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Abstract: A series of medium bandgap polymer donors, named poly(1-(5-(4,8-bis(5-(2-ethylhexyl)-
4-fluorothiophen-2-yl)benzo [1,2-b:4,5-b′]dithiophen-2-yl)thiophen-2-yl)-5-((4,5-dihexylthiophen-2-
yl)methylene)-3-(thiophen-2-yl)-4H-cyclopenta[c]thiophene-4,6(5H)-dione) (IND-T-BDTF), poly(1-(5-
(4,8-bis(5-(2-ethylhexyl)-4-fluorothiophen-2-yl)benzo [1,2-b:4,5-b′]dithiophen-2-yl)-4-hexylthiophen-2-
yl)-5-((4,5-dihexylthiophen-2-yl)methylene)-3-(4-hexylthiophen-2-yl)-4H-cyclopenta[c]thiophene-4,6(5H)-
dione (IND-HT-BDTF), and poly(1-(5-(4,8-bis(5-(2-ethylhexyl)-4-fluorothiophen-2-yl)benzo [1,2-b:4,5-
b′]dithiophen-2-yl)-6-octylthieno [3,2-b]thiophen-2-yl)-5-((4,5-dihexylthiophen-2-yl)methylene)-3-(6-
octylthieno [3,2-b]thiophen-2-yl)-4H-cyclopenta[c]thiophene-4,6(5H)-dione (IND-OTT-BDTF), are
developed for non-fullerene acceptors (NFAs) polymer solar cells (PSCs). Three polymers consist of
donor-acceptor building block, where the electron-donating fluorinated benzodithiophene (BDTF)
unit is linked to the electron-accepting 4H-cyclopenta[c]thiophene-4,6(5H)-dione (IND) derivative via
thiophene (T) or thieno [3,2-b]thiopene (TT) bridges. The absorption range of the polymer donors
based on IND in this study shows 400~800 nm, which complimenting the absorption of Y6BO
(600~1000 nm). The PSC’s performances are also significantly impacted by the π-bridges. NFAs in-
verted type PSCs based on polymer donors and Y6BO acceptor are fabricated. The power conversion
efficiency (PCE) of the device based on IND-OTT-BDTF reaches up to 11.69% among all polymers
with a short circuit current of 26.37 mA/cm2, an open circuit voltage of 0.79 V, and a fill factor of
56.2%, respectively. This study provides fundamental information on the invention of new polymer
donors for NFA-based PSCs.

Keywords: non-fullerene acceptor; indandione; polymer solar cell; thiophene bridges; inverted
solar cell

1. Introduction

For the last several decades, tremendous efforts have been made to develop highly
efficient PSCs to solve energy-related issues such as global warming caused by the con-
sumption of fossil oils. PSCs have been one of the prospective fields due to their lightweight,
low cost, flexibility, and scalability [1–4]. PSCs are often created by combining an n-type
electron acceptor (A) and p-type polymer donor (D) to create a bulk heterojunction (BHJ),
which can create a significant interfacial area between D and A and improve charge genera-
tion [5–7]. Recently, polymer donors based on PM6 [8] or polymers based on quinoxaline
derivatives [9] with high PCE have been continuously reported. The PCEs of PSCs based
on those polymers with non-fullerene acceptors (NFAs), such as Y6BO, might reach up to
19% [8–16]. The performances of NFA-based PSCs were generally much better than those of
fullerene-based PSCs due to the benefits of NFAs, including their enhanced light absorption,
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tunable optical, and electrochemical properties, and adequate morphological control [2,8].
In addition, the absorption of low bandgap NFAs is a very beneficial complementary
to the medium bandgap polymer donors and reached PCE up to 15%. Numerous poly-
mer donors with a backbone architecture consisting of D and A electron units have been
created for PSCs. Due to their planar structure and good charge transporting qualities, ben-
zodithiophene (BDT) and fluorine-substituted benzodithiophene (BDTF) units have been
widely used as the good electron-donating group among many high-performance polymer
donors [9,17,18]. Quinoxaline (Qx), benzo [1,2-c:4,5-c0]dithiophene-4-8-dione (BDD), ben-
zotriazole (BTA), and other electron-deficient components have also been competitively
utilized to build effective D-A type polymer donors for NFA-based PSCs [19–30].

Recently, 2-((Z)-2-((10-((Z)-((E)-1-(cyano(isocyano)methylene)-5,6-difluoro-3-oxo-1H-
inden-2(3H)-ylidene)methyl)-12,13-bis(2-butyloctyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]
thiadiazolo [3,4-e]thieno [2”,3”:4′,5′]thieno [2′,3′:4,5]pyrrolo [3,2-g]thieno [2′,3′:4,5]thieno
[3,2-b]indol-2-yl)methylene)-5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile
(Y6BO) and 2,2′-[[6,6,12,12-Tetrakis(4-hexylphenyl)-6,12-dihydrodithieno [2,3-d:2′,3′-d′]-s-
indaceno [1,2-b:5,6-b′]dithiophene-2,8-diyl]bis[methylidyne(3-oxo-1H-indene-2,1(3H)-
diylidene)]]bis[propanedinitrile] (ITIC) derivatives are widely used for acceptors for NFA-
based PSCs. Both NFAs have 2-(3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile end-
group derivatives. Thus, 2-(3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (indandione-
CN) (Figure 1) derivatives without malononitrile group (1H-indene-1,3(2H)-dione) (in-
dandione) will be a very good electron-acceptor unit for medium-bandgap conjugated
polymer donors.
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Figure 1. Polymer donors and acceptor chemical structure.

Inspired by the structure of ITIC and Y6BO derivatives, we synthesized a series of
medium bandgap 4H-cyclopenta[c]thiophene-4,6(5H)-dione (IND) conjugated polymers
depicted in Figure 1, in which the BDTF is linked to the IND via thiophene (T), hexylth-
iophene, or thieno [3,2-b]thiopene (TT) as the π-bridge. Depending on the conjugated
bridges, the polymer main chain will generate varied interactions between the donor and
acceptor units, which will provide a different electronic structure for the copolymers. D-π-A
conjugated copolymers with various conformational, electrochemical, charge transport, op-
tical, and photovoltaic characteristics will therefore be produced. In this study, IND-based
polymer donors displayed an absorption range of 400~800 nm well complemented with
the absorption of Y6BO (600~1000 nm). In addition, the polymer donors may exhibit very
good compatibility with NFA in the blend due to the structural similarity. Inverted PSCs
type with a configuration of ITO/ZnO/polymer donor:Y6BO/MoO3/Ag were fabricated
and tested. The PSC of the IND-OTT-BDTF device exhibited the highest PCE of 11.7% with
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a short circuit current (Jsc) of 26.4 mA/cm2, an open circuit voltage (Voc) of 0.79 V, and a fill
factor (FF) of 56.2%, respectively.

