 diabetes occurred with
a reduction in jejunal occludin and tricellulin as well as increased jejunal transepithelial
permeability in a patient subset [234]. Horton [235] had earlier shown increased 51Cr-EDTA
intestinal leak in type-2 diabetes. This being the GI tract, the discussion of diabetes-related
barrier leak leads of course to consideration of diabetes-related change in the microbiome,
and its effects on barrier function as well as a consideration of the effects of endotoxin leak
across the leakier barrier [236]. This diabetes-related change in the GI microbiome is the
second reason why the GI tract is a major focus of diabetes-induced change in epithelial
tissues. The diabetes–GI barrier literature often points out that diabetes-associated GI leak
often occurs in the context of increased inflammatory mediators in the leakier mucosal
tissue [235,237].

In keeping with our earlier statement, that barrier leak in diabetes is systemic and
across many tissue types, diabetes-associated hyposalivation was shown to associate with
altered TJ protein expression in parotid glands [23]. In addition, gestational diabetes in a
rat model induced increased leak across the placental barrier along with decreased ZO-1
and occludin expression [238].
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2.7. Dust Mites

Although admittedly a bit eclectic, no better example exists than the dust mite of how
diverse the biomedical examples are of disease morbidity involving compromised barrier
function, and its associated rhinitis. Dust mite allergens have been found to comprise pro-
teolytic enzymes in dust mite feces that are able to cleave nasal epithelial TJs (including the
occludin protein itself), and thereby increase nonspecific transepithelial leak [239]. Specific
cleavage sites on the occludin protein have been found [240]. Although such proteases
have been linked to induction of apoptosis, the effect on TJs appears to be independent
(although apoptosis induction may likewise also compromise barrier function) [241]. The
Der p 1 antigen in dust mite feces has also been observed to decrease expression of the TJ
component proteins, claudin-1 and JAM-A, in sino-nasal epithelia [242]. Using nasal epithe-
lial cultures from controls vs. patients with dust mite-associated rhinitis, Steelant [243] also
observed decreased occludin (as well as ZO-1) expression and impaired barrier function.
The Der p 2 antigen was also observed to increase expression of claudin-2 [244]. The effect
is not confined to the sino-nasal epithelium either. The Der p 1 antigen has been found in
the human intestinal mucosa. In mouse and human studies, it was observed to associate
with decreased GI expression of several TJ proteins and increased TNF-α, a study wherein
the authors also speculate on a role in IBS [245]. Ma [246] interestingly observed that topical
Vitamin D application in air–liquid interface cultures may alleviate dust mite-induced
barrier compromise.

The dust mite studies are excellent examples yet again of how pathogen evolution
appears to have placed a focus on our TJ seals. Dust mites moreover are only an example
of the airway barrier compromising effect of a wide variety of allergens [247,248].

In summarizing this section on disease and barrier leak, one can very confidently
state that barrier compromise appears to be an integral component of the etiology of an
incredibly broad array of diseases. Inflammation is a typical common factor here, but the
association of barrier leak with disease may be considerably more nuanced than simply
deriving from inflammatory mediators.

3. Does Micronutrient Deficiency Lead to Barrier Compromise and
Exacerbate Disease?

The published literature is replete with studies that have shown a variety of specific mi-
cronutrient deficiencies result in compromised epithelial barrier function across a variety of
epithelial tissues with a variety of associated morbidities. The literature here is sufficiently
large that to keep this review manageable, we are focusing on only three specific micronu-
trients: zinc, Vitamin A (retinoic acid, retinol, retinyl esters) and Vitamin D (calcitriol,
cholecalciferol). These three micronutrients have the best developed body of evidence
supporting a causal association between deficiency and impaired epithelial barriers.

3.1. Zinc Deficiency

An excellent review on the topic of zinc deficiency and disease is that by Prasad [249].
This review highlights zinc deficiency’s prevalence worldwide and points out that it is not
simply associated with malnutrition but can occur with a high dietary phytate intake and
can be common among the elderly even in developed countries. It clearly summarizes the
association of zinc deficiency with diarrhea, especially infectious diarrhea in children. The
link between deficiency, diarrhea and impaired GI barrier function is discussed in a review
by Davidson [250].

The most abundant literature concerning zinc deficiency and impaired epithelial bar-
rier function is in the GI tract. Using a human GI cell culture model (Caco-2), a zinc deficient
culture medium (by zinc chelation) was found to decrease transepithelial electrical resis-
tance (TER); decrease the overall amount of the TJ proteins, ZO-1 and occludin; decrease
the phosphorylation state of occludin; and partially delocalize occludin and ZO-1 from
each other and from the TJ band [251]. Although the focus with zinc in investigations with
GI models typically focuses on TJs, Ranaldi [252] points out that the Caco-2 cell layers in a
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zinc-deficient state respond to TNF-α exposure with increased rates of cellular apoptosis in
an NF-kB-mediated process that would also impair barrier function.

The evidence coming out of animal studies typically takes the form of zinc deficiency
in concert with another physiological stressor. For example, dextran sodium sulfate-induced
colitis in rats is exacerbated by a state of zinc deficiency in the animals, further compromising
an already impaired GI barrier function [253]. Knockout mice defective in the zinc transport
protein, ZIP14—a genetic manipulation that models a dietary zinc deficiency—resulted in
reduced GI barrier function along with decreased occludin phosphorylation at sites known
to be important for TJ assembly [254].

The GI barrier compromise associated with alcohol intake is well known to be exacer-
bated by zinc deficiency. Zinc deprivation itself associated with epithelial barrier disruption
and added to the disruption induced by alcohol. Moreover, alcohol intake in mice not only
compromised the ileal barrier but also lowered the tissue zinc concentration [255]. This
pattern of alcohol intake lowering the tissue zinc levels—thus, the zinc deficiency adding
to the barrier compromise induced by alcohol intake—was also found to exist outside the
GI tract, manifesting itself in airway epithelia as well [256].

