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Abstract: Currently, more than 55 million people live with dementia worldwide, and there are nearly
10 million new cases every year. Alzheimer’s disease (AD) is the most common neurodegenerative
disease resulting in personality changes, cognitive impairment, memory loss, and physical disability.
Diagnosis of AD is often missed or delayed in clinical practice due to the fact that cognitive deteriora-
tion occurs already in the later stages of the disease. Thus, methods to improve early detection would
provide opportunities for early treatment of disease. All FDA-approved PET imaging agents for Aβ

plaques use short-lived radioisotopes such as 11C (t1/2 = 20.4 min) and 18F (t1/2 = 109.8 min), which
limit their widespread use. Thus, a novel metal-based imaging agent for visualization of Aβ plaques
is of interest, due to the simplicity of its synthesis and the longer lifetimes of its constituent isotopes.
We have previously summarized a metal-containing drug for positron emission tomography (PET),
magnetic resonance imaging (MRI), and single-photon emission computed tomography (SPECT)
imaging of Alzheimer’s disease. In this review, we have summarized a recent advance in design of
Aβ-targeting bifunctional chelators for potential therapeutic and PET imaging applications, reported
after our previous review.
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1. Introduction

Alzheimer’s disease (AD) is a multifactorial neurodegenerative disorder, which is
characterized by a number of hallmarks, such as cerebral deposition of amyloid β-protein
(Aβ) and intracellular neurofibrillary tangles (NFTs) formed by tau protein, neuroinflamma-
tion and loss of cholinergic neurons [1,2]. Aβ is produced from amyloid precursor protein
(APP), which is formed from cleavages by β-secretase and γ-secretase, which leads to the
formation of two predominant Aβ alloforms, Aβ40 and Aβ42 [3]. Thus, Aβ42/Aβ40 blood
level is widely used as a biomarker of PET status of AD patients [4]. In addition, soluble
Aβ oligomers have been shown to be involved in the synapse loss and neuronal injury [5].
The formation of Aβ-metal conjugates is often accompanied by the generation of reactive
oxygen species (ROS) through Fenton chemistry, which in turn leads to enhanced oxidative
stress [6].

Among the various imaging modalities such as magnetic resonance imaging (MRI)
and computerized tomography (CT), positron emission tomography (PET) and single
photon emission computed tomography (SPECT) are extensively used in the diagnosis of
neurological disorders [7]. MRI and PET are the most frequently used imaging techniques
in clinical settings. However, MRI has low detection sensitivity and can only visualize
the larger plaques or tangles (>50 µm) with long acquisition time [8]. Compared with
MRI, radiolabeled PET and SPECT probes have high sensitivity and can visualize most
interactions between physiological targets and ligands [9]. In addition, optical imaging of
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Aβ plaques is of high interest due to several undeniable advantages, such as being non-
invasive, non-radioactive, and inexpensive [10,11]. However, optical imaging is still limited
by weak penetration, especially considering the fact that Aβ plaques and tau proteins are
buried inside the brain [12].

The first PET in vivo imaging of Aβ in an AD patient was performed in 2002 with the
11C-labeled Pittsburgh compound B ([11C]PIB, Figure 1), a radiolabeled PET traced based
on Aβ staining agent thioflavin-T (ThT) [13]. To date, [11C]PIB is still a gold standard for
non-invasive amyloid imaging in humans. However, the short half-life of the 11C isotope
(T1/2 = 20 min, β+ ≈ 100%, Emax = 0.96 MeV) was a stimulus for the design of a novel
PET-tracers labeled with longer-lived nuclides. Widely used in clinical practice, the 18F
isotope possesses the longer half-life (T1/2 = 110 min, β+ = 97%, Emax = 0.63 MeV), which
greatly simplifies both the synthesis of radiopharmaceuticals based on it and its clinical use.
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apy. The well-established coordination chemistry of copper allows for its reaction with 
different types of chelator systems [23]. Thus, several 64Cu-based coordination compounds 
were successfully used in vivo for the PET imaging and diagnosis of tumors [24] and hy-
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In addition, 68Ga (T1/2 = 68 min, β+ = 89%, Emax = 1.92 MeV) is a generator produced 
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Figure 1. FDA-approved drugs for PET-imaging of amyloid plaques: Pittsburgh Compound-B
([11C]PIB), [18F]flutemetamol ([18F]GE-067), [18F]NAV-4694 (AZD-4694), [18F]florbetaben ([18F]AV-1,
[18F]BAY-94-9172), and [18F]florbetapir ([18F]AV-45).