2. Results and Discussion
2.1. Synthesis and Characterization

The synthesis procedure thorough description is provided in Scheme 1 which illus-
trates the synthesis of monomers and polymers. The structure of each compound was
confirmed by 1H and 13C NMR analysis (Figures S1~S25). Compound 5 was prepared by
the Knoevenagel condensation reaction between IND and 4. Compounds 6, 7, and 8 were
prepared by the Stille coupling reaction between compound 5 and corresponding tributyl
tin compounds with fairly high yields of 81.5, 82.9, and 59.4%, respectively. The Stille
coupling reactions between BDTF and M1, M2, or M3 afforded the polymers IND-T-BDTF,
IND-HT-BDTF, and IND-OTT-BDTF, respectively. In chlorinated organic solvents such
as chloroform and chlorobenzene, the polymers were completely soluble. The number
average molecular (Mn) weight/polydispersity index (PDI) of polymers IND-T-BDTF,
IND-HT-BDTF, and IND-OTT-BDTF were 4.3 kDa/2.15, 7.5 kDa/1.62, and 22.5 kDa/2.42,
respectively. Due to many insoluble parts after Soxhlet extraction by chloroform, IND-T-
BDTF and IND-HT-BDTF possessed low molecular weight. According to Figure S26, the
polymers had good thermal stability, IND-T-BDTF, IND-HT-BDTF, and IND-OTT-BDTF
start to decompose at temperatures (Td, 5% weight loss) of 362, 361, and 385 ◦C, respectively.
In differential scanning calorimetry, no observable melting behavior or glass transition
was seen.
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Scheme 1. Synthesis route of monomer and polymers.

2.2. Optical and Electrochemical Behaviors

The absorption spectra of three polymer films are depicted in Figure 2 and their optical
characteristics are summarized in Table 1. IND-T-BDTF film showed two broad absorp-
tion bands. The backbone’s π–π* transition corresponds to a former absorption band at
400~500 nm. An absorption band in the longer wavelength region refers to intramolecular
charge transfer (ICT) between the donor (BDTF) and acceptor (IND), a typical property of
polymers with D–A arrangement, at a longer wavelength region (550~800 nm). The maxi-
mum absorption wavelengths of π–π* transition of polymer films were almost identical.
The maximum absorption wavelength of ICT in IND-HT-BDTF film exhibited at 636 nm,
which is shorter than that of IND-T-BDTF. This is due to the dihedral angle (see Figure S4)
between the 3-hexylthiophene ring and IND of IND-HT-BDTF being larger than that of the
IND-T-BDTF. The maximum absorption wavelength ICT in IND-OTT-BDTF film appeared
at 668 nm, which is red-shifted than those of the IND-HT-BDTF and IND-T-BDTF. This
suggests that thieno [3,2-b]thiopene (TT) exhibited higher aromaticity compared to thio-
phene, indicating increased electron delocalization in the polymer backbone [31,32]. The
optical/electrochemical bandgaps (Table 1) of IND-T-BDTF, IND-HT-BDTF, and IND-OTT-
BDTF figured out from the absorption edge were 1.65/1.76, 1.65/1.78, and 1.65/1.58 eV,
respectively, which are almost identical. The absorption coefficients of IND-T-BDTF, IND-
HT-BDTF, and IND-OTT-BDTF films at the ICT maximum wavelengths were 3.29 × 104,
3.05 × 105, and 4.30 × 105 cm−1, respectively. Due to the strong ICT behavior in the
polymer with the electron-rich and planar TT group, it is observed that the IND-OTT-BDTF
film had the maximum absorption coefficient when compared to those of IND-T-BDTF
and IND-HT-BDTF. According to Figure 2a, which includes energy absorption from the
near-IR region to UV-Vis, the absorption range of polymers is complementary to those of
Y6BO acceptors.
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Table 1. Optical and electrochemical characteristics of polymers.

λmax (nm) Eopt
g

(eV) a HOMO (eV) b LUMO (eV) b Eelec
g (eV) b

IND-T-BDTF 466, 658 1.65 −5.35 −3.59 1.76
IND-HT-BDTF 469, 636 1.65 −5.36 −3.58 1.78

IND-OTT-BDTF 471, 668 1.65 −5.19 −3.61 1.58
a bandgap figured out from the absorption edge. b derived from the CVs’ oxidation and reduction onset potentials.

The energy levels of the polymers were measured by cyclic voltammetry. According
to Figure S27, the HOMO/LUMO energy levels of IND-T-BDTF, IND-HT-BDTF, and IND-
OTT-BDTF were −5.35/−3.59, −5.36/−3.58, and −5.19/−3.61 eV, respectively. Despite
the increased aromaticity of TT in IND-OTT-BDTF compared with thiophene, the energy
level of IND-OTT-BDTF is almost identical to those of IND-T-BDTF and IND-HT-BDTF.

The polymers and the materials used in this research with those energy level diagrams
are displayed in Figure 2b. Facile charge separation and transport processes are expected
to happen in the devices. We also performed photoluminescence (PL) experiments to
further investigate the exciton dissociation and charge transfer behavior from polymer
donors to Y6BO. The PL spectra in Figure S28 showed broad emission at 700~850 nm.
The fact that the PL emissions from polymer blend films containing Y6BO were almost
quenched shows that the exciton dissociation and charge transfer in the blend films have
successfully taken place.

The frontier molecular orbitals of the polymers were determined from Density func-
tional theory (DFT) at the B3LYP/6-31G** level of the Gaussian 09 (ver.9.5) software
(Wallingford, CT, UK) [33]. For making computation easier, the polymer alkyl chains
were represented by methyl groups, and two repeating units to represent the polymer
itself. Wave functions in the HOMO state of the polymers were delocalized along the
backbone and BDTF unit, as shown in Figure S29. However, the LUMO wave functions
were localized in the IND unit. IND-T-BDTF, IND-HT-BDTF, and IND-OTT-BDTF have
HOMO/LUMO energy levels of −4.91/−2.81, −4.89/−2.74, and −4.91/−2.78 eV, re-
spectively. The incorporation of an extended π-bridge did not affect the energy levels of
the polymers.

