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Abstract: Soil ecosystems are home to a diverse range of microorganisms, but they are only partially
understood because no single-cell sequencing or whole-community sequencing provides a complete
picture of these complex communities. Using one of such metagenomics approaches, we succeeded
in monitoring the microbial diversity and stress-response gene in the soil samples. This study
aims to test whether known differences in taxonomic diversity and composition are reflected in
functional gene profiles by implementing whole gene sequencing (WGS) metagenomic analysis of
geographically dispersed soils from two distinct pristine forests. The study was commenced by
sequencing three rainforest soil samples and three peat swamp soil samples. Soil richness effects were
assessed by exploring the changes in specific functional gene abundances to elucidate physiological
constraints acting on different soil systems and identify variance in functional pathways relevant
to soil biogeochemical cycling. Proteobacteria shows abundances of microbial diversity for 52.15%
in Royal Belum Reserved Forest and 48.28% in Raja Musa; 177 out of 1,391,841 and 449 out of
3,586,577 protein coding represent acidic stress-response genes for Royal Belum and Raja Musa,
respectively. Raja Musa indicates pH 2.5, which is extremely acidic. The analysis of the taxonomic
community showed that Royal Belum soils are dominated by bacteria (98% in Sungai Kooi (SK), 98%
in Sungai Papan (SP), and 98% in Sungai Ruok (SR), Archaea (0.9% in SK, 0.9% in SP, and 1% in
SR), and the remaining were classed under Eukaryota and viruses. Likewise, the soils of Raja Muda
Musa are also dominated by bacteria (95% in Raja Musa 1 (RM1), 98% in Raja Musa 2 (RM2), and
96% in Raja Musa 3 (RM3)), followed by Archaea (4% in RM1, 1% in RM2, and 3% in RM3), and
the remaining were classed under Eukaryota and viruses. This study revealed that RBFR (Royal
Belum Foresr Reserve) and RMFR (Raja Musa Forest Reserve) metagenomes contained abundant
stress-related genes assigned to various stress-response pathways, many of which did not show any
difference among samples from both sites. Our findings indicate that the structure and functional
potential of the microbial community will be altered by future environmental potential as the first
glimpse of both the taxonomic and functional composition of soil microbial communities.
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1. Introduction

Peatland is an ecosystem that degrades organic matter from deteriorated plants gener-
ated through wet conditions. It covers approximately 4 million km2 and spans 180 countries
worldwide. Southeast Asian peatlands constitute 6% of the world’s 24.8 million hectares of
peatland [1]. Peat swamp forests are crucial to the global carbon (C) cycle and comprise
one-third of soil carbon [2]. Tropical peatland is known as the peat swamp forest (PSF)
in Malaysia, where flora and fauna survive in acidic and waterlogged waters, and the
carbon balance is a key element [3]. It has a special ecological system. The North Selangor
Peat Swamp Forest (NSPSF), the largest peat swamp forest complex on the west coast of
Peninsular Malaysia, is located in the northwestern part of Selangor State. It covers an area
of 73,392 hectares, comprising Raja Musa Forest Reserve (RMFR), with 23,486 hectares [4].

The Royal Belum State Park was initially known as Hutan Simpan Belum, Perak,
Malaysia, in 1971, and eventually regazetted as a state park in 2007 and as the Crowning
Glory of the Peninsula. The state park is considered one of the oldest, protected, undis-
turbed, and pristine landmasses in Peninsular Malaysia, being more than 130 million years
old. It occupies 290,000 hectares between the Bang Lang National Park and Hala Bala
Sanctuary in Thailand [5–8]. The forest is divided into two regions; the Upper Belum area,
which expanded to the border between the country and Thailand, and the Temengor Lake
area of Lower Belum [9]. It is claimed that the Royal Belum forest is more ancient than the
Amazon and Congo forests [10,11]. Geographically, about 57% of its area is 80 to 300 m
above sea level and 41% in the range 300 to 1533 m above sea level. The forest is classified
as an environmentally sensitive area (ESA) rank 1 region, where growth, farming, and
forestry are not permitted except for low impact tourism, study, and education. The Royal
Belum forest is the habitat of Malaysia and the world’s largest and most significant natural
ecosystems and habitats for in situ conservation of biodiversity [12].

