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Abstract: Interest in plant compounds has increased, given recent evidence regarding their role in
human health due to their pleiotropic effects. For example, plant bioactive compounds present in
food products, including polyphenols, are associated with preventive effects in various diseases, such
as cancer or inflammation. Breast and colorectal cancers are among the most commonly diagnosed
cancers globally. Although appreciable advances have been made in treatments, new therapeutic
approaches are still needed. Thus, in this study, up to 28 olive leaf extracts were obtained during
different seasons and using different drying temperatures. The influence of these conditions on total
polyphenolic content (measured using Folin–Ciocalteu assays), antioxidant activity (using Trolox
Equivalent Antioxidant Capacity and Ferric Reducing Ability of Plasma assays) and antiproliferative
capacity (using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, MTT assays) was
tested in breast and colorectal cancer cells. Increased phenolic composition and antioxidant and
antiproliferative capacity are noted in the extracts obtained from leaves harvested in autumn, followed
by summer, spring and winter. Regarding drying conditions, although there is not a general trend,
conditions using the highest temperatures lead to the optimal phenolic content and antioxidant
and antiproliferative activities in most cases. These results confirm previously published studies
and provide evidence in support of the influence of both harvesting and drying conditions on the
biological activity of olive leaf extracts.

Keywords: antioxidant; antiproliferative; cancer; breast; colon; olive leaf extract; flavones

1. Introduction

Cancer is one of the major health problems in the population and is one of the leading
causes of mortality worldwide. Specifically, breast cancer is the most common tumor
in the world. In total, 1 in 8 women will have a breast tumor throughout her life, and
2.2 million new cases are diagnosed each year worldwide. In addition, breast cancer
remains an unresolved disease as the annual rate of mortality is estimated to be approxi-
mately 700,000 deaths per year [1]. Colorectal cancer also ranks among the most common
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cancers. Specifically, colorectal cancer ranks fourth in incidence, with 1.9 million new
cases diagnosed annually, and second in mortality, with approximately one million deaths
per year.

As an alternative to conventional drugs, new treatments based on vegetal compounds
are being studied. Some natural extracts and pure compounds have shown antiproliferative
activity in breast cancer cell models [2–4]. The diversity of chemical structures, molecular
targets and mechanisms of action is huge [5] but also promising, as it allows the devel-
opment of new and significant studies that contribute to the continuous advancement of
knowledge in this field.

Olive (Olea europaea) is probably one of the most famous sources of natural compounds
with biological activity. Its extracts and compounds have been extensively reviewed [6–9],
and most of its applications are related to cancer studies.

In this sense, olive leaf extracts have demonstrated activity against almost all of the
most common cancers, including breast [10], hepatic [11] and colorectal cancer [12]. In
addition, numerous studies have reported the antitumoral effects of other raw materials,
such as oils and agri-food byproducts obtained from olive [13–17]. Pure compounds
obtained from olives, olive products and olive-related industries have also been extensively
studied [18–21]. Most of these studies are related to the antioxidant properties of these
compounds [22,23]. However, anticancer research is also a common topic, especially
breast cancer research [24–26]. The antiproliferative effect of olive extracts and compounds
against breast cancer has been observed in numerous cellular [27–29] and animal models.
A particular study described the use of olive leaf extracts in cancer. Specifically, the
antiproliferative effect of an extract of olive leaf obtained using supercritical fluid extraction
(SFE) was tested in cellular models of breast cancer (JIMT-1 cells) [30,31].

Numerous extractive techniques, including both classical (maceration, percolation,
liquid–liquid extraction, among others) and novel techniques (such as SFE, ultrasounds
or microwaves), have been used to obtain olive extracts and pure compounds [32–37].
Other studies have focused on pretreatments, such as drying [38–40]. The results are
study-dependent, but the majority of the extractive techniques and pretreatments provided
bioactive compounds with primary differences that centered on qualitative and quantitative
composition as well as extraction yields. Another important factor to be studied is the
influence of season on the yield and composition of the obtained products. This factor has
been studied in other plants, such as seomcho [41], hypericum [42], asparagus [43] and
oregano [44], as well as in olive [45–47].