2.3. Photovoltaic Property

Inverted-type PSCs with a configuration of ITO/ZnO/donor polymers:Y6BO/MoO3/Ag
were evaluated to know the photovoltaic performances of polymers. First, several process-
ing parameters, including the active layer thickness and D–A blend ratios were investigated
for observing how they affect the photovoltaic performance. The optimum blend ratio be-
tween the polymers and Y6BO was performed at 3:4 and with 130 nm for IND-T-BDTF and
120 nm for IND-HT-BDTF and IND-OTT-BDTF active layer optimum thickness achieved
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(Table S1). Figure 3a,b display the current density (J) vs applied voltage (V) curves under
illumination and dark with photovoltaic parameters of the devices, and their optimum
processing conditions are summarized in Table 2.
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Thickness
(nm)

Jsc
(mA/cm2)

Voc
(V)

FF
(%)

PCE
(%)

Rs
(Ω cm2)

Rsh
(kΩ cm2)

Calculated
Jsc

(mA/cm2)

IND-T-BDTF 130 11.9
(11.8)

0.80
(0.80)

33.5
(33.4)

3.18
((3.14) 9.64 0.15 11.6

IND-HT-BDTF 120 21.9
(21.8)

0.87
(0.87)

37.9
(37.7)

7.23
(7.11) 7.82 0.37 20.4

IND-OTT-BDTF 120 26.4
(25.2)

0.79
(0.79)

56.2
(56.4)

11.7
(11.2) 2.21 0.38 25.4

Among devices based on polymer donors, the device based on IND-OTT-BDTF had
the greatest PCE, at 11.7%. The devices based on IND-T-BDTF, IND-HT-BDTF, and IND-
OTT-BDTF have corresponding VOC values of 0.80, 0.87, and 0.79 V. The VOC trend in all
polymers agrees well with their HOMO. When compared to the device based on IND-
T-BDTF (11.9 mA/cm2), the Jsc of IND-HT-BDTF and IND-OTT-BDTF were respectively
enhanced to 21.9 and 26.4 mA/cm2. This conforms with the absorption coefficient of
polymers. Incident photon-to-electron conversion efficiency (IPCE) curves, which range
from 300 to 900 nm, are shown in Figure S30. The polymers prove to complement the
solar light by the Y6BO absorption. The calculated Jsc values of the devices derived from
the IPCE spectra were highly correlated to the Jsc data under 1.0 sun cconditions. The
fill factor (FF) was slightly improved from 33.5% to 37.9% by the addition of extra hexyl
groups on thiophene linkage in IND-HT-BDTF. This is apparently because of the better
solubility of IND-HT-BDTF than that of IND-T-BDTF. It was further improved to 56.2%
in IND-OTT-BDTF due to the TT bridge exhibiting the more extended π-conjugation.
Simultaneously improvement in the VOC, Jsc, and FF in IND-OTT-BDTF can result in the
significant enhancement of the PCE. Consequently, IND-OTT-BDTF-based device showed
the best PCE. Under the dark condition of J-V curves (inset of Figure 3b), the series resistance
(Rs) and shunt resistance (Rsh) of the devices were calculated. The Rs of IND-OTT-BDTF
were 2.21 Ω cm2 was the smallest compared to the devices with IND-T-BDTF (9.64 Ω cm2)
and IND-HT-BDTF (7.82 Ω cm2). Additionally, among the devices based on polymers, the
Rsh data of the IND-OTT-BDTF-based device (0.38 kΩ cm2) was the highest. The values of
Jsc and FF for related devices showed a good match with the trend of Rs and Rsh.

To further determine the charge carrier transport capabilities, electron- and hole-
only devices with structures of ITO/ZnO (25 nm)/donor:Y6BO/LiF/Al (100 nm) and
ITO/PEDOT:PSS (35 nm)/donor:Y6BO/Au (50 nm) were created and evaluated. The J-V
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curves of matching devices (see Figure S31) fit the law and displayed the characteristics
of space charge limited current (SCLC) behavior refers to the Mott-Gurney law [34,35].
IND-T-BDTF, IND-HT-BDTF, and IND-OTT-BDTF have the hole mobility of 1.55 × 10−4,
3.16 × 10−4, and 5.55 × 10−4 cm2 V−1 s−1, respectively, while their electron mobilities
were 1.71 × 10−4, 3.23 × 10−4, and 5.01 × 10−4 cm2 V−1 s−1, respectively. This result
indicates better charge transport and extraction in the devices based on IND-OTT-BDTF,
which agrees with the higher Jsc and FF values of the corresponding devices.

Furthermore, the carrier transporting and collecting behavior of the devices, pho-
tocurrent density (Jph) as a function of effective voltage (Ve f f ) relationship was calculated
(Figure 4). Here, the Jph is defined as JD − JL, JD and JL are the current density under
dark and illumination conditions, respectively. Charge carrier transporting and collect-
ing probability (Jph/Jsat) data of the devices based on IND-T-BDTF, IND-HT-BDTF, and
IND-OTT-BDTF were estimated to be 50.9, 64.9, and 88.9%, respectively, proving that
IND-OTT-BDTF based device showed the best charge carrier transporting and collecting
behavior. The maximum exciton generation rate (Gmax) is correlated to the absorption
ability of the active layer. The Gmax values (defined as Jph/q·L, q and L are electron charge
and active layer thickness) of devices based on IND-T-BDTF, IND-HT-BDTF, and IND-OTT-
BDTF were 4.96 × 1026, 1.49 × 1027, and 1.50 × 1027 cm3 s−1, respectively, which are in line
with the enhancement of the polymer films absorption coefficient [36].
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We measured the devices Jsc and VOC vs. light intensity to better understand the
charge recombination mechanisms. From the relationship between the Jsc vs. illuminated
light intensity (Plight) (expressed by Jsc = (Plight)α), the bimolecular recombination process
can be observed. According to Figure 5a, the α values of IND-T-BDTF, IND-HT-BDTF,
and IND-OTT-BDTF based devices were 0.76, 0.89, and 1.05, respectively. As for the
device with IND-OTT-BDTF, the bimolecular recombination process was minimized in the
device [37]. Thus, IND-T-BDTF shows poorer PCE than those based on IND-HT-BDTF,
and IND-OTT-BDTF devices. Additionally, using the formula VOC = (nkT/q) × ln (Plight)
(where k, q, and T are the Boltzmann constant, elementary charge, and the temperature in
Kelvin), it is possible to determine the device trap-assisted recombination. If n becomes
1, the band-to-band recombination process is dominated in the device. Trap-assisted
recombination mechanism predominates in the devices when n is close to 2 [21]. In contrast
to the device with IND-T-BDTF (n = 1.47) which demonstrated the most undesired trap-
assisted recombination process, IND-HT-BDTF and IND-OTT-BDTF had n values of 1.02
and 1.18, respectively.
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2.4. Morphology Study