Even though soil bacteria have been studied for more than a century, most soil bacteria
remain undescribed in their diversity [13]. Soil microbial biomass competes for the soil mat
biomass of plants or animals, with soil frequently comprising more than 1000 kg of micro-
bial biomass carbon per hectare [14]. This is not surprising considering that soil bacteria
are among the most abundant and diverse organisms on earth [15–17]. It is challenging
to understand their basic contributions to ecosystem processes, including the cycling of
nutrients and carbon, development of plants, stress-response effect, and greenhouse gas
emissions [18,19]. Most soil bacteria do not fit those found in pre-existing 16S ribosomal
RNA (rRNA) gene databases [20] due to scarce genomic details [20–22]. Furthermore, most
soil bacteria have not been successfully grown in vitro [21,22]. Soils contain some of the
most diverse microbiomes on Earth and are important in various aspects. It is vital to
model the global pattern distribution and functional gene repertoire of soil microorgan-
isms, together with environmental relations between the diversity and composition of
soil populations [23,24], where biological mechanisms and functions resulting from the
interactions among specific genotypes and their microenvironment are predicted to result
in adjustments in soil structure beyond the size of individual cells [25].

The largest terrestrial carbon source is soil organic matter. The extent of the pool
depends on the equilibrium between the production of soil organic matter from plant
litter decomposition and mineralization into inorganic material [26]. Soil organic matter
(SOM) is the essential instrumental agent that generates organizational complexity, where it
functions to bind together mineral elements and colloids [25]. A severe loss of SOM content
may degrade soil functionality, its capacity to provide essential ecosystem services, and
soil health [27]. Soil pH, soil organic carbon (SOC), microbial biomass carbon (MBC), and
available potassium (AK) are the main features significantly associated with the variation
in soil fungal community [28,29]. Several studies revealed the microbial roles in SOM
formation [30–34]. Nonetheless, Ref. [31] agree that the study demonstrating microbial
residues account for the chemistry, stability, and abundance of SOM remains lacking.
Previously, several studies have been revealed levels of organic matter such as nitrogen,
phosphorus and carbon from Malaysia’s pristine forest soil and sludge. From previous
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studies, levels of organic matter from pristine forest soil are lesser than levels of organic
matter from Malaysia’s and Japan’s sludge due to exposure of sludge to agricultural
activities [35–37].

The microbial population is responsible for the synthesis of vital soil nutrients in
a distinctive manner. The community must also interact with the heterogeneous soil
environment, where resource bioavailability, osmotic and oxidative stress, temperature, and
pH all impose restrictions on cell-specific functioning [38]. As a result, a high fraction of the
genes in soil microbial genomes are involved in stress response, primarily environmental
signaling, transcriptional factors, and protein chaperones [39–41]. This insight is critical for
understanding how microbiomes respond to stressful environmental situations [42]. Soil
pH is a strong parameter that determines the biodiversity patterns, especially for bacteria.
This is due to either soil acidity or a confounding phenomenon in which soil pH acts as
a proxy for a range of other parameters across soil environmental gradients. Acidic soils
often have lower phylogenetic diversity and are particularly dominant with acidophilic
and Acidobacteria lineage. The pH of most of virgin soils in Malaysia are acidic, such as
Bera Lake Forest (4.24), Raja Musa (3.36), Ayer Hitam (5.81), Chini Lake (3.97), Langkawi
Island (4.23), Kenyir Lake (4.83) [43–46].