Therefore, there are several 18F-based radioligands with favorable binding and imag-
ing properties, [18F]florbetapir ([18F]AV-45), [18F]florbetaben ([18F]AV-1, [18F]BAY-94-9172),
and [18F]flutemetamol ([18F]GE-067) that have also been approved by the United States
Food and Drug Administration (FDA) for clinical diagnosis of AD [14–19] (Figure 1).

However, these PET imaging agents are still labeled with short-lived radioisotopes,
and a production of these isotopes makes PET diagnostics dependent on cyclotron location
and limits the use of radiopharmaceuticals [20,21]. In addition, radiolabeling schemes of
11C and 18F complexes often require complex multistep synthesis.

Among the Aβ imaging products being developed, special attention is paid to coordi-
nating copper compounds for PET imaging of amyloid plaques. Copper cations seem to be
one of the main cationic elements in Aβ plaque formation, and Cu2+ has been shown to
stabilize soluble neurotoxic Aβ species [22]. One copper radionuclide, 64Cu (t1/2 = 12.7 h,
β+ = 17%, β– = 39%, electron capture EC = 43%, and Emax = 0.656 MeV) has a unique
decay profile and can be used for positron emission tomography imaging and radionuclide
therapy. The well-established coordination chemistry of copper allows for its reaction with
different types of chelator systems [23]. Thus, several 64Cu-based coordination compounds
were successfully used in vivo for the PET imaging and diagnosis of tumors [24] and
hypoxia [25].

In addition, 68Ga (T1/2 = 68 min, β+ = 89%, Emax = 1.92 MeV) is a generator produced
positron-emitting radionuclide, thus allowing for the distribution of PET imaging agents
independent of on-site cyclotrons [26]. Further., the complex formation reaction is simple,
does not require the synthesis of radiolabeled ligands, and allows convenient introduction
of a radioactive label at the last stage of the synthesis, which favorably distinguishes
metal-containing radiopharmaceuticals from those based on 11C and 18F.

We have previously summarized a metal-containing drug for positron emission tomog-
raphy (PET), magnetic resonance imaging (MRI), and single-photon emission computed
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tomography (SPECT) imaging of Alzheimer’s disease [27]. In this review, we summarize a
recent advance in design of Aβ-targeting bifunctional chelators for potential therapeutic
and PET imaging applications.

2. Bifunctional Chelators for Visualization of Aβ Plaques

Aβ aggregates possess amphiphilic properties, including hydrophobic cores and
water-soluble hydrophilic regions [28]. Thus, a conjugation of hydrophilic moieties to
hydrophobic Aβ fibril-binding fragments is an effective strategy to design Aβ-targeted
ligands, as such an amphiphilic molecule can interact with both the hydrophobic regions
and the hydrophilic residues of the soluble Aβ oligomers. In addition, as AD is a complex
disorder with multiple pathogenic factors, a novel paradigm for AD treatment is the design
of multifunctional compounds (MFCs). Thus, both for PET imaging agent design and for
anti-AD drugs, a common approach is a development of bifunctional chelators (BFCs) via
bioconjugation of a metal chelator that forms highly stable complexes with Aβ-targeting
aromatic moiety [29–31].

For Aβ-affinic aromatic moiety, a number of fibril-specific dyes are commonly used,
such as Congo Red (CR) or ThT. Despite the fact that neither CR nor ThT are suitable for
in vivo application, they serve as the promising scaffolds for development of improved
imaging agents to detect amyloid accumulation [32].