The molecular ordering information is very important for understanding the overall
photovoltaic properties of PSCs. To understand the ordering features of the active layers,
we measured grazing incidence wide-angle X-ray scattering (GIWAXS). Figure 6 showed
GIWAXS images (Figure 6a,c) and direction line cuts in-plane (IP) and out-of-plane (OOP)
(Figure 6b,d) of neat polymers and polymer:Y6BO blending film. GIWAXS film was
prepared in the same way as the preparation of devices on the silicon wafer. As shown in
Figure 6b (OOP direction), IND-T-BDTF and IND-OTT-BDTF films exhibited a broad (010)
peak at 1.71 and 1.65 Å−1, respectively, corresponding to π–π (intermolecular) stacking
distances of 3.67 and 3.81 Å, respectively. As for IND-HT-BDTF film, very weak (010) peak
at 1.68 Å−1 (3.74 Å). The intermolecular stacking distances were increased in the order
of IND-T-BDTF < IND-HT-BDTF < IND-OTT-BDTF due to the alkyl substituents on the
π-bridges on T and TT. By a peak (010) in the OOP direction cut, it is preferable to have the
face-on orientation to the surface. This means that the vertical charge transport is favorable
in the device [38]. The lamellar domain is represented by a broad (100) peak in the IND-
T-BDTF, IND-HT-BDTF, and IND-OTT-BDTF at 0.274 (22.9), 0.266 (23.6), and 0.267 (23.5)
Å−1 (Å) through the IP direction, respectively. Alkyl substituents on the π-bridges such
as thiophene (T) and TT also affect the lamellar domain spacing distances. As shown in
Figure 6d, a broad peak at 1.70 (3.70) Å−1 (Å) in OOP directions appeared, which is almost
the same as the peak in Y6BO film (1.75 Å−1) (See Figure S32). Interestingly, two unknown
scattering patterns in IP directions at 1.36 and 1.70 Å−1 for the blend films were found.
The strength of the (010) peak along the OOP direction in blend films is more pronounced
than the peak in neat polymer films. This indicates that the Y6BO acceptor is the key factor
for the face-on orientation in the blend films. Although blend films primarily refer to the
face-on molecular packing orientation of the Y6BO acceptor, the blend films may also form
in a favored face-on orientation owing to D–A strong intermolecular interactions. Moreover,
to know the active layer morphology, we also used transmission electron microscopy (TEM)
and atomic force microscopy (AFM). The TEM images of the active layer (Figure S33)
showed that the IND-HT-BDTF and IND-OTT-BDTF blend films may create bicontinuous
interpenetrating networks and superior nanoscale phase separation than the IND-T-BDTF
blend films, respectively. Therefore, by effective charge-separation or transport, phase
separation is preferred in the active layer based on IND-HT-BDTF and IND-OTT-BDTF
can promote higher PCE of the related PSCs. The AFM height and phase images (Figure
S34) of the blend films based on IND-T-BDTF, IND-HT-BDTF, and IND-OTT-BDT exhibit
the root-mean-square (RMS) surface roughness of 2.42, 2.02, and 1.18 nm, respectively.
The AFM morphologies of the IND-OTT-BDTF-based blend film are beneficial for exciton
diffusion and dissociation to achieve higher Jsc and FF.
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3. Materials and Methods
3.1. Materials and Instruments

2,2′-((2Z,2′Z)-((12,13-bis(2-butyloctyl)-12,13-dihydro-[1,2,5]thiadiazolo [3,4-e]thieno
[2”,3”:4′,5′]thieno [2′,3′:4,5]pyrrolo [3,2-g]thieno [2′,3′:4,5]thieno [3,2-b]indole-2,10-diyl)bis
(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene)) dimalonon-
itrile (Y6BO) [9], and (4,8-bis(5-(2-ethylhexyl)-4-fluorothiophen-2-yl)benzo-[1,2-b:4,5-b′]
dithiophene-2,6-diyl)bis(trimethylstannane)(BDTF) [23] were synthesized according to
previous reports. 4,6-Dibromo-1H,3H-thieno [3,4-c] furan-1,2-dione was purchased form
Sunatech. All other chemicals used in this work were purchased from Sigma Aldrich
Co. (St. Louis, MO, USA) and Alfa Aesar (A Johnson Matthey Company, Haverhill, MA,
USA), and used without any further purification unless otherwise described. The 1H and
13C NMR spectra were measured with a JEOL JNM ECP-400 spectrometer. UV visible
spectra were recorded on a JASCO V730 UV/Vis spectrophotometer. Matrix-assisted laser
desorption/ionization time-of-flight (MALDI-TOF) spectroscopy was conducted by using
a Bruker Ultraflex spectrometer. Gel permeation chromatography (GPC) was measured on
an Agilent 1200 series instrument with THF as the eluent. The thermogravimetric analysis
(TGA) was carried out under the N2 atmosphere at a heating rate of 10 ◦C/min with TA
Instrument Q600 (PH407 PUSAN KBSI). Cyclic voltammetry (CV) measurements were
carried out by using a VersaSTAT3 potentiostat (Princeton Applied Research) with tetra-
butylammonium hexafluorophosphate (0.1 M, Bu4NPF6) as the electrolyte in acetonitrile.
The films thickness was measured with an Alpha-Step IQ surface profiler (KLA-Tencor
Co., Milpitas, CA, USA) Grazing-incidence wide-angle X-ray scattering (GIWAXS) spectra
were obtained on the 3C beamline with 13 keV (λ = 0.123 nm) X-ray irradiation source and
the beam size of 300 µm (height) × 23 µm (width) in the Pohang Accelerator Laboratory
(PAL). A two-dimensional charge-coupled device detector (Mar165 CCD) was used, and
the distance from the sample to the detector was 0.2 m. The X-ray beam angle of the
incidence was chosen such that the beam would penetrate the entire active layer while
minimizing scattering from the substrate: ~0.12◦. The samples were partially completed
devices so that the entire exposed surface is composed of an active layer on the Si wafer
and were examined under ambient. Preparation of film for GIWAXS was followed the
same as the preparation of the active layer. The ZnO layer was deposited on the Si wafer
by sol-gel process giving a film of 25-nm-thick. The polymer or blended polymer film
(polymeric donor and Y6BO acceptor) was fabricated by spin-coating in chloroform with
0.5% of 1-chloronaphthalene (CN) as a processing additive. Then the film was annealed
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at 100 ◦C for 10 min in the glove box. The scattering vector (q) and d spacing (d) were
calculated from the equation: q = 4π sin (φ)/λ and q = 2π/d. Photoluminescence spectra of
the polymers and blended films were obtained by a HOMOBA (fluolog-QM). The blend
morphology was examined by the transmission electron microscope (HITACHI Hightech.
HT-7800).