The stress response governs many microbial functions, including starvation survival,
antibiotic tolerance, antibiotic manufacturing, interactions with a eukaryotic symbiont, and
atmospheric oxygen fixation. These functions aid the preservation of climax conditions at
the ecosystem level. Here, we assessed whether known differences in taxonomic diversity
and composition are reflected in functional gene profiles by implementing the whole gene
sequencing (WGS) metagenomic analysis of geographically dispersed soils at two distinct
types of pristine forest. Soil samples (three samples each) from the rainforest and peat
swamp, previously collected as part of a Science and Technology Research Partnership for
Sustainable Development (SATREPS) project, were sequenced. In addition to assessing
the richness effects, we explored specific functional gene abundance changes to elucidate
the physiological constraints on different soil systems and identify variance in functional
pathways relevant to soil biogeochemical cycling.

2. Results
2.1. Taxonomic and Functional Comparisons of Tropical Rain Forest and Peat Swamp
Soil Bacterium

Phylogenetic analysis was conducted using the Metagenomic Rapid Annotations us-
ing Subsystems Technology (MG-Rast) server, where metagenome data underwent Basic
Local Alignment Search Tool (BLAST) analysis against the nonredundant protein sequences
database of National Center for Biotechnology Information (NCBI-nr). The results indi-
cate that SK contains the largest species count of 6264, with 129 phyla, followed by SP
5560 species in 44 phyla, RM1 with 5493 species from 128 phyla, RM3 with 4305 species
from 131 phyla, SR with 3411 species from 81 phyla, and RM2 3092 species from 100 types
of phyla (Table 1). The analysis of the taxonomic community showed that Royal Belum
soils are dominated by bacteria (98% in SK, 98% in SP, and 98% in SR), Archaea (0.9% in SK,
0.9% in SP, and 1% in SR), and the remaining were classed under Eukaryota and viruses.
Likewise, the soils of Raja Muda Musa are also dominated by bacteria (95% in RM1, 98% in
RM2, and 96% in RM3), followed by Archaea (4% in RM1, 1% in RM2, and 3% in RM3),
and the remaining were classed under Eukaryota and viruses (Figure 1).
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Table 1. Blast hits against the nonredundant protein sequences database of NCBI (NCBI-nr).

Forest Types Sites Phylum Species

Rainforest
SK 129 6264
SP 44 5560
SR 81 3411

Peat Swamp Forest
RM1 128 5493
RM2 100 3092
RM3 131 4305
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Figure 1. Microbial community domain in Royal Belum and Raja Musa soils generated with MGRAST.

The bacterial composition of samples from SK, SP, SR, RM1, RM2, and RM3 was
further investigated using the MgRast server, where a total of 27 phyla within the bacterial
domain were selected among the six samples, namely Acidobacteria, Actinobacteria, Aquificae,
Bacteroidetes, Chlamydiae, Chlorobi, Chloroflexi, Chrysiogenetes, Cyanobacteria, Deferribacteres,
Deinococcus–Thermus, Dictyoglomi, Elusimicrobia, Fibrobacteres, Firmicutes, Fusobacteria, Gem-
matimonadetes, Lentisphaerae, Nitrospirae, Planctomycetes, Proteobacteria, Spirochaetes, Synergis-
tetes, Tenericutes, Thermotogae, and Verrucomicrobia. The top relative abundances of microbial
diversity at the phylum level in percentage for designated sites are presented in Table 2
and Figure 2.
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Table 2. Top relative abundances of microbial diversity at phylum level in percentage for three
sampling sites in Royal Belum Reserved Forest and Raja Muda Musa Peat Swamp Reserved Forest
that hit with the NCBI-nr database. The amount of hits refers to the abundances of a specific phylum
in the population.