For copper chelators, cyclic chelators such as 2,4,7-triazacyclononane (TACN), 1,4,7-
triazacyclononane-1,4,7-triacetic acid (NOTA), 1,4,8,11-tetraazacyclotetradecane-N,N′,N′ ′,N′ ′ ′-
tetraacetic acid (TETA), and 2,2′,2′ ′,2′ ′ ′-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic
acid (DOTA) are usually used [33–36] (Figure 2).
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As non-cyclic chelators, ethylenediaminetetraacetic acid (EDTA), diethylenetriamine
pentaacetate (DTPA), dithiocarbamatebisphosphonate (DTCBP) derivatives dithiocarbamate-
based ligands such as bis(thiosemicarbazone), and ATSM are also commonly used [34,37–39]
(Figure 3).

Below, we summarize the bifunctional compounds claimed as agents for the imaging
of Aβ or treatment of AD by binding to Aβ and influencing metal homeostasis published
since December 2020 (Table 1).



Int. J. Mol. Sci. 2023, 24, 236 4 of 16Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 4 of 16 
 

 

 
Figure 3. Commonly used acyclic copper chelators EDTA, DTPA, DTCBP, dithiocarbamate, and 
bis(thiosemicarbazone) derivatives. 

Below, we summarize the bifunctional compounds claimed as agents for the imaging 
of Aβ or treatment of AD by binding to Aβ and influencing metal homeostasis published 
since December 2020 (Table 1). 

Table 1. Multifunctional chelators for visualization of Aβ plaques. 

BFCs Metal Imaging 
Method 

Amyloid-Binding 
Moiety 

Chelator 
Brain Uptake, 
ID/g **, Time 
Post Injection 

Ref. 

1–8 Cu PET * Benzofuran NOTA 

2-, 60-, and 240-
min p.i. *** 

1 
0.65 ± 0.23 
0.10 ± 0.03 
0.05 ± 0.00 

2 
0.76 ± 0.03 
0.35 ± 0.10 
0.08 ± 0.00 

3 
0.38 ± 0.04 
0.13 ± 0.02 
0.08 ± 0.01 

4 
0.83 ± 0.14  
0.27 ± 0.05  
0.09 ± 0.02 

[40] 

9 Cu PET Florbetaben + Vanilin TACN 

WT: 0.75 ± 0.10% 
ID/g 

2 min 
18 ± 0.02% ID/g  

1 h 

[41] 

Figure 3. Commonly used acyclic copper chelators EDTA, DTPA, DTCBP, dithiocarbamate, and
bis(thiosemicarbazone) derivatives.

Table 1. Multifunctional chelators for visualization of Aβ plaques.

BFCs Metal Imaging
Method

Amyloid-Binding
Moiety Chelator Brain Uptake, ID/g **,

Time Post Injection Ref.

1–8 Cu PET * Benzofuran NOTA

2-, 60-, and 240-min p.i. ***
1

0.65 ± 0.23
0.10 ± 0.03
0.05 ± 0.00

2
0.76 ± 0.03
0.35 ± 0.10
0.08 ± 0.00

3
0.38 ± 0.04
0.13 ± 0.02
0.08 ± 0.01

4
0.83 ± 0.14
0.27 ± 0.05
0.09 ± 0.02

[40]

9 Cu PET Florbetaben + Vanilin TACN

WT: 0.75 ± 0.10% ID/g
2 min

18 ± 0.02% ID/g
1 h

AD mice:
0.79 ± 0.06%ID/g 2 min
0.39 ± 0.02% ID/g (1 h)

[41]

10–15 Cu PET Benzothiazole
TACN with one alkyl

carboxylate ester
pendant arms

2 min, 1 h, 4 h
11

0.35 ± 0.01
0.04 ± 0.01
0.03 ± 0.01

12
0.23 ± 0.06
0.02 ± 0.01
0.01 ± 0.00

13
0.32 ± 0.02
0.02 ± 0.00
0.01 ± 0.00

14
0.46 ± 0.21
0.14 ± 0.00
0.18 ± 0.02

15
0.23 ± 0.05
0.02 ± 0.02
0.02 ± 0.00

[42]
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Table 1. Cont.