3.2. Synthesis of Monomers and Polymers
1H and 13C NMR spectra of synthesized compounds are displayed in supporting

information (Figure S1 to Figure S25).

3.2.1. Synthesis of 1,3-Dibromo-4H-cyclopenta[c]thiophene-4,6(5H)-dione (IND)

A portion of triethylamine (1 mL) and 0.240 g (1.8 mmol) ethylaceto acetate were added
to the solution of 4,6-dibromo-1H,3H-thieno [3,4-c] furan-1,2-dione (0.406 g, 1.3 mmol) in
1 mL of acetic anhydride under nitrogen. Then the reaction mixture was refluxed at
65 ◦C overnight. After cooling down to room temperature the mixture was poured into
diluted HCl under ice-bath conditions and extracted with MC. The organic phase was
evaporated and the mixture of the residue in concentrated HCl was refluxed at 60 ◦C
for 2 h. The mixture was extracted with MC, dried over MgSO4 and the solvent was
evaporated by reduced pressure. The obtained pink solid was purified by silica gel column
chromatography using MC/hexane (10:1) as eluent, pink solid was obtained (0.207 g,
51.0%). 1H NMR (400 MHz, CDCl3, ppm): δ 3.51 (s, 2H). 13C NMR (100 MHz, CDCl3,
ppm): δ 187.07, 145.52, 113.05, 53.29. LRMS (m/z, EI+) calcd for C7H2Br2O2S 309.966
found 309.057.

3.2.2. Synthesis of 2-Bromo-3-Hexylthiophene (2)

After 3 g (17.8 mmol) of 3-hexylthiophene was dissolved in 40 mL of tetrahydrofuran
(THF), 3.49 g (19.6 mmol) of N-bromosuccinimide (NBS) was slowly added under ice-bath
condition. The reaction was kept for 3 h at room temperature and monitored by TLC.
The reaction was ended by adding 100 mL of water and then the mixture was extracted
with 100 mL of diethyl ether. The organic phase was collected and washed several times
with brine. After drying over MgSO4, the solvent was evaporated under reduced pressure.
Finally, the product was purified by column chromatography using hexane as eluent,
transparent oil was obtained (4.10 g, 93.4%). 1H NMR (400 MHz, CDCl3, ppm): δ 7.20 (d,
1H), 6.82 (d, 1H), 2.60 (t, 2H), 1.61 (m, 2H), 1.35 (m, 6H), 0.93 (t, 3H). 13C NMR (100 MHz,
CDCl3, ppm): δ 142.06, 128.34, 125.23, 108.93, 31.78, 29.86, 29.54, 29.05, 22.76, 14.25. LRMS
(m/z, EI+) calcd for C10H15BrS 247,191 found 247.102.

3.2.3. Synthesis of 2,3-Dihexylthiophene (3)

In a two-necked flask, 5.41 g (21.9 mmol) of 2-bromo-3-hexylthiophene (2) and 0.59 g
(1 mmol) of Ni(dppp)Cl2 were dissolved in 25 mL of distilled THF. Hexyl-MgBr was slowly
added to the reaction mixture at the ice bath temperature. Then the mixture was refluxed
under nitrogen conditions overnight. A saturated solution of ammonium chloride was
added to end the reaction and the reaction mixture was further extracted with hexane. After
washing several times with brine, the mixture was dried over MgSO4 and the solvent was
evaporated by a rotary evaporator. The product was purified by column chromatography
using hexane as eluent, yellow oil was obtained. (4.90 g, 88.0%). 1 H NMR (400 MHz,
CDCl3, ppm): δ 7.03 (d, 1H), 6.82 (d, 1H), 2.72 (t, 2H), 2.51 (t, 2H), 1.63 (m, 2H), 1.55 (m,
2H), 1.31 (m, 12H), 0.90 (t, 6H). 13C NMR (100 MHz, CDCl3, ppm): δ 138.89, 137.78, 128.76,
120.96, 32.03, 31.84, 31.73, 30.94, 29.81, 29.30, 29.14, 28.31, 27.87, 22.73, 22.70, 14.19.

3.2.4. Synthesis of 4,5-Dihexylthiophene-2-Carbaldehyde (4)

A mixture of DMF (6.95 g, 95.1 mmol) and POCl3 (14.58 g, 95.1 mmol) was stirred at
0 ◦C for 30 min to form the Vilsmeier reagent; the Vilsmeier reagent was slowly added to a
solution of 6.15 g (24.4 mmol) of 2,3-dihexylthiophene (3) in 48 mL of dichloroethane. The
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reaction mixture was refluxed overnight under an N2 environment. After cooling down to
room temperature, an aqueous NaHCO3 solution was added. The mixture was extracted
with MC, dried over with MgSO4 and the solvent was evaporated by reduced pressure. A
brown oil was further purified by silica gel column chromatography using MC/hexane
(6:4) to afford the product as a yellow oil (6.60 g, 96.0%). 1H NMR (400 MHz, CDCl3, ppm):
δ 9.78 (s,1H), 7.03 (s, 1H), 2.77 (t, 2H), 2.52 (t, 2H), 1.66 (m, 2H), 1.57 (m, 2H), 1.31 (m, 12H),
0.89 (t, 6H). 13C NMR (100 MHz, CDCl3, ppm): δ 182.69, 151.88, 140.11, 139.47, 138.48,
31.73,31.60, 31.29, 30.52, 29.12, 29.01, 28.80, 28.13, 22.67, 22.62, 14.13. LRMS (m/z, EI+) calcd
for C17H28OS 280.466, found 280.487.