Phylum
Royal Belum Bacteria Abundances (%) Raja Muda Musa Peat Swamp Bacteria Abundances (%)

SK SP SR Total RM1 RM2 RM3 Total

Proteobacteria 51.18 52.38 52.89 52.15 43.66 49.68 51.51 48.28
Actinobacteria 19.21 22.6 16.19 19.33 2.17 17.16 15.48 19.27
Acidobacteria 12.16 11.6 11.34 11.7 13.68 8.83 15.42 12.64
Verrucomicrobia 3.17 1.4 4.19 2.92 1.57 1.98 1.73 1.76
Firmicutes 2.97 2.6 2.86 2.81 3.6 6.98 3.79 4.79
Bacteroidetes 1.68 1.15 2.09 1.64 1.03 2.67 1.27 1.66
Planctomycetes 2.05 1.11 2.34 1.83 0.79 3.42 0.97 1.73
Cyanobacteria 1.75 1.59 1.78 1.71 1.63 1.91 1.72 1.75
Chloroflexi 1.47 2.29 1.3 1.69 1.65 2.02 1.58 1.75
Nitrospirae 0.67 0.2 1.14 0.67 0.23 0.26 0.27 0.25
Deinococcus–
Thermus 0.46 0.04 0.42 0.31 0.56 0.56 0.54 0.55

Others 3.23 3.04 3.46 3.24 6.43 4.53 5.72 5.57

The most dominant sequence is Proteobacteria, occurring at 52.15% in RB and 48.28% in
RM sequences. Moreover, although Actinobacteria is the second-most dominant sequence,
it greatly contributes to the Royal Belum and Raja Muda Musa soils, with 19.33% of RB
sequences from Actinobacteria compared to 19.27% of RM sequences. Firmicutes contributed
a more than two-fold higher percentage of the total RM sequences than the RB. Conversely,
the relative abundance of the phyla Proteobacteria, Nitrospirae, and Verrucomicrobia are
significantly higher in SR compared to the other sites. The Chloroflexi phylum is relatively
abundant in SP. Additionally, Actinobacteria is significantly higher in the RM1 sample than
others. Firmicutes and Planctomycetes are found in abundance in RM2. Acidobacteria
and Gemmatimonadetes are significantly higher in RM3, while Deinococcus–Thermus and
Fibrobacteres are extremely low in the SP sample. The other remaining phyla do not show
any significant difference in gene abundance (Table 2).

Interestingly, differences within the phylum Proteobacteria are observed between the
two environments. Alphaproteobacteria is relatively more abundant in the RM1 sample
with 62.3%, while SR has more Betaproteobacteria and Gammaproteobacteria (28.35% and
17.18%). RM2 has more Deltaproteobacteria, with 11.36%. Alphaproteobacteria contributes to
a much greater percentage of Proteobacteria in RM (58%) than in RB (54%). Additionally,
Deltaproteobacteria, Epsilonproteobacteria, and Zetaproteobacteria are more important in RM
than in RB, while Betaproteobacteria and Gammaproteobacteria are more abundant in RB than
in RM (Figure 3).

2.2. Taxonomy of Genes and Bacteria Diversity Involved in Stress Response

This study aims to compare the taxonomic diversity of bacteria on two metagenomic
profiles of two distinct soil samples from different locations in terms of physicochemical
properties and to find bacterial species that respond to abiotic stress conditions. Based
on our finding, RMFR soil samples showed higher acidic conditions compared to the soil
samples from RBFR. The physicochemical analysis of soils is recorded in Figure 4. The
average pH at the Raja Musa Forest Reserve (RMFR) are Raja Musa 1 (RM1, 2.43), Raja
Musa 2 (RM2, 2.67), and Raja Musa 3 (RM3, 2.7), indicating that the soil in these areas is
acidic compared to the soil at Royal Belum Forest Reserve (RBFR). The pH of soils from the
sampling stations in RBFR are Sungai Kooi (SK, 4.42), Sungai Ruak (SR, 5.34), and Sungai
Papan (SP, 6.12). A pH between 6.5 and 7.5 is considered optimal for the growth of many
plants. RM1 soil exhibits the lowest pH, indicating that soils of the study area are acidic.
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Figure 2. (A) Metagenome profiling of total soil bacteriota isolated from RBFR (SK, SP, and SR) based
on Krona RSF display. The frequencies of each phylum are presented and reveal the protebacteria as
the dominating phylum in all studied sites. (B) Metagenome profiling of total soil bacteriota isolated
from RMFR (RM1, RM2, and RM3) based on Krona RSF display. The frequencies of each phylum are
presented and reveal the protebacteria as the dominating phylum in all studied sites.
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In general, RBFR and RMFR metagenomes contained abundant stress-related genes
assigned to various stress-response pathways, many of which did not show any difference
between the two sites (Figure 5). The most abundant oxidative stress-related genes occurred
among all of the stress-related pathways in each sample, followed by osmotic stress and
heat shock. Other genes for stress response detected in this study include phosphate and
nitrogen limitations, envelope stress, stringent response, heat and cold shocks, and antioxi-
dant enzymes. Significantly, half of these stress-response pathways in soil metagenomes
increased gene abundance with sampling depth, particularly those linked with acidic
conditions, as shown in Figure 6.
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Figure 5. Gene abundances involved in the microbial-degradation pathways of stress response by the
WGS Shotgun. Taxonomic assignments for the Royal Belum (SK, SP, and SR) and Raja Muda Musa
(RM1, RM2, and RM3) metagenomes were performed using MgRast.