BFCs Metal Imaging
Method

Amyloid-Binding
Moiety Chelator Brain Uptake, ID/g **,

Time Post Injection Ref.

16–20 Cu PET Benzothiazole
TACN with two alkyl

carboxylate ester
pendant arms

- [43]

21–24 Cu PET Benzothiazole
1,4,7-triazacyclononane
(TACN) and 2,11-diaza

[3.3]-(2,6)pyridinophane (N4)

Cu-23: 0.2% ID/g at
2 min, yet an increased
brain accumulation of
∼0.4% ID/g was
observed after 4 h

[44]

25–28 Ga PET 2-(4-hydroxyphenyl)-
benzothiazole TACN

0.10 ± 0.03
0.05 ± 0.02

(2 h)
0.26 ± 0.12
0.07 ± 0.02
0.03 ± 0.00
0.33 ± 0.12
0.01 ±0.009

(2 h)

[45]

29–34 Cu PET Benzothiazole TACN 0.47 ± 0.12 (2 min) [46]

35, 36 - - Azo-stilbene Pyridine - [47]

37–39 Tc SPECT **** Styrylpyridyl
Diamide−thiol,

Monoamide−monoamine−
thiol

Diamine−thiol

WT: *****
[99mTc][TcO-38]

2 min 0.15 ± 0.06%
35 min 0.17 ± 0.01%

[99mTc][TcO-39]
2 min 0.36 ± 0.09%

35 min 0.15 ± 0.02%

[48]

* PET—positron emission tomography, ** ID/g—injected dose per gram of tissue, p.i. ***—post-injection,
**** SPECT—single-photon emission computerized tomography, ***** WT—wild-type mice.

2.1. BFCs Based on (2-Formyl-5-Furanyl)-3-Hydroxymethylbenzofuran

Cho et al. reported a BFCs based on 2-(2-formyl-5-furanyl)-3-hydroxymethylbenzofuran
scaffold with NOTA as copper chelating moiety [40] (Figure 4). Importantly, this molecular
structure has not been used previously for developing 64Cu-based PET imaging agents for
the Aβ aggregates relevant to AD.

To evaluate the affinity of these compounds toward amyloid plaques, a staining of non-
radioactive Cu complexes 5-Cu–8-Cu with brain sections of 3-month-old 5xFAD mice was
performed and showed that complexes 5-Cu–8-Cu bind specifically to the amyloid plaques.
In addition, immunostaining with the AF594-conjugated HJ3.4 antibody (AF594-HJ3.4)
revealed a good colocalization of 6-Cu and 7-Cu with antibody-labeled Aβ plaques.

Further, a comparison of autoradiography images of the 5xFAD mouse brain sec-
tions incubated with the divalent 6-Cu–7-Cu and the monovalent 2-Cu–3-Cu compounds
showed that the signal intensities of the divalent compounds were higher than those of the
monovalent compounds; these results support the multivalent strategy in our BFC.

Cytotoxicity of the nonradioactive Cu complexes 5-Cu–8-Cu on neuroblastoma Neuro-2a
cells was evaluated, and no cytotoxicity up to 10 µM was revealed. A brain uptake and
in vivo biodistribution of the 64Cu complexes 5-Cu–8-Cu in WT mice (CD-1) was also
evaluated: complexes 6-Cu and 8-Cu exhibited high brain uptake at 2 and 60 min, with
low nonspecific accumulation in the major organs. A comparison of PET/CT images of WT
and 5xFAD mice injected with∼3-MBq doses of 6-Cu and 8-Cu showed lower intensity of
signal in WT mouse brains than in the 5xFAD mouse brains, and a statistically significant
higher brain uptake in the 5xFAD mice was observed for 6-Cu.
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as copper chelating moiety 1–8 and Cu(II) complexes 1-Cu–8-Cu based on them reported by
Cho et al. [40].