3.2.5. Synthesis of 1,3-Dibromo-5((4,5-dihexylthiophen-2-
yl)methylene)4Hcyclopenta[c]thiophene-4,6(5H)-dione (5)

A mixture of compound 4 (0.306 g, 1.09 mmol), IND (0.402 g, 1.30 mmol), and 6 drops
of pyridine in 15 mL of anhydrous chloroform was refluxed at 65 ◦C for overnight under
nitrogen conditions. Water was poured into the reaction mixture, then extracted with MC
and the organic layer was dried over MgSO4. After removing the solvent by reduced pres-
sure, the crude product was further purified by column chromatography using MC/hexane
(7:3) as eluent, yellow solid was obtained (0.357 g, 57.0%). 1H NMR (400 MHz, CDCl3,
ppm): δ 7.88 (s,1H), 7.79(s, 1H), 2.82 (t, 2H), 2.54 (t, 2H), 1.72 (m, 2H), 1.58 (m, 2H), 1.31 (m,
12H), 0.88 (t, 6H). 13C NMR (100 MHz, CDCl3, ppm): δ 181.38, 181.02, 159.76, 145.78, 143.68,
143.23, 141.84, 139.93, 133.65, 129.12, 111.80, 111.75, 31.72, 31.60, 31.32, 30.49, 29.42, 29.24,
29.18, 27.89, 22.68, 22.62, 14.17, 14.14. LRMS (m/z, EI+) calcd for C24H28Br2O2S2 570.121,
found 570.118.

3.2.6. Synthesis of 5-((4,5-Dihexylthiophen-2-yl)methylene)-1,3-di(thiophen-2-yl)-4H-
cyclopenta[c]thiophene-4,6(5H)-dione (6)

A mixture of 5 (1.91 g, 3.0 mmol), Pd(PPh3)Cl2 (70 mg, 0.10 mmol), and tributyl(2-
thienyl)stannane (2.46 g, 6.6 mmol) in dry THF (25 mL) was heated to reflux for 24 h. After
cooling down to room temperature under an argon atmosphere, the reaction mixture was
concentrated under reduced pressure and then purified by silica gel column chromatogra-
phy to afford compound 6 as a solid (1.98 g, 81.5%). 1 H NMR (400 MHz, CDCl3, ppm): δ
8.16–8.12 (m, 2H), 7.89 (s,1H), 7.70 (s, 1H), 7.42–7.41 (m, 2H), 7.15–7.11 (m, 2H), 2.83 (t, 2H),
2.54 (t, 2H), 1.72 (m, 2H), 1.59 (m, 2H), 1.34 (m, 12H) ,0.99 (m, 6H). 13C NMR (100 MHz,
CDCl3, ppm): δ 183.21, 144.67, 141.11, 138.71, 137.97, 137.95, 136.15, 136.07, 133.67, 133.40,
130.86, 129.96, 128.43, 31.75, 31.64, 31.58 , 30.58, 30.31, 29.27, 29.19, 27.88, 26.35, 22.70, 22.64,
14.15. HRMS (m/z, EI+) calcd for C32H34O2S4 578.145, found 578.142.

3.2.7. Synthesis of 1,3-Bis(5-bromothiophen-2-yl)-5-((4,5-dihexylthiophen-2-yl)methylene)-
4H-cyclopenta[c]thiophene-4,6(5H)-dione (M1)

A portion of NBS (153 mg, 0.84 mmol) was added to a solution of 6 (500 mg, 0.86 mmol)
in THF (10 mL). The reaction mixture was stirred at room temperature overnight in dark-
ness. The reaction mixture was then poured into water (30 mL), extracted with diethyl
ether (30 mL × 3), and the organic layer was washed with saturated brine, dried over
anhydrous MgSO4, filtered, and concentrated under reduced pressure. Purification by
column chromatography provided compound M1 as a solid (503 mg, 79.4%). 1 H NMR
(400 MHz, CDCl3, ppm): δ 7.81 (s,1H), 7.73–7.70 (m, 2H), 7.67 (s,1H), 7.04–7.01 (m, 2H), 2.83
(t, 2H), 2.54 (t, 2H), 1.73 (m, 2H), 1.61 (m, 2H), 1.33 (m, 12H), 0.89(m, 6H). 13C NMR (100
MHz, CDCl3, ppm): δ 180.90, 182.23, 177.43, 163.38, 157.96, 144.14, 141.29, 138.73, 138.28,
134.89, 134.77, 134.64, 134.60, 133.67, 131.06, 130.28, 129.69, 129.61, 116.38, 116.26, 34.16,
31.75, 31.64, 31.56, 30.56, 29.30, 29.22, 29.14, 27.89, 22.71, 22.66, 14.16, 14.07. HRMS (m/z,
EI+) calcd for C32H32Br2O2S4 735.962, found 735.963.
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3.2.8. Synthesis of 5-((4,5-Dihexylthiophen-2-yl)methylene)-1,3-bis(4-hexylthiophen-2-yl)-
4H-cyclopenta[c]thiophene-4,6(5H)-dione (7)

To a solution of 5 (700 mg, 1.26 mmol) in dry THF (25 mL), was added Pd(PPh3)Cl2
(70 mg, 0.10 mmol) and tributyl(3-hexyl-2-thienyl)stannane (1.88 g, 5.05 mmol) under argon
atmosphere. The reaction mixture was heated to reflux for 24 h. After cooling down to
room temperature, the reaction mixture was concentrated under reduced pressure and
then purified by silica gel column chromatography to afford compound 7 as a red-orange
oil (780 mg, 82.9%). 1H NMR (300 MHz, CDCl3, ppm): δ 8.07 (s,1H), 7.98 (s, 2H), 7.80
(s,1H), 7.12 (s,2H), 2.93 (t, 2H), 2.75 (m, 4H), 2.64 (t, 2H), 1.77 (m, 8H), 1.42 (m, 24H), 0.99
(m, 12H). 13C NMR (75 MHz, CDCl3, ppm): δ 183.03, 182.36, 156.77, 144.78, 144.63, 144.25,
140.89, 138.95, 138.26, 137.41, 136.30, 136.10, 133.63, 133.20, 133.02, 130.99, 130.89, 130.76,
123.39, 123.28, 77.51, 77.09, 76.66, 31.73, 31.60, 31.51, 30.52, 30.44, 30.39, 29.26, 29.19, 29.10,
27.83, 22.69, 22.63, 14.19, 14.15, 13.67. HRMS (m/z, EI+) calcd for C44H58O2S4 746.330,
found 747.339.