Metagenomics analysis of soil samples collected from RBFR resulted in 1,391,841 pre-
dicted protein-coding regions. Out of this number, 30% (421,409 genes) are classified as
functional genes. Approximately 11,751 genes of the functional genes are assigned to stress
response. Further breakdown of the stress-response genes reveals 177 genes related to
acidic stress.
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Figure 6. Gene abundances involved in the microbial-degradation pathways of acidic stress-response
mechanisms by the WGS Shotgun. Taxonomic assignments for the Royal Belum (SK, SP, and SR) and
Raja Muda Musa (RM1, RM2, and RM3) metagenomes were performed using MgRast.

In comparison, the detailed MG-RAST analysis of RMFR resulted in 3,586,577 total
predicted protein-coding regions. About 30% (1,111,985 genes) are grouped as functional
genes. Further analysis of the functional genes has identified 28,750 stress-response genes,
with 449 genes related to acidic stress (Table 3).

Table 3. Total of protein-coding region to functional, stress-response, and acidic stress-response genes.

Total Protein-Coding
Region

Functional
Genes

Stress-
Response
Genes

Acidic Stress-
Response
Genes

Royal Belum 1,391,841 421,409 11,751 177
Raja Musa 3,586,577 1,111,985 28,750 449

Figure 7A shows the top 10 dominant bacterial species related to acid stress in RBFR,
presented in the Krona chart. The most dominant species detected in RBFR, with gene
hits as much as 54 times, is Rhodopirellula baltica from the Planctomycetes phylum. This is
followed by Opitutus terrae from the phylum Verrucomicrobia, with gene hits as much as
32 times. Nocardia farcinica from the phylum Actinobacteria is detected 25 times. Further-
more, B. japonicum, Azorhizobium caulinodans, and Haliangium ochraceum are bacteria from
the Proteobacteria phylum, with gene hits as much as 21, 15, and 15. Actinobacteria once
again dominate the RBFR with the species Streptomyces avermitilis, with 13 times gene hits.
Blastopirellula marina, a species of the Planctomycetes phylum, generated 12 times gene hits.
Meanwhile, Aeromonas hydrophila of the Proteobacteria phylum and Synechocystis sp. PCC
6803 derived from the Cyanobacteria phylum exhibits 11 times gene hits.
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Figure 7B shows the top 10 dominant bacterial species related to acid stress in RMFR.
Candidatus S. usitatus from Acidobacteria is the most dominant species, with gene hits as
much as 17 times and detected more than R. baltica, which is from Planctomycetes, with
12 times gene hits. The third and second dominant bacteria do not differ much in gene
hit detection, i.e., only one difference in terms of number, and the species are N. farcinica
derived from Actinobacteria phylum. The phylum Proteobacteria dominates the RMFR and
RBFR soils. The bacteria from the Proteobacteria phylum dominate positions of 4, 5, 6, 8, and
9. The species are A. caulinodans, B. japonicum, P. fluorescens, H. ochraceum, and Escherichia
sp. 3_2_53FAA, with gene hits detection as much as 10, 7, 7, 6, and 6 times. B. marina of
the Planctomycetes phylum dominates the RMFR, with gene hits of six times. The least
detection of dominancy in RMFR soil is Frankia sp. CcI3 species derived from Actinobacteria,
with gene hits as much as five times.