2.2. Distyrylbenzene-Vanilin BFC

Sun et al. reported [41] a distyrylbenzene-based hybrid 9 with a hydrophilic tri-
azamacrocycle chelating moiety (Figures 5 and 6). An asymmetric distyrylstilbene was
designed as an FDA-approved PET imaging agent [18F]florbetaben. The symmetric dis-
tyrylbenzene structure of previously described compound DF-9 have been widely used
in detecting amyloid plaques [49] as well as the 2-methoxy-phenol fragment reminiscent
of o-vanillin that was shown to inhibit the formation of Aβ oligomers and also exhibit
antioxidant properties [50].

Antioxidant ability of hybrid 9 was confirmed by trolox-equivalent antioxidant ca-
pacity (TEAC) assay. Both 9 and Cu(II) coordination compound based on Cu-9 showed
the fluorescence turn-on effect in the presence of Aβ species, especially in the presence
of soluble Aβ42 oligomers. Importantly, in the absence of the hydrophilic azamacrocycle
fragment, the binding affinity of Pre-9 toward the amyloid species dramatically decreased.

A nanomolar affinity of 9 for Aβ42 oligomers (Kd = 50 ± 9 nM) and Aβ fibrils
(Kd = 58 ± 15 nM) was established. In addition, in the presence of both Aβ42 and Cu2+,
hybrid 9 proved the ability to rescue the viability of N2a cells and significantly alleviate the
neurotoxicity of Cu2+- Aβ42 species. While monitoring of kinetics of Aβ42 aggregation in
the presence of chelator 9 and complex Cu-9, an unusual behavior of ligand 9 and complex
Cu-9 was observed. Thus, hybrid 9 was found to detect the “on-pathway” Aβ42 oligomers,
that is, monomeric Aβ42 aggregates, and a decrease in its fluorescence was detected when
Aβ42 fibrils were formed in solution. This is an important result, as high-soluble Aβ

oligomers have been shown to be involved in synapse loss and neuronal injury [51].
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Fluorescence staining of chelator 9 with brain sections from 7-month-old 5xFAD
mice was also performed, with Congo Red dye, HJ3.4. antibody, or Aβ oligomer-specific
monoclonal antibody (OMAB), which specifically binds to Aβ oligomers as controls. Both 9
and Cu-9 showed excellent colocalization with the immunofluorescence with both OMAB
and HJ3.4, thus proving an ability of 9 to bind both the Aβ oligomers and fibrils in AD
brain sections. In addition, a successive treatment of Aβ fibrils with Cu2+ and 9 lead to a
significant inhibition of ascorbate consumption when compared to Aβ fibrils threated with
Cu2+ only. Hybrid 9 found to reduce the neurotoxicity of Cu2+-Aβ42 species.

In vivo BBB permeability of 9 was also confirmed. Thus, after administration of 9 daily
(1 mg/kg) to 7-month-old 5xFAD mice for 10 days via intraperitoneal injection, a strong
fluorescence of mouse brain sections was detected, which was in a good colocalization
with Congo Red fluorescence, and both HJ3.4 and OMAB antibodies. To assess therapeutic
efficacy, 5xFAD mice were treated with 9, a significant reduction of both amyloid plaques
and associated p-tau aggregates was detected, and microglia activation was also reduced.
Finally, a radiolabeled 64Cu-9 was synthesized, and a series of PET imaging and biodis-
tribution studies were performed. The results obtained proved 64Cu-9 complex can cross
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the BBB and binds to the amyloid plaques. What is more important, 64Cu-9 proved to
accumulate to a significantly larger extent in the 5xFAD mice brains vs. the WT controls.