The present work is the continuation of previous studies by our group focusing on
the selection of the best olive leaf raw material for improved antiproliferative activity in
cancer cell models [31], molecular characterization [48], identification of the intracellular
metabolites present in the most active extract and their putative mechanisms of action [30].
In this new work, the influence of season and drying temperature is studied to identify the
optimal harvesting and pretreatment conditions for further development.

2. Results

Up to 28 different extracts were obtained as described in the Methods section covering
the four seasons and seven different drying conditions: fresh undried samples and samples
dried at different temperatures (25, 40, 60, 80, 100 and 120 ◦C). The composition of each
extract is fully described in [48].

2.1. Determination of Phenolic Content and Antioxidant Capacity

The total polyphenolic content (TPC) was measured in all the samples as described in
the Methods section. The highest phenolic content results obtained (Figure 1A and Table 1)
were, individually, those of the AU120 extract with a mean %GAE of 4.98 ± 0.25, followed
by SU80 at 2.04 ± 0.4 and SP25 at 1.45 ± 0.03.
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Figure 1. Phenolic content (A) and antioxidant capacity measured by TEAC (B) and FRAP (C) assays.
Data are shown as a function of the collection season and drying temperature. (A) Data are expressed
as the mean (n = 3) of the percentage of gallic acid equivalents per 100 g of each extract. (B) Data
are expressed as the mean (n = 3) of mmol equivalents of Trolox per 100 g of each extract. (C) Data
are expressed as the mean (n = 3) of mmol equivalents of Fe2+ per 100 g of each extract. Statistically
significant differences were not noted among the samples.

When grouped by season (Figure 1A), the best results were obtained for the autumn
samples, followed by the summer, spring and winter extracts. When grouped by drying
temperature, no clear influence of this parameter on TPC was noted.

The antioxidant activity was measured using two different methods, TEAC and FRAP,
as described in the Methods section. The TEAC assay is a single-electron transfer-based
method that has been used in a large variety of food samples (Huang et al., 2005), and Trolox
served as a standard. The FRAP assay is also based on a single-electron transfer mechanism,
but it is specifically used to determine the antioxidant capacity of biological samples.

The results are shown in Table 1 and Figure 1B,C. The highest antioxidant capacity re-
sults obtained for the TEAC assay were obtained from AU120 extract (autumn, 120 ◦C) with
32.75 ± 6.34 mmol Eq TROLOX followed by SU80 (summer, 80 ◦C) with 14.60 ± 1.94 mmol
Eq TROLOX and SP25 (spring, 25 ◦C) with 11.99 ± 0.52 mmol Eq TROLOX (Figure 1B). For
the FRAP assay, the same order was obtained, yielding values of 495.40 ± 2.17, 208 ± 1.71
and 188.14 ± 1.36 mmol EqFe2+ for AU120 (autumn, 120 ◦C), SU80 (summer, 80 ◦C) and
SP25 (spring, 25 ◦C), respectively (Figure 1C).
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Table 1. Extraction conditions and results of phenolic content, antioxidant and antiproliferative capacity assays for the 28 olive leaf extracts. Statistical significance
(p < 0.05) for each parameter (column) is indicated with letters, and different letters indicate statistically significant differences.