3. Discussion

Typical dominant bacterial phyla in forest soils are Acidobacteria, Actinobacteria, Pro-
teobacteria, Bacteroidetes, and Firmicutes [47]. The archaeal community is mostly dominated
by the phylum Thaumarchaeota, while Euryarchaeota and Crenarchaeota are less abundant [48].

Forest ecosystems provide a wide habitat for bacteria, including soil and plant tissues
and surfaces, streams, and rocks. However, bacteria are especially abundant on the forest
floor, soil, and litter. Five phyla, Acidobacteria, Actinobacteria, Proteobacteria, Bacteroidetes,
and Firmicutes, are abundant in most soils. In addition to pH, which seems to be the most
important driver of the bacterial community composition in soils, organic matter content,
nutrient availability, climate conditions, and biotic interactions affect the composition of
bacterial communities. The spatial variation in these parameters is responsible for the
presence of hot spots of microbial activity with increased abundance and activity in the soil.

Acidobacteria plays an important role in soil act as “keystone taxa”, acting as the
ecosystem engineer. They act as the driver of the bacterial community in terms of structure
and functional ecosystem. The phylum is involved in biogeochemical processes, such as C,
N, and S cycles [49]. Actinobacteria is important in the decomposition of soil, involving the
production of carbohydrate-active enzymes (CAZymes) while maintaining the stability of
the taxonomic and functional composition of the soil. It is also enhanced by N fixation [50].
CAZymes are also produced by Bacteroidetes for survival in soil, where the enzymes target
the abundant glycans in the soil [51].

A dominant phylum found in the RBFR but not in the RMFR is Cyanobacteria. The
Cyanobacteria phylum is involved in the nutrient exchange, including vitamins, and grows
well at high temperatures. Cyanobacteria proliferation is influenced by P and N [52]. A
study on the soil microbial community reported that the dominance of Proteobacteria in
soil correlated with carbon-rich soil [53], as the Proteobacteria is directly involved in the C
cycle of the soil. In comparison, the phylum Firmicutes and its order Clostridiales act as
the decomposer in soil. The phylum is found to be abundant in compost soil, and it also
greatly impacts the conversion of organic matter [54].

Analysis of the long-read data also showed thousands of organisms with an abundance
of <0.1% in all samples. All of these species are classified as minorities from the overall
diversity of bacteria found in the study area. Stress-response coding genes are significantly
more abundant than rare genomes, indicating that rare species can affect the pH turnover
capability and provide resilience to changing environmental conditions. Overall, the
analysis showed that the diversity of closely related strains and unusual species is a
significant part of the population. According to Penn et al. (2019) [55], the pH of soil affects
chemical solubilities by influencing the ionization degree. It is noteworthy that the pH
values at the two sites are integrated results due to numerous interactions between the
cations and anions in the soil solution [56]. The large difference in pH at the two sites
implies the distinct geochemical environment of both sites. It can be presumed that pH
played a definite role in the diversity and composition of the bacterial community [57,58].
Pietri et al. (2008) revealed statistically significant relationships between soil pH and
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biomass C (R2 = 0.80, p < 0.001), biomass ninhydrin-N (R2 = 0.90, p < 0.001), organic C
(R2 = 0.83, p < 0.001), and total N (R2 = 0.83, p < 0.001), confirming the importance of soil
organic matter and pH in stimulating microbial biomass growth [59].