3.2.9. Synthesis of 1,3-Bis(5-bromo-4-hexylthiophen-2-yl)-5-((4,5-dihexylthiophen-2-
yl)methylene)-4H-cyclopenta[c]thiophene-4,6(5H)-dione (M2)

A portion of NBS (153 mg, 0.84 mmol) was added to a solution of 7 (300 mg, 0.40 mmol)
in THF (10 mL). The reaction mixture was stirred at room temperature overnight in dark-
ness. The reaction mixture was then poured into water (30 mL), extracted with diethyl
ether (30 mL × 3), and the organic layer was washed with saturated brine, dried over
anhydrous MgSO4, filtered, and concentrated under reduced pressure. Purification by
column chromatography provided compound M2 as a red oil (280 mg, 77.7%). 1H NMR
(300 MHz, CDCl3, ppm): δ 7.83 (s,1H), 7.71 (m, 2H), 7.56 (s,1H), 2.84 (t, 2H), 2.57 (m, 6H),
1.74 (m, 2H), 1.60 (m, 6H), 1.33 (m, 24H), 0.92 (m, 12H). 13C NMR (75 MHz, CDCl3, ppm): δ
182.92, 182.22, 157.53, 144.62, 143.55, 143.35, 141.17, 139.17, 138.44, 137.92, 134.97, 134.83,
133.64, 132.96, 132.80, 130.46, 130.09, 129.74, 113.49, 113.25, 77.35, 77.03, 76.71, 31.68, 31.62,
31.57, 31.47, 30.50, 29.65, 29.55, 29.51, 29.23, 29.19, 29.14, 28.97, 28.93, 27.84, 22.63, 22.59,
14.11, 14.08. HRMS (m/z, EI+) calcd for C44H56Br2O2S4 902.153, found 903.161.

3.2.10. Synthesis of 5-((4,5-Dihexylthiophen-2-yl)methylene)-1,3-bis(6-octylthieno
[3,2-b]thiophen-2-yl)-4H-cyclopenta[c]thiophene-4,6(5H)-dione (8)

A mixture of 5 (0.40 g, 0.70 mmol), Pd(PPh3)Cl2 (50 mg, 0.06 mmol), and trimethyl(6-
octylthieno [3,2-b]thien-2-yl)stannane (1.20 g, 2.81 mmol) in dry THF (20 mL) under argon
atmosphere was heated to reflux for 24 h. After cooling down to room temperature, the
reaction mixture was concentrated under reduced pressure and then purified by silica gel
column chromatography to afford compound 8 as a red-orange oil (380 mg, 59.4%). 1H
NMR (400 MHz, CDCl3, ppm): δ 8.63 (s,1H), 8.48 (s, 1H), 7.74 (s,1H), 7.56 (s, 1H), 7.02 (s,
2H), 2.82 (t, 2H), 2.64 (m, 4H), 2.51 (t, 2H), 1.74 (m, 8H), 1.35 (m, 32H), 0.90 (m, 12H). 13C
NMR (100 MHz, CDCl3, ppm): δ 182.84, 182.22, 156.88, 144.35, 141.49, 141.24, 140.81, 139.84,
139.66, 138.93, 137.38, 136.49, 136.37, 135.04, 135.00, 134.46, 134.36, 133.63, 130.74, 124.43,
124.34, 123.18, 122.78, 77.35, 77.03, 76.72, 31.91, 31.70, 31.59, 31.49, 30.49, 29.83, 29.72, 29.47,
29.41, 29.31, 29.21, 29.18, 28.59, 27.85, 22.71, 22.66, 22.63, 14.15, 14.11. MS (MALDI-TOF):
[M]+ m/z calcd for C52H66O2S6 914.339, found 915.394.

3.2.11. Synthesis of 1,3-Bis(5-bromo-6-octylthieno [3,2-b]thiophen-2-yl)-5-((4,5-
dihexylthiophen-2-yl)methylene)-4H-cyclopenta[c]thiophene-4,6(5H)-dione (M3)

A portion of NBS (188 mg, 1.04 mmol) was added to a solution of 8 (380 mg, 0.42 mmol)
in THF (10 mL). The reaction mixture was stirred at room temperature overnight in dark-
ness. The reaction mixture was then poured into water (30 mL), extracted with diethyl
ether (30 mL × 3), and the organic layer was washed with saturated brine, dried over
anhydrous MgSO4, filtered, and concentrated under reduced pressure. Purification by
column chromatography provided compound M3 as a red oil (240 mg, 62.2%). 1H NMR
(400 MHz, CDCl3, ppm): δ 8.53 (s,1H), 8.36 (s, 1H), 7.59 (s,1H), 7.44 (s, 1H), 2.81 (t, 2H),
2.58 (m, 4H), 2.51 (t, 2H), 1.65 (m, 8H), 1.33 (m, 32H), 0.90 (m, 12H). 13C NMR (100 MHz,
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CDCl3, ppm): δ182.43, 181.77, 157.05, 144.16, 140.79, 140.20, 139.77, 139.50, 139.03, 138.15,
137.96, 137.06, 135.65, 135.48, 134.09, 133.83, 133.53, 130.19, 122.58, 122.18, 113.16, 113.09,
77.35, 77.03, 76.71, 34.68, 31.92, 31.72, 31.62, 31.47, 30.41, 29.72, 29.51, 29.41, 29.33, 29.25,
29.02, 27.97, 27.90, 25.29, 22.71, 22.66, 20.71, 14.16, 14.14. MS (MALDI-TOF): [M]+ m/z calcd
for C52H64Br2O2S6 1070.160, found 1070.262.

3.2.12. Synthesis of IND-T-BDTF, IND-HT-BDTF and IND-OTT-BDTF

In a Schlenk flask, the monomers BDTF (0.25 mmol) and M1, M2, or M3 (0.25 mmol),
and Pd(PPh3)4 (5%) were dissolved in dry toluene (5 mL). The reaction mixture was stirred
at 110 ◦C for 24 h under an argon atmosphere. Then, 2-tributylstannylthiophene (0.1 mL)
and 2-bromothiophene (0.1 mL) were consecutively added as end-capping agents with an
interval of 2 h. The polymer solution was cooled to room temperature and precipitated
from methanol. The crude polymer was collected by filtration, and further purified by
Soxhlet extraction. Finally, the polymer was collected from the chloroform fraction by
precipitation from methanol and dried under a vacuum. IND-T-BDTF (210 mg, 60.5%);
1H NMR (400 MHz, CDCl3, ppm): δ 2.87 (s), 1.72–0.90 (m). GPC: Mn = 4319, PDI = 2.15.
IND-HT-BDTF (220 mg, 63.5%); 1H NMR (400 MHz, CDCl3, ppm): δ 2.87 (s), 1.72–0.90 (m).
GPC: Mn = 7494, PDI = 1.62. IND-OTT-BDTF (225 mg, 58.1%); 1H NMR (400 MHz, CDCl3,
ppm): δ 3.03 (s), 1.54–0.96 (m). GPC: Mn = 22531, PDI = 2.42.