Finally, the effect of chelator 9 on the aggregation of p-tau protein and the activation
of microglia as a neuroinflammatory response was assessed using fluorescently labeled
AT8 antibody, which is specific to p-tau aggregates. The total amount of p-tau aggregates
surrounding the amyloid plaques was decreased in the 9-treated vs. vehicle-treated 5xFAD
mice. The level of activated microglia cells in AD mice was assessed using CF594-labeled
ionized calcium-binding adapter molecule 1 (Iba1) antibody, and the ability of chelator 9 to
suppress the activation of microglia cells to alleviate the neuroinflammation was revealed.
Docking studies of binding of chelator 9 to both soluble Aβ oligomers and Aβ fibrils
showed an ability of 9 to efficiently restrict the fibril formation in vivo, probably due to the
preferential binding to the fibril ends of 9 to mitigate the Aβ elongation process.

2.3. Benzothiazole-Based BFCs

Wang et al. reported five benzothiazole-based BFCs 11–15 with ester derivatives of
TACN and non-ester derivative 10 [42] (Figure 7). Ester derivatives of the carboxylate
pendant arm were conjugated with TACN moiety in order to increase the lipophilicity of
the bifunctional chelators and facilitate brain uptake. Spectrophotometric titrations were
used to quantify a stability constant of the complexes (log Ks); the results show that a
carboxylic acid or ester moieties in TACN scaffold increases the log K by 3−4 orders of
magnitude versus the parent TACN derivative.
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Fluorescence imaging of amyloid plaques in 5xFAD mouse brain sections as well
as immunostaining with HJ3.4 antibody revealed a specific binding of BFCs 11, 13, 14,
and their Cu(II) complexes to Aβ species. A specific binding of ligands and their Cu(II)
complexes with amyloid plaques was confirmed by staining with Congo Red dye on brain
sections collected from 11-month-old 5xFAD mice. In addition, good colocalization of both
ligands and their Cu(II) complexes was shown on brain sections from six-month-old 5xFAD
mouse with HJ3.4 antibody (AF594- HJ3.4), especially for BFCs 11, 13, 14.

Autoradiography studies were performed on brain sections from 11-month-old 5xFAD
and aged-matched WT mice. The results obtained strongly suggest that the 64Cu-labeled
BFCs exhibited the ability to detect Aβ species ex vivo, and TACN esters show more specific
binding to Aβ plaques than corresponding acids. In vivo biodistribution experiments in CD-
1 mice were also performed to investigate the pharmacokinetics and revealed some brain
uptake of complexes. The highest brain uptake was shown by 64Cu-14 of 0.46 ± 0.21% ID/g
at 2 min post-injection.

In addition, the same scientific group reported five benzothiazole-based complexes
with TACN chelator with two ester moieties [43] (Figure 7). A direct binding of 20 with
Aβ42 fibrils was confirmed by fibril titration with solution of 20, a saturation behavior was
observed, and a binding constant was calculated (Kd = 121 ± 44 nM).

A co-staining with a brain sections of 11-month-old 5xFAD transgenic mice with
Congo Red dye revealed affinity of BFCs 17 and 18 and their Cu(II) complexes 17-Cu and
18-Cu toward Aβ species, and the specific staining of Cu-20 with AF594-conjugated HJ3.4
antibody (AF594-HJ3.4) also exhibited a strong colocalization with the antibody stained
regions. Autoradiography studies of 11-month-old 5xFAD and age-matched WT mice
revealed an increased intensity that 64Cu-20 exhibits in 5xFAD mice compared to WT.

Huang et al. reported Benzothiazole-based complexes with copper-chelating TACN
and 2,11-diaza [3.3]-(2,6)pyridinophane (N4) moieties 21–24 [44] (Figure 8).