Zinc deficiency can result from low dietary zinc intake (e.g., certain vegan diets or
malnutrition generally) to non-zinc dietary components (e.g., high phytate content in the
diet), but recent research suggests that chronic proton pump inhibitor (PPI) use might also
be causal. Zinc uptake has been shown to be inhibited by PPI use in humans [257,258] as
well as rodents [259], although this phenomenon is not seen in all studies [260]. It also
does not necessarily follow that interference with uptake translates to lower systemic zinc
levels [261] although combination of PPI therapy with another disorder, such as chronic
kidney disease, is more likely to present with a zinc deficiency systemically [262].

3.2. Vitamin A Deficiency

A recent review on Vitamins A and D in intestinal homeostasis concludes that these
vitamins definitely play a regulatory role on TJ components [263]. Research on the GI
epithelia of fish has shown that Vitamin A deficiency consistently induced downregulation
of both an array of mRNA transcripts as well as actual TJ proteins [264,265]. In rats, Vitamin
A deficiency reduced ZO-2 in colonic epithelial cell layers [266]. In corneal epithelium, loss
of Notch1—a condition mimicking decreased Vitamin A downstream signaling—delayed
ZO-1 incorporation into TJs and impaired barrier function [267]. Chung [268] showed that
Vitamin A receptor deficiency delayed ZO-1 incorporation into Sertoli cell TJs. Huang [269]
earlier found that Vitamin A deficiency led to compromised Sertoli cell TJ barrier function.
Vitamin A deficiency in airway epithelial cell culture models shifted the actual differentia-
tion of the cells from a mucosecretory histology to a stratified squamous histology, though
the impact on barrier function was not addressed [270].

As was true with zinc deficiency, Vitamin A deficiency exacerbates other pathophysi-
ological states that themselves compromise barrier function. Vitamin A deficiency in rats
increased severity of lactose-induced diarrhea and the accompanying downregulation of
intestinal TJ proteins [271]. A remarkable study of the fecal microbiota of children with Vita-
min A deficiency has shown that their microbiome—transplanted to rodent colons—induced
colonic barrier dysfunction in germ-free mice, including downregulation of the barrier
proteins, occludin and claudin-1 [272].

However, the published literature is not in complete agreement. Ismail and Morales [273]
disputed the findings of Huang [269], showing instead that Vitamin A deficiency in rats
did not compromise Sertoli TJ barrier function. Gorodeski [274] actually claimed that a
Vitamin A-deficient culture medium increased the barrier function of cervical epithelial
cell layers.

3.3. Vitamin D Deficiency

Vitamin D deficiency can increase the risk of a variety of diseases that include an
epithelial or endothelial barrier compromise as part of their etiology. As one example,
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Vitamin D deficiency has been linked to increased severity and acquisition of viral infections
such as COVID-19 [275]. Lower serum Vitamin D levels have been reported in COVID-
positive patients compared to COVID-negative patients [276]. Diseases not associated
with viral infection but exacerbated by low Vitamin D levels include osteomalacia and
rickets [277]. A detailed review by Ames [278] describes many other disease outcomes
exacerbated by Vitamin D deficiency in African Americans. These include pregnancy
complications, cancer, diabetes and asthma complications, some involving epithelial barrier
compromise.

Many studies have associated a Vitamin D deficiency with specifically a leaky GI
epithelial barrier. It is hypothesized that this leaky barrier can progress to different GI
diseases such as IBD or celiac disease. In T84, a human intestinal epithelial cell line model,
supplementation with calcitriol increased the expression of the Vitamin D receptor (VDR)
and the formation of a complex with histone-deacetylase (HDAC11), which then promoted
TJ formation. This type of interaction is decreased in Vitamin D receptor-deficient cells and
leads to a leakier barrier [279]. Vitamin D-deficient mice showed an exaggerated increase
in colon permeability in response to bacterial infection [280].

In intestinal epithelial tissues, Vitamin D deficiency has been associated with disorders
that manifest impaired barrier function, such as UC and Crohn’s. In one study, lower
serum Vitamin D levels were correlated with the severity of Crohn’s Disease (CD). Mucosal
tissue from CD patients had lower expression of the TJ proteins occludin, claudin-1, ZO-1
and JAM-1 [281]. Kellermann et al. [282] speculated that low serum Vitamin D is linked
to more severe cases of IBD due to factors causing leaky gut. Vitamin D deficiency in
rodents has been shown to induce significant upregulation of the barrier-compromising
protein, zonulin, elevation of serum proinflammatory cytokines, and a decrease in the
intestinal barrier proteins, claudins -1, -3 and -7 [283]. Wei et al. [284] report that Vitamin D
deficiency exacerbates TNBS-induced barrier dysfunction in mouse colon and attribute this
exaggerated response to abnormal activation of the renin–angiotensin system, a pathway
commonly activated in IBD.

The majority of studies have focused on the barrier effect of Vitamin D deficiency in
specifically intestinal tissues, but other epithelial tissues can be affected as well. In the
blood–brain barrier (BBB), a study completed with VDHdef mice showed that their BBB had
reduced TJ expression after stroke, which could then potentially complicate recovery of
the brain [285]. Vitamin D deficiency also plays a role in lung diseases such as asthma and
COPD [286]. VDR-deficient mice were shown to have decreased mRNA and protein levels
of claudin-2, claudin-4, and claudin-12. These changes caused by Vitamin D deficiency
can be associated with lung permeability seen in pneumonia [287]. In at least one study
of Vitamin D deficiency, supplementation was shown to reverse the negative effects of
deficiency on the epithelial barrier regarding inflammation, an improvement accompanied
by change in claudin-1 expression [288].