3.3. Fabrication and Analysis of PSCs

Inverted-type PSCs devices with a structure of ITO/ZnO (25 nm)/Polymer:Y6BO
(80 nm)/MoO3 (3 nm)/Ag (100 nm) were fabricated. The ZnO layer was deposited on
the ITO by sol-gel process giving a film of 25-nm-thick. The ZnO solution was prepared
by dissolving 0.164 g of zinc acetate dehydrate and 0.05 mL of 2-aminoethanol in 1mL
of methoxyethanol and then the corresponding solution was stirred for 30 min before
the film deposition. The active layer was fabricated by spin-coating using a solution of
the polymeric donor and Y6BO acceptor in chloroform with 0.5% of 1-chloronaphthalene
(CN) as a processing additive. The blended solution was previously filtered using a
0.5 µm PTFE membrane filter. The active layer was heat treated at 110 ◦C for 10 min in
the glove box. Then, a MoO3 layer (3-nm-thick) and an Ag layer (100-nm-thick), were
consecutively deposited using a shadow mask with a device area of 0.09 cm2 by thermal
evaporation at 2 × 10−6 Torr. The photovoltaic characteristics of the corresponding devices
were evaluated using a KEITHLEY Model 2400 source-measure unit under AM 1.5G
illumination at 100 mW/cm2 from a 150 W Xenon lamp.

3.4. Fabrication of Hole- and Electron-Only Devices

Hole-only devices with the structure: [ITO/polymer:Y6BO/Au (50 nm)] and electron-
only devices with the structure: [ITO/ZnO (25 nm)/polymer:Y6BO/Al (50 nm)], have been
fabricated to investigate the hole and electron mobility.

4. Conclusions

In conclusion, the rational design of 4H-cyclopenta[c]thiophene-4,6(5H)-dione (IND)
derivatives is to develop novel polymer donors. We created a new class of polymer donors
called IND-T-BDTF, IND-HT-BDTF, and IND-OTT-BDTF, in which BDTF as donating unit
is connected to the IND derivative electron-accepting unit via thiophene (T) or thieno [3,2-
b]thiopene (TT) bridges. The energy levels of the polymers did not show discernible change
upon replacement in the π-bridge. The absorption range of the polymer donors based
on IND in this study showed 400~800 nm, which complimenting the absorption of Y6BO
(600~1000 nm). The introduction of the hexyl group on the thiophene bridge improves
the absorption coefficient in the ICT region. Further absorption coefficient improvement
in the ICT region can be achieved upon replacement in the π-bridge from thiophene to
thieno [3,2-b]thiopene (TT). The excitons were almost quenched in the blend films with
Y6BO, indicating the charge transfer and exciton dissociation in the blend films have
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effectively occurred. In addition, the hole/electron mobility and ratios improved upon
changes in the π-bridge. In conclusion, the PCEs of the PSCs were in the order of IND-T-
BDTF (3.18%) < IND-HT-BDTF (7.23%) < IND-OTT-BDTF (11.69%). The highest PCE was
obtained in the PSCs based on IND-OTT-BDTF.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms24010522/s1. Figure S1: (1H NMR spectrum of compound
IND). Figure S2: (13C NMR spectrum of compound IND). Figure: S3. (1H NMR spectrum of
compound 2). Figure S4: (13C NMR spectrum of compound 2). Figure S5: (1H NMR spectrum of
compound 3). Figure S6: (13C NMR spectrum of compound 3). Figure S7: (1H NMR spectrum of
compound 4). Figure S8: (13C NMR spectrum of compound 4). Figure S9: (1H NMR spectrum of
compound 5). Figure S10: (13C NMR spectrum of compound 5). Figure S11: (1H NMR spectrum of
compound 6). Figure S12: (13C NMR spectrum of compound 6). Figure S13: (1H NMR spectrum of
compound M1). Figure S14: (13C NMR spectrum of compound M1). Figure S15: (1H NMR spectrum
of compound 7). Figure S16: (13C NMR spectrum of compound 7). Figure S17: (1H NMR spectrum of
compound M2). Figure S18: (13C NMR spectrum of compound M2). Figure S19: (1H NMR spectrum
of compound 8). Figure S20: (13C NMR spectrum of compound 8). Figure S21: (1H NMR spectrum of
compound M3). Figure S22: (13C NMR spectrum of compound M3). Figure S23: (1H NMR spectrum
of IND-T-BDTF). Figure S24: (1H NMR spectrum of IND-HT-BDTF). Figure S25: (1H NMR spectrum
of IND-OTT-BDTF). Figure S26: TGA thermograms of IND-T-BDTF, IND-HT-BDTF, and IND-OTT-
BDTF. Figure S27: CV curves of (a) the reduction cycles and (b) the oxidation cycles of IND-T-BDTF,
IND-HT-BDTF, and IND-OTT-BDTF. Figure S28. PL spectra of the polymers and their blend films with
Y6BO acceptor: (a) IND-T-BDTF, (b) IND-HT-BDTF, and (c) IND-OTT-BDTF. Figure S29: Frontier
molecular orbitals of a two-repeating unit model compound at optimized geometry obtained from
B3LYP/6-31G** level for (a) IND-T-BDTF, (b) IND-HT-BDTF, IND-OTT-BDTF. Figure S30: The IPCE
spectra of the PSCs based on IND-T-BDTF, IND-HT-BDTF, and IND-OTT-BDTF. Figure S31: J-
V curves of (a) hole- and (b) electron-only devices (inset: current density vs. voltage – built-in
voltage (Vbi) curves with fitted lines. Figure S32: (a) GIWAXS image of pristine Y6BO film and
(b) the corresponding line-cuts in the in-plane and out-of-plane direction. Figure S33: TEM images
of the active layer based on (a) IND-T-BDTF, (b) IND-HT-BDTF, (c) IND-OTT-BDTF. Figure S34:
AFM images of the active layer based on (a) IND-T-BDTF, (b) IND-HT-BDTF, (c) IND-OTT-BDTF.
Table S1: The best photovoltaic parameters of the PSCs based on Y6BO. The average (10 devices are
averaged) values for the photovoltaic parameters of each device are also provided in parentheses.
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