EPR spectra of complex Cu-22 suggest that the complex remains mononuclear in solu-
tion. Fluorescence imaging studies on 5xFAD mouse brain sections treated with 21–24, and
Cu(I,II) complexes based on them revealed a specific binding of ones to Aβ plaques, which
was confirmed by co-staining CF594-conjugated HJ3.4 antibody (CF594-HJ3.4), affinic to
a wide range of Aβ species. Autoradiography studies of 64Cu-labeled 21–24 complexes
revealed a specific binding of the complexes to amyloid plaques, which was also confirmed
by blocking with the nonradioactive blocking agent B1. A great contrast between the
intensity of WT and 5xFAD mice brains for all radiolabeled complexes was shown, espe-
cially for 64Cu-22. In addition, an incubation of 64Cu-22 and64Cu-23 with human serum
at 37 ◦C for up to 24 h showed the stability of the complexes. To evaluate the ability of
radiolabeled coordination compounds to cross the BBB in vivo, a biodistribution in normal
CD-1 mice was evaluated. The highest brain uptake for 64Cu-22 complex was shown and
was approximately ~ 0.4% both after 2 min post injection and after 24 h, which indicates
the rapid penetration of the complex into the brain and its retention.

Wang et al. investigated a series of BFCs with an Aβ-binding 2-(4-hydroxyphenyl)-
benzothiazole moiety and metal-chelating 1,4,7-triazacyclononane (TACN) ligands and
gallium coordination compounds based on them [45] (Figure 9).
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Histological staining of 5xFAD mouse brain sections with compounds 25–28 showed
a good affinity of BFCs 25, 26, 28 for the amyloid aggregates, which correlated well with
Congo Red or HJ3.4 antibody controls. In contrast, BFCs 27 exhibited weak Congo Red
colocalization, thus indicating that introduction of extra amyloid β targeting moieties are
able to increase the affinity of BFCs to amyloid plaques. Autoradiography studies with ra-
diolabeled complexes [68Ga]25–28 revealed a specific binding with brain sections of 5xFAD
and WT mice, with the highest non-specific binding of 68Ga-labeled bivalent complexes.

Recently, the same scientific group reported a series of BFCs containing two Aβ-
targeting fragments and a TACN macrocyclic ligand and novel derivatives with carboxylate
ester arms (Figure 10) [46]. ThT competition assays revealed binding of BFCs to Aβ plaques
with most active hybrids 30, 31. In ex vivo autoradiography studies of 64Cu-radiolabeled
BFCs with brain sections from 11-month-old 5xFAD and aged-matched WT mice, BFCs 29,
32, 33 exhibited∼4-fold increase for 5xFAD vs. WT brain sections, with hybrid 36 exhibiting
the highest overall intensity. Finally, 64Cu-30 showed the most promising brain uptake in
CD-1 mice, with a maximum %ID/g of 0.47 ± 0.12 at 2 min post-injection.
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2.4. Azo-Stilbene-Based BFCs

Rana et al. reported unusual bifunctional compounds that include the amyloid binding
properties from stilbene and the staining characteristics of Congo Red, a commonly used
Aβ-specific dye, conjugated with strong metal-binding arms [47]. These BFCs were de-
signed to target metal-mediated neurotoxicity, but may also be considered as a perspective
of organic scaffolds for design of metal-based drugs for PET Aβ imaging. Azo-stilbene-
derived compounds with N,N,O and N,N,N,O donor metal chelation moiety were designed
and thoroughly investigated (Figure 11).

An ability of BFCs 35, 36 to bind Aβ plaques was confirmed using ThT competition
assay as well as UV−Vis spectroscopy. Inhibition of Aβ42 aggregation by BFCs 35, 36, as
well as Cu-35 and Cu-36 was monitored by a decrease in ThT fluorescence. Aβ42 monomers
showed low ThT fluorescence and a striking increase in fluorescence during aggregation.
Both compounds 35 and 36 reduced the fluorescence of Aβ42 aggregates as well as Aβ42
aggregates pretreated with Cu2+ or Zn2+. Inhibition of Aβ42 metal-free and metal−Aβ