Extract Season Dry
◦C %GAE mmol

EqTROLOX
mmol

EqFe2+
IC50

MCF7
IC50

JIMT-1
IC50

HCT116

WIF

Winter

Fresh 0.69 ± 0.05 fgh 7.71 ± 1.04 cdef 117.13 ± 0.59 ab *e 67.84 ± 15.74 b 65.24 ± 2.94 de

WI25 25 1.05 ± 0.09 j 7.68 ± 0.87 cdef 162.71 ± 0.05 abc *e *d 139.10 ± 26.15 i

WI40 40 0.34 ± 0.05 bc 1.48 ± 0.13 a 119.47 ± 0.08 ab *e *d *j

WI60 60 0.24 ± 0.01 ab 1.31 ± 0.14 a 108.02 ± 0.31 a *e *d *j

WI80 80 0.11 ± 0.01 a 3.25 ± 0.54 abc 121.89 ± 1.38 ab *e *d 82.69 ± 2.60 g

WI100 100 0.73 ± 0.08 hg 2.88 ± 0.77 abc 121.74 ± 2.19 ab *e *d *j

WI120 120 0.51 ± 0.00 cdef 3.65 ± 0.67 abc 119.55 ± 3.34 ab *e *d *j

SPF

Spring

Fresh 0.60 ± 0.02 efgh 7.54 ± 1.45 cdef 145.31 ± 1.57 abc 56.58 ± 8.59 c 71.75 ± 22.77 b 47.50 ± 1.64 c

SP25 25 1.45 ± 0.03 l 11.99 ± 0.52 f 188.14 ± 1.36 cd 53.43 ± 5.20 bc *d 94.97 ± 2.11 hg

SP40 40 0.58 ± 0.08 defgh 2.06 ± 0.99 ab 134.69 ± 0.21 ab *e *d *j

SP60 60 0.39 ± 0.04 bcd 2.25 ± 0.23 ab 113.52 ± 1.16 ab *e *d 64.36 ± 1.92 de

SP80 80 0.59 ± 0.07 efgh 1.99 ± 0.12 a 115.24 ± 1.18 ab *e *d *j

SP100 100 0.39 ± 0.05 bcd 2.07 ± 0.70 ab 113.65 ± 0.37 ab *e *d 98.58 ± 2.19 g

SP120 120 0.74 ± 0.03 hg 9.71 ± 0.28 def 139.02 ± 1.18 ab *e *d 85.16 ± 1.88 g

SUF

Summer

Fresh 0.91 ± 0.07 gj 6.51 ± 2.17 bcde 125.31 ± 2.01 ab *e *d *
SU25 25 0.61 ± 0.02 efgh 3.94 ± 0.73 abc 108.15 ± 0.90 a *e *d 86.69 ± 1.36 f

SU40 40 0.30 ± 0.02 b 2.51 ± 1.12 abc 108.27 ± 0.10 a *e *d *j

SU60 60 0.42 ± 0.06 bcde 3.20 ± 0.53 abc 127.87 ± 3.04 ab *e *d 83.10 ± 2.19 g

SU80 80 2.04 ± 0.40 m 14.88 ± 1.94 f 208.00 ± 1.71 d 40.78 ± 4.8 a 45.93 ± 3.84 a 31.53 ± 1.40 a

SU100 100 0.63 ± 0.02 efgh 4.72 ± 1.80 abc 114.80 ± 2.07 ab *e *d 67.83 ± 1.88 e

SU120 120 0.25 ± 0.02 ab 5.78 ± 0.15 abcd 123.07 ± 0.44 ab *e *d 61.34 ± 2.17 d

AUF

Autumn

Fresh 1.24 ± 0.03 k 11.98 ± 1.40 f 128.68 ± 0.42 ab 60.39 ± 6.47 c 69.55 ± 19.68 b 40.06 ± 1.23 b

AU25 25 0.99 ± 0.15 j 7.74 ± 0.90 def 158.08 ± 0.68 abc *e *d 97.70 ± 2.36 g

AU40 40 0.74 ± 0.03 hg 6.06 ± 1.78 abcd 151.21 ± 0.90 abc 91.0 ± 28.55 d 66.02 ± 9.11 b 92.72 ± 5.33 h

AU60 60 0.52 ± 0.06 degh 9.20 ± 1.38 def 127.49 ± 2.86 ab 46.23 ± 2.84 ab 104.80 ± 21 c 45.09 ± 0.09 c