4. Can Elevated Micronutrient Levels (Supplementation) Improve Barrier Function?
4.1. Zinc Supplementation

Zinc has the largest associated published literature of any micronutrient on the topic
of induced TJ changes and barrier enhancement. The majority of this literature focuses on
the GI tract, not surprisingly since zinc has long been known to be an effective treatment
for certain types of diarrhea [289–291]. Not surprisingly, many reviews have already been
published on the topic. Hering and Schulzke [292] and Amasheh et al. [293] both describe
zinc’s beneficial effects on GI barrier function in overall descriptions of micronutrient
actions on barrier function. Zhou and Zhong [294] discuss the palliative effects of zinc on
GI barrier function in the context of offsetting the barrier-compromising effects of alcoholic
liver disease. Skrovanek et al. [295] also focus specifically on zinc and barrier function but
in the more general context of miscellaneous GI diseases.

There are mainly four types of research studies that have been performed involving
zinc-induced changes in GI barrier function and TJs. The first two categories are those
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focused on the zinc effects on controlling (basal) epithelial barrier function, performed
using either epithelial cell culture models, such as Caco-2 or T84, or performed in animal
models. In the third and fourth categories are those studies looking at the zinc effects on
barrier compromise brought about by some pathophysiological condition or pathogenic
agent, and again using either cell culture or animal models.

In the first category, zinc in the 50–100 µM range has been reliably observed to increase
TER across normal Caco-2 cell layers. Wang et al. [4] and Valenzano et al. [296] did not,
however, observe an accompanying change in occludin or claudin-1 expression, nor was
there an accompanying decrease in transepithelial 14C-mannitol diffusion, although a
change in the localization of claudins -2 and -7 was observed. Shao et al. [297] also observed
a zinc-induced increase in TER across Caco-2 cell layers while also seeing increased ZO-1
expression, changes they observed were being transduced by the PI3K/AKT pathway.
Furthermore, in Caco-2 cell layers, zinc was found to reduce the bulk transepithelial fluid
flow, including lower transepithelial diffusion of FITC-dextran (4 kDa) [298]. A somewhat
related study in Caco-2 showed that downregulating the ZnR/GPR39 zinc-sensing receptor
decreased TER and reduced the expression of occludin and ZO-1 [299].

In the second category, numerous animal model studies of the zinc effects on basal
GI barrier function have been done in piglets. While also increasing occludin and ZO-1
expression in ileal mucosa, zinc dietary supplementation decreased the L/M ratio in the
urine, thereby signifying reduced small bowel leakiness [300]. Hu et al. [5] made a similar
observation concerning a zinc-induced reduction in FITC-dextran (4 kDa) jejunal leak and
upregulated occludin, ZO-1 and claudin-1 expression. Grilli et al. [301] likewise observed
increased occludin and ZO-1 content. Peng et al. [302] and Zhu et al. [303] observed this as
well as decreased spontaneous incidence of diarrhea. Wang et al. [304] noted that there were
also accompanying zinc-induced changes in the GI microbiome. To illustrate how varied
the models showing GI barrier improvement by zinc supplementation are, and how near
universal the phenomenon is, zinc-induced upregulation of occludin, ZO-1 and claudin-1
has also been seen in the jejunum of ducks [305]. Likewise, zinc-induced upregulation
of occludin and ZO-1 as well as reducing the L/M excretion ratio has been observed for
rat small intestine [306]. In mouse small intestine, knockout of the ZIP14 zinc transporter
was observed to increase the FITC-dextran leak and alter the phosphorylation state of
occludin [254]. It is worth pointing out, however, that the zinc action on the GI tract, its
fluid movements and diarrhea is not restricted just to the TJ, as zinc action on the ileal
short circuit current through inhibition of basal-lateral potassium channels can also be in
play [307].

In the third category, zinc has been shown to dramatically protect from the barrier
compromise produced by microbes and microbial toxins. Ranaldi et al. [308] recorded
that zinc supplementation of the Caco-2 cell layers prevented the barrier compromise
caused by Ochratoxin A. Similarly, zinc oxide afforded protection from the Caco-2 barrier
damage caused by enterotoxigenic E. coli [309]. This was later extended to protection
from Cryptosporidium-induced barrier compromise accompanied by reduced claudin-4
expression, both being improved by zinc treatment [310]. Shigella-induced damage of
T84 cell layers—reduced TER, increasing the FITC-dextran leak and mislocalization of
claudins -2 and -4—was also reduced by zinc [311]. A similar observation was made for
Salmonella-induced compromise of Caco-2 cell layers and downregulation of occludin and
ZO-1, these also being partially redressed by zinc treatment [297].

The fourth type of research study, animal model studies where zinc reduces or blocks
the barrier-compromising action of another agent, has a substantial published literature.
A piglet GI study of chemically induced colitis showed that zinc could partially block the
effects of the acetic acid-induced elevation of the FITC-dextran leak accompanied by de-
creased expression of occludin, claudin-1 and ZO-1 [312]. In dinitro-benzene-sulfonic acid-
induced colitis in rats, individually leaky TJs could be visualized in electron microscopy, a
phenomenon that was reduced by dietary zinc treatment [313]. Ethanol treatment increased
the transepithelial permeability in rat ileum while also decreasing occludin, claudin-1 and
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ZO-1, and this action was also partially blocked by zinc [314]. Simple malnutrition—produced
by a protein-deficient diet—led to barrier compromise and altered TJ structure in freeze
fracture electron microscopy, and this too was counteracted partially by zinc treatment [315].
Another study in duck intestine reported zinc’s ability to partially block lipopolysaccha-
ride (LPS) effects on barrier function and TJ proteins (occludin, claudin-1, ZO-1) [316].
Finally, zinc effects on specifically microbially-induced GI barrier leak in animal model
studies is a similar story. Alpha-hemolysin-producing E. coli induced barrier compromise
in pig colon along with claudin-4 and -5 downregulation, and this action was countered by
zinc [152]. Similarly, Clostridium perfringens-induced jejunal barrier compromise and tissue
inflammation in chickens was reduced by dietary zinc [317].