The findings of this study revealed seven stress responses, i.e., periplasmic stress,
oxidative stress, osmotic stress, heat shock, detoxification, cold shock, and acid stress
from the six sampling sites, i.e., RM1, RM2, RM3, RB1, RB2, and RB3. Most of the stress-
response gene counts, particularly heat and osmotic stress, are found highest in RM2. These
stress-response genes included heat and osmotic stress.

The soil samples used for this study are classified as acidic. Hence, the attention is
given to reveal the abundance of acid stress-response genes in the soil sample. Six genes
are found involved in acid stress, which are probably glutamate/gamma-aminobutyrate
antiporter, glutamate decarboxylase (EC4.1.1.15), biosynthetic arginine decarboxylase (EC
4.1.1.19), arginine/agmatine antiporter, arginine decarboxylase EC 4.1.1.19), and arginine
decarboxylase (EC 4.1.1.19). The probable glutamate/gamma-aminobutyrate antiporter
gene, biosynthetic arginine decarboxylase (EC 4.1.1.19), and arginine decarboxylase (EC
4.1.1.19) are 70% higher in RMFR than RBFR. Similarly, it has more than 60% of the
glutamate decarboxylase (EC4.1.1.15) gene and more than 90% of the arginine/agmatine
antiporter gene than RBFR. Interestingly, the arginine decarboxylase (EC 4.1.1.19) gene is
only present in the RMFR soil and none is found in the RBFR soil sample.

4. Materials and Methods
4.1. Experimental Sites

The RBFR is situated in the northern part of Malaysia in the Perak State, where
soils were taken in May 2018. This forest is the largest continuous forest complex in
Peninsular Malaysia, covering an area of 117,500 hectares of thick forest stretching into
the Thailand–Malaysia border. The area has high rainfall of approximately 2560 mm/year,
with average temperatures during the collection time at 28–30 ◦C and pH of the samples
between 4.42 and 6.12. The RMFR situated in North Selangor Peat Swamp Forest is a
remnant of a larger peat swamp forest that has been reduced by drainage, conversion
to agriculture, and logging. The climate is tropical with a mean annual rainfall of more
than 200 cm per year and an average temperature of 28 ◦C. The peat substrate is several
meters deep, lying on a bed of marine alluvial clay, and is perpetually waterlogged with
the forest floor becoming submerged during rainy periods. The water is acidic (pH 3–4),
has a characteristic “blackwater” color due to high concentrations of tannins and humic
acids. About 54 soil samples were collected from 6 distinct locations with 9 replicates of soil
sample per site (1 kg each). The soils were randomly collected from top surface sediments
to a depth of 5 cm. The samples that contained mainly soil and plant biomass residues
were mixed to represent one site and used for all experiments in this study. Samples were
stored at −80 ◦C until DNA extraction and preserved accordingly to maintain both quality
and accuracy of the metagenomics data. Site A (RB) soil sample was collected at Sungai
Kooi (SK), while site B (RB) was located at Sungai Papan (SP), and site C (RB) was located
at Sungai Ruok (SR). For RMFR, the soil sample was collected randomly in the peat swamp
reserved forest using the three-point sampling method. For cumulate soil samples in the
forest, the sample location was selected by implementing the random pattern protocol. The
major coordinates and elevations for both sites are presented in Figure 8.
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4.2. Soil Bacterial Metagenome Extraction