AU80 80 0.72 ± 0.06 h 6.56 ± 1.21 bcde 110.98 ± 3.8 ab *e *d 64.58 ± 3.04 de

AU100 100 0.71 ± 0.07 gh 9.41 ± 2.33 def 139.58 ± 0.81 abc *e 107.09 ± 38.99 c 77.10 ± 3.0 f

AU120 120 4.98 ± 0.25 n 33.17 ± 6.53 g 495.40 ± 2.17 e *e *d 37.17 ± 3.00 b

* IC50 > 100 µg/mL.
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Antioxidant assays rendered similar conclusions as TPC assays, showing that antiox-
idant activity was strongly related to TPC. A correlation was noted between TPC and
both antioxidant tests, with coefficients of 0.94 for TEAC and 0.97 for FRAP. A similar
relationship was observed between TEAC and the FRAP test (coefficient of 0.91). Regarding
the influence of the season, autumn yielded the best results in the three tests, followed by
summer, spring and winter. Overall, regarding the drying temperature, the results do not
show a trend that allows for the determination of optimal conditions.

2.2. Determination of Antiproliferative Capacity

In order to determine the antiproliferative activity of the extracts, two breast cancer
cell lines and a colorectal cancer cell line were selected based on their relevance as clinical
models. MCF7 is a model estrogen receptor-dependent cell line that is representative
of luminal A breast cancer. JIMT-1 is a model cell line of HER2-positive breast cancer
that is resistant to Herceptin, and HCT-116 is a model colon cancer cell line with high
migratory/invasive capacity.

The different cell lines were treated using extract concentrations ranging between 0
and 70 µg/mL based on IC50 values obtained in previous studies [30]. However, in most
cases, the IC50 values could not even be calculated due to the low antiproliferative activity
of the extracts. The lowest IC50 values were obtained for the SU80 extract (summer, 80 ◦C)
(Table 1). These values were 40.78 ± 4.81 µg/mL in MCF7 cells, 45.93 ± 3.84 µg/mL in
JIMT-1 cells and 31.53 ± 1.40 µg/mL in HCT116 cells (Figure 2).
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Figure 2. Effect of the SU80 extract on the MCF7 (Green) and JIMT-1 (Purple) breast cancer lines
and HCT116 (Blue) colon cancer cell line. The cells were treated with different concentrations of the
extract (0–70 µg/mL) for 24 h. Once the treatment was complete, cell viability was determined using
the MTT assay. Values are presented as the percentage of cell viability (%, n = 6).

No correlations were observed among the IC50 values and total polyphenolic content
or results for both antioxidant tests.

2.3. Statistical Search of Possible Candidates Responsible for the Activities of the Extracts

Based on previously published results [48] and the results described above, a statistical
analysis was performed to determine the candidate compounds among all the compounds
present in the extracts that are responsible for the antioxidant and antiproliferative activities
of the extracts using a generalized linear model (GLM).

Statistical analysis was performed using R software. Variables with greater than 10
missing values were not analyzed to ensure the strength of the analysis; thus, MCF7 cell line
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results were not included in the analysis. The remaining variables, including bioactivities
against colon (HCT116 cells) and breast cancer (JIMT-1 cells) and antioxidant activities,
were used to estimate regressions using GLMs.

As shown in Table 2, oleuropein (isomer 1) was identified as demonstrating the greatest
contribution to antioxidant activity based on the TEAC assay results, and the results are
highly statistically significant (p < 0.001).

Table 2. GLM 1 summary (antioxidant capacity, TEAC).

Deviance Residuals

Min 1Q Median 3Q Max

−4.407 −2.439 −0.835 1.476 10.217

Coefficients

Estimate SEM T Value Pr (>|t|) Significance

(Intercept) 4.52269 0.65513 6.904 1.67 × 10−7 p < 0.001
Oleuropein

isomer 1 0.13492 0.01532 8.805 1.48 × 10−9 p < 0.001

Regarding antioxidant activity measured using the FRAP method (expressed as
mmolEqFe2+), GLM 2 revealed that vanillin was the candidate with the greatest con-
tribution to antioxidant activity. This finding also exhibited high statistical significance
(p < 0.001) (Table 3).