Before closing the discussion on zinc and GI barrier function, special mention of
a study performed in humans (a class of studies dealt with in its own section below)
merits attention here. The well-described GI barrier leak associated with heavy exercise
in humans was observed to be associated with changes in the small intestinal occludin
phosphorylation state. Both phenomena were found to be partially opposed by 14-day,
dietary zinc treatment [318].

The physiologically beneficial action of zinc on barrier function is by no means re-
stricted to the GI tract. Zinc was observed to increase the TER and decrease the paracellular
leak in a human gingival epithelial cell culture model [3]. A combination of zinc and argi-
nine was observed to protect against TNF-α-driven barrier compromise in another gingival
epithelial barrier function study by similar methods [319]. The zinc transport protein, ZIP9,
is known to mediate testosterone regulation of TJ formation in Sertoli cells [320]. Zinc has
been reported to counter the blood–brain barrier leak (along with occludin downregulation)
caused by aluminum exposure in rats [321]. Worth noting here is that zinc was reported to
actually induce leak in rat blood–brain barrier models, but this was observed in the context
of oxygen deprivation/ischemic conditions [322]. Zinc was without effect on basal barrier
function in a human airway epithelial cell culture model (16HBE) (Callaghan [14]), however,
it was showm in rat airway epithelial barriers made leaky by ethanol ingestion, that zinc
supplementation partially countered this effect [256]. In a porcine renal cell culture model
(LLC-PK1), zinc improved the basal barrier function (increased TER, decreased transep-
ithelial 14C-mannitol diffusion), but had no effect on the expression levels of occludin or
several claudins [323]. In the MDCK renal cell culture model, short-term zinc treatment also
increased TER as well as dilution potentials and bi-ionic potentials, but likewise exerted
no observed effect on occludin or ZO-1 [324]. In rat kidney, zinc was observed to protect
against aberrant TJ changes induced by cadmium [325]. It is worth mentioning that the
zinc effects seen in the LLC-PK1 renal cell culture model were potentiated by simultane-
ous treatment with the flavonoid quercetin [326]. The nutraceutical berberine—itself an
effective modulator of GI epithelial TJs and enhancer of barrier function—may have its
beneficial barrier effects mediated by increased intracellular zinc [327].

4.2. Vitamin A Supplementation

As was true for zinc, numerous reviews concerning Vitamin A and improved barrier
function have been produced. Three focus specifically on GI barrier function. de Medeiros
et al. [328] approach the topic from the point of view of an intestinal barrier compromised by
malnutrition and enteric pathogens in a pediatric population. Abdelhamid and Luo [329]
focus on autoimmune disease compromise of GI barrier function and the intertwined effects
of Vitamin A and Vitamin A-modified GI microbiota in offsetting that compromise. The
review by Cantorna et al. [263] examines GI barrier function modulation by Vitamins A
and D in the context of the GI microbiota and the mucosal lymphoid cell population.

Specific research studies have used both cell culture and animal tissue models to show
barrier improvement by Vitamin A by means of both upregulations of barrier proteins as
well as improved measures of actual transepithelial barrier parameters. Again, as was true
for zinc, the majority of these studies focus on the GI epithelial barrier. Increased TER and
increased ZO-2 protein content were induced by trans-retinoic acid treatment of Caco-2
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cell layers, along with decreased secretion of the barrier antagonist protein, zonulin [266].
In human intestinal organoids derived from human pluripotent stem cells, trans-retinoic
acid increased the ZO-1 content and TER and also decreased the transepithelial leak
of fluorescently labeled dextran [330]. A study in piglets by Wang et al. [331] did not
address intestine barrier function per se but did observe that Vitamin A treatment increased
parameters such as villous height, crypt depth and number of villi per unit area, findings
that would suggest barrier improvement. In human colon adenocarcinoma cells in culture,
trans-retinoic acid increased junctional subcellular localization of ZO-1 and occludin, an
effect possibly mediated by downregulation of myosin light chain kinase [332].

Vitamin A was also effective in partially or fully restoring the GI barrier function that
was compromised by different types of disease. Filteau et al. [333] reported that although
Vitamin A was ineffective in improving the barrier function of healthy GI mucosa of infants,
it significantly reduced the barrier compromise in an HIV-infected infant population. Lima
et al. [334] observed a Vitamin A-induced decrease in lactulose and mannitol leakage
in a pediatric population, a change that was associated moreover with reduced Giardia
infection. In mice, the intestinal content of ZO-1, claudin-1 and occludin was reduced by
endotoxin exposure, an effect that was partially offset by Vitamin A pretreatment. Aberrant
subcellular localization of claudin-1 was also improved by Vitamin A, both effects possibly
relating to a Vitamin A reduction in tissue levels of TNF-α and Interleukin-6 [335]. In
Caco-2 cell layers challenged by endotoxin, pretreatment with Vitamin A significantly
offset the ensuant TER reduction and reduced the decrease of occludin, claudin-1 and ZO-1
expression produced by endotoxin [336]. A similar finding was made in the HT-29 model
with LPS and Vitamin A [337]. Similarly, Caco-2 cell layers made leaky (decreased TER) by
exposure to Clostridium difficile toxin A were less leaky in the presence of Vitamin A [338].