aggregation was also confirmed by TEM images. Thus, in the presence of BFCs 35, 36, the
morphology was quite different from that with Aβ42 alone. In addition, Aβ42 aggregation
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in the presence of both Cu2+ or Zn2+ and chelators 35 and 36 led to lesser aggregates of
amorphous morphology, differing from that of Aβ42 alone.
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Docking interactions of 35 and 36 with the Aβ40 fibrillar structure revealed their
positioning near the KLVFF hydrophobic region of the peptide, π−π interactions of BFCs 35,
36 with both with Aβ40 and Aβ42. In addition, molecular docking with acetylcholinesterase
AChE showed an interaction of BFCs 35, 36 with catalytic active site (CAS) and peripheral
anionic site (PAS) of AChE. An ability of cholinesterase inhibition was also confirmed
(Table 2), as well as the ability of BFCs 35, 36 to inhibit AChE-induced Aβ42 aggregation
confirmed by ThT fluorescence assay.

Table 2. In vitro AChE inhibition by BfCs 35, 36.

AChE 35 36 Rivastigmine Dopenezil

IC50 (µM) 4.18 ± 0.15 3.86 ± 0.13 11.02 ± 1.26 0.06 ± 1.13

An antioxidant property of BFCs 35, 36 was confirmed using 6-hydroxy-2,5,7,8-
tetramethylchroman-2-carboxylic acid (Trolox) (TEAC). Finally, compound 35 showed
low neurotoxicity on Neuro2A cells, in contrast to 36, thus suggest that extra pyridine
groups may lead to higher cell toxicity.

2.5. Styrylpyridyl-Based BFCs

Spyrou et al. reported a three tetradentate ligand based on styrylpyridyl scaffolds
with pyridyl, amide, amine, and thiol chelating moieties and charge-neutral complexes
[Tc=O]3+ and [Re=O]3+ based on it [48] (Figure 12).

The ability of BFCs 37–39 to interact with Aβ1−40 fibrils was investigated with a
competition assay between each rhenium complex and ThT. Each of the complexes showed
an ability to displace ThT from the fibrils and had significant affinity for Aβ1−40 with Ki
∼ 240−260 nM. In addition, excellent colocalization of the complexes with Aβ plaques
of human brain tissue was revealed by immunohistochemistry with a Aβ-specific 1E8
antibody as a control. Radiolabeled [99mTc][TcO 37–39] were obtained, and biodistribution
of [99mTc][TcO 37–39] in wild-type mice was determined. Unfortunately, brain uptake
values of the complexes were too low for SPECT imaging.
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3. Conclusions

Summarizing the above data, one can conclude that metal-containing imagining agents
are a promising alternative to clinically used radiopharmaceuticals based on short-lived
11C and 18F isotopes. This review provides examples of the successful design of ligands
and coordinating compounds based on them, capable of crossing the blood-brain barrier
and successfully binding to amyloid plaques in an AD brain. Radiolabeled complex 6-64Cu
showed a significant higher brain uptake in the 5xFAD mice than in WT; this testifies to the
thoughtful drug design and confirms the ability of a Cu-based coordination compounds to
act as imaging agents for Aβ plaques.

In addition, the successful design of an effective and selective bifunctional chelator 9
and a coordination compound Cu-9 based on it shows great potential of copper-containing
coordination compounds as drugs for imaging of Alzheimer’s disease. In addition, hybrid
9 showed the ability to act on soluble Aβ oligomers, which is an extremely promising
result due to the high toxicity of the latter, as well as an acute shortage of drugs capable
of acting on them. During several attempts to create coordination compounds with an
ester or carboxyl group, radiolabeled coordination compound 64Cu-20 showed increased
brain uptake in 5xFAD mice compared to WT. It should also be noted that the ability
of bifunctional ligands 35, 36 to inhibit acetylcholinesterase suggests that the developed
bifunctional compounds can be not only effective imaging agents, but also have therapeutic
anti-AD efficacy.

Thus, bifunctional compounds with an amyloid affinity fragment together with a
chelating fragment are able to visualize both Aβ plaques and soluble Aβ oligomers. Their
ability to influence metal homeostasis and Aβ aggregation opens up opportunities for
creating not only visualizing but also theranostic agents for AD.
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