Table 3. GLM 2 Summary (antioxidant capacity, FRAP).

Deviance Residuals

Min 1Q Median 3Q Max

−66.299 −12.195 −5.510 9.605 83.146

Coefficients

Estimate SEM T Value Pr (>|t|) Significance

(Intercept) 125.44683 6.15193 20.391 <2 × 10−16 p < 0.001
Vanillin −0.85119 0.14673 −5.801 3.58 × 10−6 p < 0.001

Regarding antiproliferative activity, acetoxypinoresinol and oleanolic acid were identi-
fied as the candidates with the greatest contributions in the GLM generated for colon cancer
HCT116 cells, and the result was significant at p < 0.01 (Table 4). For breast cancer JIMT-1
cells, acetoxypinoresinol and ursolic acid were identified as the main compounds responsi-
ble for the antiproliferative activity in this cell line, and the results for both compounds
were statistically significant (Table 5).

Table 4. GLM 3 summary (antiproliferative capacity, JIMT1).

Deviance Residuals

Min 1Q Median 3Q Max

−164.10 −88.79 −20.14 27.46 348.75

Coefficients

Estimate SEM T Value Pr (>|t|) Significance

(Intercept) 214.510 31.375 6.837 2.41 × 10−7 p < 0.001
Acetoxypinoresinol −35.780 6.890 −5.193 1.81 × 10−5 p < 0.001

Ursolic acid 26.582 5.148 5.164 1.96 × 10−5 p < 0.001
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Table 5. GLM 4 summary (antiproliferative capacity, HCT116).

Deviance Residuals

Min 1Q Median 3Q Max

−50.761 −5.184 −0.502 10.423 51.635

Coefficients

Estimate SEM T Value Pr (>|t|) Significance

(Intercept) 90.255 4.562 19.783 <2 × 10−16 p < 0.001
Acetoxypinoresinol −2.315 1.193 −1.940 6.28 × 10−3 p < 0.05

Oleanolic acid −3.207 1.022 −3.138 4.08 × 10−3 p < 0.01

3. Discussion

The influence of harvesting time [49], drying [38–40,40,50,51] and extracting [32–37]
conditions on the biological activity of olive leaf extracts and other vegetal matrices has
been previously studied. These studies are difficult to compare because they employ
different olive tree varieties, and most of these studies state that this is an important issue
that strongly influences the polyphenolic content as well as the biological activities of the
extracts [49]. However, despite this issue, all the studies confirm that harvesting during the
summer yields an increased level of bioactive compounds as the plant uses these molecules
as a defense against solar irradiation.

These previous results are also confirmed in our study, where summer and autumn
harvesting render the best results for most of the tests developed. However, this study
aims to go further and provide new insights into the identification of the compounds that
influence these biological activities. Using qualitative and quantitative analyses of the
composition of the different extracts as previously described [48], a statistical analysis
was performed using a generalized linear model to determine the possible candidates
for antioxidant and antiproliferative activity. Our results indicate that acetoxypinoresinol
and ursolic acid contribute the most to the extract’s antiproliferative activity in JIMT-1
cells, whereas vanillin and oleuropein exhibit the greatest contributions to the extract’s
antioxidant activity.

Previous results from our group [30] showed increased phenolic content and antioxi-
dant and antiproliferative capacity, especially for the latter. Our previous results identified
diosmetin, apigenin and luteolin as the extract components responsible for these biological
activities [30]. However, the concentrations of these compounds are very low or nonexistent
in the extracts assessed in the current study. Therefore, the observed effect must be exerted
by compounds with less antiproliferative potential, namely, acetoxypinoresinol and ursolic
acid, in this case. These results reaffirm the role of these compounds in the previously
reported antiproliferative effects of the extract [30].