There is substantial evidence of Vitamin A-induced barrier function enhancement
in non-GI models as well. In the MDCK renal epithelial cell culture model, Vitamin A
decreased the transepithelial inulin leak, while increasing expression of occludin, ZO-1
and claudins 1–4 [339]. Diabetes-induced reduction of occludin, claudin-2 and claudin-
5 in rat kidney proximal tubules was partially blunted by Vitamin A treatment [340].
In the human airway epithelial cell culture model, 16HBE, Vitamin A improved basal
barrier function (increased TER, reduced mannitol leak, increased levels of claudin-4),
while also reducing the TNF-α-induced compromise of barrier function [14]. Lochbaum
et al. [341], however, reported a negative effect of Vitamin A on barrier function of the
human epithelial pulmonary adenocarcinoma cell line model, NCI-H441. In oral epithelial
models, Hatakeyama [342] reported increased expression of occludin, ZO-1 and claudin-4
as a result of Vitamin A treatment. Groeger et al. [343] and Rybakovsky et al. [3] both
reported Vitamin A-mediated improvement of gingival barrier function (increased TER,
decreased mannitol leak), also with increased claudin-4 expression. Vitamin A has also been
observed to modulate TJ proteins in the blood–testes barrier (occludin, ZO-1 and claudin-11
upregulation) and in brain capillary endothelia (occludin and claudin-5 upregulation) as
well [344,345]. In lung endothelia, Vitamin A increased TER and reduced transendothelial
albumin leak while also increasing ZO-1 and 7H6 junctional protein expression [346].
Retinal pigmented epithelial (RPE) cell layers showed improved barrier function (increased
TER) after Vitamin A treatment while also increasing occludin and ZO-1 [347].

In effects that suggest a differentiation-inducing action of Vitamin A, Kubota et al. [348]
reported upregulation of TJ proteins (occludin, claudin-6 and claudin-7), decreased transep-
ithelial leak of 10 kDa dextran and increased complexity of TJ ultrastructure in F-9 embry-
onal carcinoma cell layers. Tobioka et al. and Retana et al. [349,350] reported a Vitamin
A-induced increase in TJ protein expression (occludin) and improved barrier function
(increased TER) in mesothelial cell layers. Vitamin A has also induced TJ formation in
epidermal keratinocyte cultures while modulating TJ protein expression [351,352].

Vitamin A action, however, has been reported to compromise barrier function in
certain models. In addition to the airway model reported above by Lochbaum et al. [341],
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this negative action has been reported for cervical epithelia by Gorodeski et al. [353] as well
as the Caco-2 intestinal model under serum-free conditions [354].

4.3. Vitamin D Supplementation

In the previous section, we reported how a Vitamin D deficiency can induce epithelial
barrier leak in a variety of tissues/cell types. It is not necessarily true, however, that Vitamin
D supplementation would do the converse, namely, improve barrier function. However, in
many cases, this in fact is true. It suggests that concentrations/intakes of Vitamin D above
the RDA levels would be efficacious in reducing barrier leak in certain tissues.

Excellent reviews targeting this subject of Vitamin D supplementation and improved
GI barrier function exist. Gubatan and Moss [355] approach the topic from the viewpoint
of the inflamed barrier in ulcerative colitis (UC), describing how Vitamin D can protect
the barrier by modifying TJ proteins and reducing rates of epithelial apoptosis. They also
point out that UC patients frequently present with Vitamin D deficiency, as well as the fact
that Vitamin D also modifies the GI microbiome. Cantorna et al. [263] in addition describe
studies with the Vitamin D receptor as well as Vitamin D but reaching the same conclusion.
Noriega and Savelkoul [356] describe how the Vitamin D status during gestation and early
life may be mitigating allergy susceptibility possibly through airway and GI epithelial
barrier functionality. Battistini et al. [357] review publications showing that Vitamin D
deficiency and supplementation may achieve their effects on GI barrier function in part
through Vitamin D effects on the GI microbiome.

As indicated in the above reviews, most of the published literature on this phenomenon
of Vitamin D improvement/protection of barrier function comes again from studies on the
GI tract. The majority also focuses on a prominent disease associated with barrier leak,
namely, Inflammatory Bowel Disease (IBD), and particularly UC. Epithelial cell culture
models of UC typically involve proinflammatory cytokine treatment of Caco-2 or other
GI epithelial cell culture models. Du et al. [358] showed that Vitamin D can inhibit TNF-
α-induced increases in Caco-2 cell layer permeability as well as MLCK activation. Kong
et al. [359] earlier showed that Vitamin D could enhance basal Caco-2 barrier function
as seen by increased TER and modifications of TJ proteins. Vitamin D Receptor (VDR)
knockdown had the opposite effect. Lee et al. [360] noted that LPS treatment of IEC-18
cell layers induced TNF-α synthesis and barrier leak accompanied by decreased ZO-1 and
claudin-2, all of which were reversed by Vitamin D. In animal studies, Kong et al. [359]
observed that knockout of VDR increased the severity of DSS-induced colitis. A similar
finding was reported by (Zhao, et al. [361]). Liu et al. [362] observed that Vitamin D
reduced the severity of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice,
increasing the barrier properties and the occludin and ZO-1 levels. Du et al. [358] reported
a similar finding along with Vitamin D reducing MLCK activation. Chatterjee et al. [363]
used Vitamin D treatment or VDR overexpression to decrease susceptibility to chemically
induced colitis, which correlated with overexpression of claudin-15, whose promoter is
targeted by Vitamin D. The claudin-2 promoter is also held to be directly regulated by
Vitamin D [364]. LPS-induced GI inflammation was also reduced by Vitamin D, which
restored the reduced levels of claudins -1 and -5 [365]. A combined study of Vitamin D
and Vitamin C supplementation has suggested that effects on claudin-2 levels and barrier
improvement may be mediated through Notch signaling [366].