The DNA samples were extracted within 24 h after sample collection according to
the modified procedure elaborated for soil material described by [60] using the DNeasy
PowerSoil Kit. The DNA samples were subjected to three quality control (QC) procedures
using a Nanodrop spectrophotometer (Thermo Fisher, DE, USA) at A260/280 UV length,
gel electrophoresis profiling, and Qubit fluorometric quantitation using fluorescent dye, to
ensure the intactness of the samples [61]. DNA samples that passed the QC were purified
using magnetic beads and agent court to remove tannin and undergo a mechanical shearing
procedure using a Covaris Sonicator (Woburn, MA, USA) to ensure a standardized DNA
sample length between 300 and 350 bp measured by an Agilent Bioanalyzer 2100 (Santa
Clara, CA, USA) [62–64]. The samples were measured by Qubits to ensure that the total
recovery after purification was more than 70%, and the total DNA per 50 µL volume was
1 µg before adenylation of the 3′ end. Individual barcodes of index adapter sequences were
added to each DNA fragment during library preparation so that each read could be identi-
fied and sorted before the final data analysis for the flow cell chip (Table S1). The samples
were sequenced using the Illumina NGS (Illumina Next Generation Sequencing) paired-end
technology [65], and the reads were aligned and went through a preprocessing phase in
the bioinformatics pipeline that included alignments and quality trimming with Solexa
QA++ (Hayward, CA, USA) [66], contigs assembly with metaSPAdes [67], and analysis
using MEGAN6 (Metagenome Analyzer) [68] and MgRast (http://metagenomics.anl.gov,
accessed on 24 March 2021) [69] to determine the genetic repertoire of the microbiome.

4.3. Gene Annotation and Sequence Analysis

The raw sequence quality was checked, and the reads were trimmed accordingly using
FastQC (Version 0.11.5 released), a tool provided by the Babraham Institute (Cambridge,
UK), which simplifies the QC of high-throughput sequencing pipelines. Solexa QA++
was used in the Command Line Interface [70] of the DynamicTrim application, where the
sequences were trimmed based on Qphred < 20 and the LengthSort command sequences

http://metagenomics.anl.gov
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shorter than 50 bp were removed. The cleaned sequences were paired and shuffled to
produce high-quality sequences before being assembled using the metaSPAdes (version
3.13.0). The high-quality sequences were mapped to the final assembly, and the coverage
information was generated through the default parameters of the bbmap (Version 38.25),
except for ambiguous = random. Diamond software was used to BLAST the predicted
genes against the nonredundant protein sequences database of NCBI (https://www.ncbi.
nlm.nih.gov/ accessed on 24 March 2021) with default settings [71] using BLASTP (best
hit with E < 0.001). Functional annotation was conducted by aligning sequencing reads
against the KEGG database (Release 84.1) [72] using the MEGAN6 software (Version 6.11.7;
Huson, 2016) with the parameter setting of BLASTP [71] according to the LCA algorithm.
Finally, the gene read numbers for each sample were normalized based on the median
read number. The relative abundances (percentage) of genes were calculated related to the
annotated reads and used for subsequent analyses. The M5 nonredundant protein database
(M5NR) was used for taxonomic annotation and the SEED and Clusters of Orthologous
Groups databases for functional annotation. The best BLASTx hit was used to identify the
sequences with a minimum alignment length of 15 bp and an e-value cutoff of e < 1 × 10−5

and a 95% confidence interval. Functional annotation of the most abundant taxa was
performed using the filter option. The same was carried out for a selected group of genes
to reveal the responsible taxa. The shotgun metagenomics sequence data used in this study
were deposited in the MG-RAST server [69] under project ID mgp94971 and mgp94737.

5. Conclusions

Through our study, we investigate the microbial diversity in two distinct ecosystems
varied by the acidity of the soils. These very different ecosystems became an abiotic
factor where the bacterial communities in these two areas have evolved symbiotically
and complement each other to form a stable soil ecosystem. This study reveals that the
rainforest and peat swamp soils harbor distinct microbial populations and metabolic
processes dominated by Proteobacteria. Even though the same detected phyla are shared
among the studied sites, their abundances are different and correlated with the specific soil.
Our study has also discovered through KEGG pathway analysis the genes involved in the
acid stress-response regulation, which has led to the identification of the responsible genes,
which are probably glutamate antiporter, glutamate decarboxylase, biosynthetic arginine
decarboxylase, arginine/agmatine antiporter, and arginine decarboxylate. Thus, our study
suggests that the pH of the soil has significant effects on the taxonomic, gene, and metabolic
diversity. The insights into the functional structuring of the microbiomes gained with this
study provide a basis for understanding the processes contributing to ecosystem services.
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