On the one hand, it is necessary to perform an extraction process aimed at increasing
the content of these specific compounds to obtain the best results. For example, given the
nonpolar nature of flavones, the extract could be separated into fractions based on polarity
to increase the flavone concentration.

Furthermore, the low concentration or absence of these flavones may be attributed
to the time of sample collection. In 2016 and 2017, the year of leaf collection, the Earth’s
global surface temperatures were classified as the warmest since 1880 by the NOAA’s
National Centers for Environmental Information [52,53], and it is known that the high
temperatures, together with dry seasons can reduce polyphenol concentrations [54]. In
addition, climate change may negatively influence the quality of the crops [55]. However,
as mentioned above, the use of different varieties, species, extraction procedures and
purification techniques introduces variability in the published results and makes any
generic comparison difficult to achieve.

Regarding the effect of the leaf harvesting season and the dry temperature, no statistical
significance was obtained; nevertheless, a trend was observed regarding the effect of the
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seasonality of leaf collection. Leaves collected in winter are subject to the worst conditions.
These conditions improve with the passing of the seasons until the best conditions are
reached in autumn. Regarding the increase in drying temperature, the results do not
show a trend that allows determining the optimal conditions. Other studies already
published on the relationship among drying temperature, TPC and different biological
activities have noted that higher drying temperatures have a positive influence on these
parameters [50]. Our study also supports this conclusion; however, the results were not
statistically significant, probably due to the intrinsic variability of the samples. These results
can be explained if we consider the biennial cycle of the olive tree and its relationship
to the progressive increase in phenolic content as previously described [56]. As seen in
Figure 3, the olive tree is the least active, metabolically speaking, in the plant, in the winter
months. The activities associated with the vegetative and reproductive cycle increase with
the passing of the months until the maximum activity is reached in the autumn months.
In addition, as a defense against UV radiation during the summer, phenolic compounds
accumulate at greater levels during this time, thereby contributing to increased phenolic
content in the autumn, as previously reported by other authors [57,58].
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Finally, as this study focuses on in vitro tests, it has some limitations that should be
addressed in future studies, mainly the influence of compounds’ bioavailability, metabolism
and breast tissue distribution [59]. In this sense, the development of preclinical tests
using animal models followed by human clinical trials is considered the main and most
recommendable strategy.

4. Materials and Methods
4.1. Olive Leaf Extract Obtention

The whole collection of olive leaf samples was obtained from the olive cultivar ‘El
Hor’ from the Center of Tunisia between January 2017 and November 2017 and covered
the four seasons (winter, spring, summer and autumn). Samples were directly transferred
to the laboratory, washed with distilled water and divided into groups depending on
the treatment to be applied. The first aliquot of each group was immediately stored at
−80 ◦C and labeled “fresh samples”. The remainder of the aliquots were dried either
at room temperature (RT) (25 ◦C) or various temperatures of 40, 60, 80, 100 and 120 ◦C
in a programmable mechanical convection oven (Binder Gmbh, Tuttlingen, Germany).
Before processing using supercritical CO2 extraction (SFE), leaves were ground using an
Ultra Centrifugal Mill ZM 200 (Retsch Gmbh, Haan, Germany). Further details about the
extraction procedures, with particular attention given to SFE, are fully described in [48].
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4.2. Folin–Ciocalteu Assay

For the study of phenolic compounds in the olive leaf extracts, 50 µL of Folin–Ciocalteu
reagent was mixed with 10 µL of the sample, 100 µL of Na2CO3 20% (w/v) and 840 µL
of distilled water. Samples were incubated for 20 min at RT, and their absorbance at
700 nm was measured on a SPECTROstar Omega plate reader (BMG LabTech GmbH,
Offenburg, Germany). The results were expressed as the mean gallic acid equivalents per
100 g dry weight.