There are also non-UC studies involving the GI tract and Vitamin D. Caco-2 cell
layers incubated with enterohemorrhagic E. coli manifested impaired barrier function, a
condition reversed by simultaneous incubation with Vitamin D [367]. Campylobacter jejuni
impairment of intestinal barrier function (TER and fluorescein permeability) in mice was
partially reversed by Vitamin D supplementation [147]. Caco-2 cell layers made leaky by
ethanol exposure were partially protected by preincubation with Vitamin D, a phenomenon
also observed in mouse intestine [368]. In a celiac disease-related model, Caco-2 cell lay-
ers exposed to gliadin peptides exhibited increased transepithelial leak to FITC dextran
4000, which was partially blocked by simultaneous incubation with Vitamin D [369]. CCl4-
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induced cirrhosis in mice is accompanied by intestinal barrier compromise with increased
bacterial translocation, but simultaneous treatment with Vitamin D was observed to pre-
serve intestinal barrier function [370]. A similar Vitamin D protection of intestinal barrier
function was observed regarding the increased intestinal bacterial translocation induced by
severe burn injury in mice [371]. Decreased rat GI barrier function and increased bacterial
translocation in cirrhotic rats was partially reversed by Vitamin D supplementation, along
with upregulation of occludin and claudin-1 [372].

This overall theme of Vitamin D protection of epithelial barrier function also holds true
in various epithelial tissues other than the GI tract. In a human retinal pigment epithelium
cell culture model, LPS and TNF-α-induced barrier compromise and TJ alteration were
offset by Vitamin D exposure [373]. Dust mite-induced rhinitis induces barrier leak in hu-
man nasal epithelial cell layers, a condition partially countered by Vitamin D [246]. Mouse
urinary bladder epithelial barriers compromised by E. coli infection were partially pro-
tected by Vitamin D administration, reversing the infection-induced reduction in occludin
and claudin-14 [374]. Partial VDR knockout in mice resulted in a more severely, LPS-
compromised pulmonary epithelial barrier, with decreased occludin and ZO-1 expression,
and this situation was alleviated by Vitamin D [375]. Mice exposed to the asthma-inducing
agent, toluene diisocyanate, developed increased leak across their alveolar barriers along
with decreased occludin expression, with both phenomena partially reversed by Vitamin D
treatment or an ERK1/2 inhibitor [376]. Hypoxia-induced compromise of mouse brain cap-
illary endothelia barriers (decreased TER, increased FITC-dextran [40 kDa] leak) along with
decreased ZO-1, claudin-5 and occludin, was prevented in its entirety by Vitamin D treat-
ment [377]. Finally, regarding the epidermal barrier, oral Vitamin D improvement of atopic
dermatitis in humans is postulated to involve Vitamin D-improved barrier function [378].

In closing, it is worth pointing out that this beneficial effect of Vitamin D on barrier
function is not exclusively about decreased permeability. This fact speaks to the degree
of fine tuning that exists regarding the regulation of our epithelial barriers by Vitamin D
and certain micronutrients in general. There exist certain electrolytes and nonelectrolytes
whose physiological absorption/reabsorption in the GI tract and the kidney occur via the
paracellular pathway, i.e., through the TJ barrier. Ca++ and Mg++ are prominent in this
regard. It is very worth noting that Vitamin D treatment increases duodenal Ca++ absorption,
in large part through the paracellular pathway, in a process believed to rely in part on
upregulation of claudins -2 and -12 [379,380]. Vitamin D-induced increase in paracellular
Ca++ diffusion has been verified in the Caco-2 cell culture model [381]. However, a warning
on the Mg++ side is that Vitamin D transcriptionally repressed claudin-16 expression, and
this has been observed to lead to increased Mg++ (and Ca++) excretion in urine [382].

5. Clinical Evidence for Elevated Micronutrient Levels as Therapeutic Strategies:
Patient-Based Studies

The model for which there is the least amount of reported evidence for improved
barrier function by micronutrients is the all-important patient-based clinical studies. These
are also the studies (models) most fraught with issues of inherent variability emanating from
individual differences in genetics, age, diet and medications—perhaps not a coincidence,
then, that they are in scarcity. Camilleri [383] very validly points out in a recent review that it
has never been conclusively proven that although micronutrient fortification of (intestinal)
epithelial barrier leakiness is apparently quite real, conclusive evidence showing true
amelioration of disease-related clinical manifestations by barrier-enhancing micronutrients
has been elusive.

Though few studies appear to have been done, and inconclusiveness is an obvious
conclusion throughout, evidence in this key model does nonetheless exist and is growing.
DiGuilio et al. [384] have very recently reported that oral zinc administration does induce
TJ protein changes (increased levels of claudins -3 and -5) along with general transcrip-
tome changes suggestive of modified barrier function in healthy human duodenal mucosa
(abstract presentation at annual meeting of the American Gastroenterological Association,
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2021). However, functional barrier studies had not yet been performed. Other groups
have, however, reported functional improvement of the GI barrier in humans by zinc.
Sturniolo et al. [385] reported a reduction in the L/M permeability ratio by 40% in Crohn’s
Disease patients treated with an oral zinc supplement for 8 weeks. Roy et al. and Alam
et al. [386,387] had reported that zinc reduced the L/M ratios in children with acute or
persistent microbial-driven diarrhea. Ryan et al. [388] had a similar finding with children
manifesting diffuse enteropathy characterized by T-cell infiltration of small bowel mucosa.
Using the very similar lactulose/rhamnose (L/R) permeability test, zinc-improved GI
barrier function was also demonstrated in a pediatric population with gastroenteropa-
thy [389]. In a healthy adult study, where vigorous exercise was used to elevate the L/R
ratio, zinc carnosine was able to reduce the L/R ratio to near normal values [318]. An
ex vivo study in asthmatic patients with Dermatophagoides pteronyssinus allergies showed
that zinc supplementation reduced secreted levels of Interleukins -4 and -17, suggesting
reduced systemic inflammation may partially account for zinc’s positive effects on barrier
function [390].

Colon biopsy tissue from actively inflamed mucosa of UC patients showed a reduction
of claudins -4 and -7 expression. After incubation (ex vivo) with Vitamin D, these expression
levels were increased [391]. Again, in ex vivo studies with colon biopsies from UC patients,
Vitamin D decreased the claudin-2 levels while increasing the claudin-4 levels [392]. In a
study of Crohn’s Disease patients in China, serum levels of Vitamin D were not only lower
than in healthy controls, but those levels inversely correlated with the Crohn’s Disease
Activity Index in the patients, and directly correlated with levels of expression of TJ proteins
(occludin, claudin-1, ZO-1 and JAM-A) in the GI mucosa [393]. Meckel et al. [394] also
observed that Vitamin D levels in serum were inversely correlated with UC colon mucosal
inflammation, and positively correlated with the colon biopsy occludin and ZO-1 levels.
In a Vitamin D patient-based study not focused on GI barrier function, Dancer et al. [395]
reported that lung water accumulation in Adult Respiratory Distress Syndrome (ARDS)
was exacerbated in patients with Vitamin D deficiency and, in turn, reduced significantly
by Vitamin D supplementation.

Filteau et al. [333] reported in infant small intestine that whereas Vitamin A treatment
had no effect on basal barrier function, it did reduce HIV-mediated barrier compromise.
Lima et al. [334] observed that Vitamin A treatment reduced the GI leakage of lactulose and
mannitol individually (but no significant change in the L/M ratio) in a pediatric population
(while also reducing incidence of Giardia infection). Thurnham et al. [396] reported that the
Vitamin A treatment of infants reduced the increase in L/M that is associated with weaning.

Although not a micronutrient, the GI zonulin antagonist (drug), larazotide, has been—
and is being—tested in humans, but has had mixed results regarding barrier function
improvement across a variety of different patient populations [143].

6. Current Nutrition Guidelines and Consideration of Micronutrient Elevation as an
Adjuvant Therapeutic

The concept or guideline of the Recommended Dietary Allowance (RDA) establishes
the frame of reference by which health care workers judge the nutrient needs of a patient.
The Institute of Medicine’s Food and Nutrition Board first introduced the RDA in the 1940s.
Initially, reviewed every 5–10 years, the purpose of these specific nutrient standards was
to prevent nutrient deficiencies and reduce nutrition-related chronic diseases. In 1997, the
Dietary Reference Intakes (DRIs) were established, expanding upon the RDA index. The
DRI is a more comprehensive term that includes the Estimated Average Requirement (EAR),
the RDA, Adequate Intake (AI) and Tolerable Upper Intake Level (UL). The EAR is the
amount of nutrient intake that meets the estimated nutrient needs of half of the individuals
in a population group. The EAR is derived based on best available evidence from scientific
studies and is used to develop the RDA. The DRIs continue to be reviewed and updated on
a regular basis as sound evidence-based research becomes available. The current RDAs
for zinc and Vitamin A were established in 2001, and for Vitamin D in 2011. The current



Int. J. Mol. Sci. 2022, 23, 2995 23 of 42

RDA for zinc is 8 mg for females and 11 mg for males; for Vitamin A, 700 mcg (2333 IU) for
females, 900 mcg (3000 IU) for males; and for Vitamin D, 15 mcg (600 IU) for adults up to
70 years old [397–399]. (See Table 1).

According to the Institute of Medicine, US Panel on Micronutrients, consumption of
the quantity of the RDA of a specific nutrient should decrease one’s chance of developing
a condition that is both associated with that nutrient and that negatively affects one’s
functional status. The DRIs are conservatively established and cautiously revised as their
sole purpose is to prevent deficiency and avoid toxicity on the population level. A gap
exists in the published literature as to what nutrient level may provide a pharmacologic
and therapeutic effect on specific disease states. In addition, it is important to recognize
that the DRIs were established for healthy individuals consuming a normal oral diet and
were never designed to be applied to those on nutrition support with or without an acute
illness or inflammatory process [397,398,400].

Table 1. Current recommended adult daily oral and parenteral micronutrient requirements and
content provided in multi-vitamin/trace products currently available in the US [398,401,402].

Recommended Oral
Requirements

Recommended
Parenteral
Requirements

Content Provided in
Multi-Vitamin/Trace
Products Currently
Available in the US

Vitamin A Male: 900 mcg or 3000 IU
Female: 700 mcg or 2333 IU 990 mcg or 3300 IU 3300 IU per 10 mL in

MVI

Vitamin D Age 19–70 years: 15 mcg or
600 IU 5 mcg or 200 IU 200 IU per 10 mL in

MVI

Zinc Male: 11 mg
Female: 8 mg 3–5 mg varies between 3–5 mg

based on product
MVI: injectable multivitamin.

There is much debate about how the RDA levels were established and how they can be
revised. Only after much advocacy in 2011, the RDAs for both calcium and Vitamin D were
increased in part to address the issue of bone fractures. Currently, the DRIs also include a
Tolerable Upper Intake Level (UL). Researchers have advocated for the UL framework to
be revised. Rather than a single point value, a description of the range of adverse effects
merits being advocated for. Altering the hard stop UL may make higher doses of specific
nutrients available and recommended for specific conditions as long as potential adverse
effects are made known (as with any other medication) [398,400].