4.3. TROLOX Equivalent Antioxidant Capacity (TEAC) Assay

First, ABTS•+ radical cations were generated by incubating the ABTS stock solution
with potassium persulfate for 12–24 h at RT. For the study of phenolic compounds, the
ABTS•+ solution was first diluted with distilled water to an absorbance of 0.700 at 734 nm
and then processed as described in [60]. The final absorbance at 734 nm was measured using
a SPECTROstar Omega plate reader. The results were expressed in millimoles equivalent
of Trolox per 100 g of the compound.

4.4. Ferric Reducing Ability Power (FRAP) Assay

The FRAP method is a method used to estimate the reduction in a ferric−tripyridyltriazine
(TPTZ) complex. For the study of phenolic compounds, 200 µL of freshly prepared FRAP
reagent was mixed with 40 µL of distilled water or 40 µL of extract and incubated at 37 ◦C
for 10 min. The FRAP reagent contained 2.5 mL of a 10 mM TPTZ solution, 2.5 mL of
20 mM ferric chloride and 25 mL of 300 mM sodium acetate. Absorbance was measured
at 593 nm in a SPECTROstar Omega plate reader. A calibration curve was prepared with
different concentrations of FeSO4 (0–300 µM). The results were expressed in millimoles of
Fe2+ equivalents per 100 g of the compound.

4.5. Viability Assay

The cell lines used for antiproliferative assays included JIMT-1 (HER2-positive breast
cancer) and MCF7 (luminal breast cancer) human breast carcinoma cells and HCT116
human colorectal cancer cells. All the cell lines were purchased from ATCC (Europe),
except JIMT-1, which was purchased from the German Collection of Microorganisms and
Cell Cultures (Braunschweig, Germany). Cells were plated in 96-well multiwell culture
plates at a density of 7 × 103 cells/well. After 24 h of incubation with the olive extracts
(0–70 µg/mL), the antiproliferative effects of the extracts were determined using the MTT
(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) cell proliferation assay. At
the end of the treatment, a solution of the MTT reagent dissolved in a complete culture
medium (250 µg/mL) was added and incubated for 3–5 h at 37 ◦C and 5% CO2. Then, the
supernatant was removed from the wells, and 100 µL of DMSO was added per well to
resuspend the formazan crystals. The plates were kept for 15 min under stirring at RT, and
then the absorbance at 570 nm was measured in a SPECTROstar Omega plate reader using
the absorbance at 620 nm as a reference. The results are expressed as the mean percentage
of growth inhibition in 50% of the cell population (IC50 ± SD) relative to the control (n = 6).

4.6. Statistical Analysis of Composition and Activity

In order to determine the possible compounds responsible for the biological activities
studied, statistical analysis of all the compounds present in the extracts and the biolog-
ical activity data obtained was performed using R software (ver. 4.1.3). Her variables
with greater than 10 missing values were discarded; thus, the antiproliferative activity
against MCF7 cells was not included in the analysis. The resulting explanatory variables,
including antioxidant activity, which was assessed based on both studied methods, and
antiproliferative activity against JIMT-1 and HCT116, were used to estimate the regressions
using a generalized linear model (GLM). Statistical significance for extraction conditions
differences was tested through a Duncan test at a 5% confidence level using SPSS statistical
package (Version 29.0.0.0 (241) for Windows, SPSS Inc., Chicago, IL, USA, 2003).
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5. Conclusions

The results obtained in this work show that olive leaf extracts obtained from leaves
harvested in autumn, followed by summer, showed increased phenolic composition and
antioxidant and antiproliferative capacity, probably as a result of increased solar irradiation.
Additionally, these activities are positively influenced by drying temperature, as the higher
the temperature, the better the results in most cases.

However, the method used to obtain olive leaf extracts does not offer sufficiently
consistent reproducibility in terms of its composition and its biological activity, given
the significant influence of the environmental conditions on the secondary metabolism
mechanisms in this plant that produce high variability in the composition of its extracts.

Thus, it is recommended to work with combinations or mixtures of the pure com-
pounds responsible for its biological activity, namely, diosmetin, apigenin and luteolin, to
assess the antiproliferative effects of these compounds in cancer further.
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