On a larger scale, the RDA system is complicated by a number of variables. First, there
is no analytical model or established framework for assessing disease outcomes for most
nutrients. Second, a regular review process for existing DRIs does not exist. Related to this,
there is a lack of consistent financial funding from the government for DRI-related research
and activities [398,400].

The current recommended parenteral doses of fat-soluble vitamins (e.g., Vitamins A
and D) are approximately equal to the current oral RDAs for these vitamins. These par-
enteral recommendations are based on the assumption that in parenteral feeding, bioavail-
ability will be greater, but requirements may be higher due to disease conditions affecting
metabolic needs, malabsorption, and baseline deficiencies. Since the Institute of Medicine
increased the oral RDA for Vitamin D back in 2011, there is concern as to how appropriate
the current recommended parenteral Vitamin D dose may be [398,401,402].

In 2012, the American Society for Parenteral and Enteral Nutrition (ASPEN) published
a position paper about the recommendations for changes in commercially available par-
enteral multivitamin and multi-trace element products. Following this, ASPEN published
another paper in 2015 calling on nutrient manufacturers to produce products that adhere to
their recommendations for these nutrients. Highlighting the growing awareness of a need
to increase the daily allowances of certain micronutrients in at least certain pathophysiolog-
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ical states, the authors in two publications have, for example, urged the parenteral nutrition
industry leaders and the Food and Drug Administration (FDA) to create a separate par-
enteral Vitamin D product. There are no current Vitamin D options/products available in
the US for patients who are dependent upon parenteral nutrition and unable to tolerate
oral vitamins. Vitamin D, like other micronutrients, is absent from parenteral nutrient
admixtures, and is provided only at low levels in commercial multi-vitamin/trace product
supplement mixtures. Providing adequate Vitamin D to patients requiring parenteral
nutrition continues to create significant challenges for health professionals.

Individual parenteral zinc (on top of what is provided in m ulti-vitamin/trace product
supplements) is available to be added to parenteral nutrition admixture when needs are
greater than what a multi-trace element product includes. Similarly, individual intra-
muscular Vitamin A products are available to be given to patients who have greater needs
or develop deficiency. However, the general issue of elevating Vitamins A and D, as well
as zinc, above the RDA levels in at least certain pathophysiological conditions remains
open [397,398,401]. With regard to enterally fed individuals, most enteral formulations
meet the DRIs of vitamins and minerals when given as a complete source of nutrition
(i.e., provided in volumes of 1000–1500 mL/d or at least 1500 calories/day). However, note
that in both cases—parenteral and enteral—the formulations are designed to achieve the
DRI levels of daily micronutrient intakes.

The above discussion has dealt partly with the issue of the proper levels of Vitamin A,
Vitamin D and zinc in non-healthy, tube-fed individuals. In other words, the discussion
centers on the question of the therapeutic use of elevated micronutrient levels. Our review
would question whether the currently delivered therapeutic levels (enteral and parenteral
levels) are sufficiently high given the effectiveness of these three micronutrients in reduc-
ing disease-associated epithelial and endothelial barrier leaks (Figures 2 and 3). There is,
however, also the issue of a proper prophylactic; the health-supporting level of these mi-
cronutrients in healthy individuals and whether the current RDA levels adequately address
those needs; and given the novelty, the evolving information about these micronutrients
and epithelial/endothelial barrier leak, and how that may influence disease onset. This
is especially true regarding infectious diseases whose pathogens must typically cross a
barrier to fully infect an organism.

Figure 2. For many micronutrients, a therapeutic range can exist between the Recommended Daily
Allowance (RDA) and concentrations/intakes that are toxic to the organism. In this range, activation
of normally quiescent signaling pathways can occur, leading to beneficial physiological changes,
among which is improved barrier function.
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Figure 3. Various cell culture, animal and human studies indicate that intake of 20–100 mg of zinc
per adult per day (which will result in transient blood levels in the 25–100 µM range) can achieve
beneficial, zinc-induced physiological changes, among which may be TJ remodeling and barrier
improvement.

7. Summary

The conclusions from this review are fourfold: (1) epithelial and endothelial bar-
rier compromise are endemic across a wide range of diseases; (2) deficiencies in specific
micronutrients, such as zinc, Vitamin A and Vitamin D, can result in barrier leak and
exacerbate both the leak caused by certain disease states and overall morbidity; (3) supple-
mentation of these micronutrients can improve barrier function and reduce the impact of
some disease states on barrier compromise; and (4) current nutritional guidelines do not
acknowledge the ability of certain micronutrients to improve barrier function or reduce
barrier compromise at levels above their current RDAs but below their toxicity limits. This
is true for the general population but perhaps even more pointedly true for inpatients on
supplemental feeding. These conclusions would seem to suggest that in certain medical
conditions and disease states, supplementation of these micronutrients above the RDA
levels may improve morbidity and have a genuine place in standard medical care. For the
mindset of, “How significant can a micronutrient be?”, consider that even modest improve-
ments in morbidity may be sufficient to, e.g., allow an individual’s systemic physiology to
be sustained to the point where their immune response can suppress a specific microbial
infection. We are moreover discussing substances whose toxicity profiles are very well
known, and that tend to be not only relatively inexpensive to produce but are moderate to
very stable in the field. All these considerations would seem to argue for the medical use of
elevated micronutrients in various prophylactic as well as therapeutic/critical care settings
as adjuvant approaches. In an emerging pandemic situation, such as COVID-19, the use of
selected micronutrients to reduce barrier leak and stabilize physiology could be an early,
rapid-use therapeutic utility as more substantive therapeutics are being developed. These
micronutrients could also be useful prophylactically in strengthening epithelial defenses
and reducing disease incidence.
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