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Abstract: Genome editing is an important strategy to maintain global food security and achieve
sustainable agricultural development. Among all genome editing tools, CRISPR-Cas is currently
the most prevalent and offers the most promise. In this review, we summarize the development
of CRISPR-Cas systems, outline their classification and distinctive features, delineate their natural
mechanisms in plant genome editing and exemplify the applications in plant research. Both classical
and recently discovered CRISPR-Cas systems are included, detailing the class, type, structures and
functions of each. We conclude by highlighting the challenges that come with CRISPR-Cas and offer
suggestions on how to tackle them. We believe the gene editing toolbox will be greatly enriched,
providing new avenues for a more efficient and precise breeding of climate-resilient crops.
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1. Introduction

Plant breeding techniques have progressed rapidly since the introduction of biotech-
nology in the early 1980s, starting with the discovery of transgenics methods, and further
developing into molecular marker systems and genomics approaches in the late 1980s
to 90s for applications in crop improvement [1,2]. While genomics and marker-assisted
selection have become the mainstream methods of plant breeding, with high success rates
in delivering high-quality crops with increased yields over the past two decades, these
genetic advances are limited by the extent of novel genetic variation in the crop gene
pool [3], which is key for breeding new crop varieties. New plant breeding methods [4]
including gene editing have come to the fore to bridge this gap, offering very promising
breeding outcomes with high speed and precision through targeted mutagenesis to obtain
new varieties with improved traits [5,6].

With the increasing amount of crop genome data available, genome editing is now
widely used to improve crop quality and yield through genetic modifications targeted at
the gene level [7]. There are several gene editing methods, all of which are adaptations
from naturally occurring DNA break and repair mechanisms. The zinc finger protein, first
discovered in Xenopus, contains repetitive zinc binding domains that grasp the DNA in a
DNA–protein interaction [8], where the zinc finger is further exploited to fuse with specific
DNA (or RNA) sequences that have a DNA-cutting function to form a zinc finger nuclease
(ZFN) [9,10]. A similar approach is transcription activator-like effector nucleases (TALEN)
involving a DNA–protein interaction; its discovery is from the effector protein secreted by
the bacterium Xanthomonas that plays a role as a bacterial transcription factor regulating
the susceptibility genes in host plants. The effector protein possesses a DNA-recognition
domain and can be manipulated to link with an endonuclease (e.g., FokI) for genome
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editing [11,12]. ZFN and TALEN are ideal in recognizing specific DNA sequences and
perform cleavage functions on double-stranded DNA. However, the main limitations of
these techniques are the cumbersome process of constructing a new pair of ZFNs or TALENs
each time one wants to edit multiple sites and the high tendency for off-target effects, which
could lead to detrimental effects on the cell. Hence, the more recent CRISPR-Cas system
has taken centre stage in the genome editing world.

CRISPR-Cas is a revolutionary gene-editing technology that allows researchers to
make precise modifications to DNA sequences in living cells. CRISPR stands for “Clustered
Regularly Interspaced Short Palindromic Repeats” and refers to a unique pattern of repeat-
ing DNA sequences found in bacteria and other microorganisms. Cas (CRISPR-associated)
refers to the proteins that work alongside the CRISPR sequences to edit DNA.

In CRISPR-Cas technology, a specific RNA molecule is designed to bind to a specific
target DNA sequence, and the Cas protein is used to cut the DNA at that location. CRISPR-
Cas offers many advantages over ZFNs and TALENs. It is generally considered more
versatile than ZFNs and TALENs, it is easier to design and implement with greater editing
efficiency outcomes and it can be programmed for multiplexing [13,14]. Recent progress
in CRISPR-Cas systems allow researchers to modify the gene function, expression and
regulation at considerably high levels of specificity and accuracy at the single-base level
using single-base and prime-editing approaches [15–17].

Base editing (BE) is an improvement to the CRISPR/Cas9 system to overcome the
frequent unintended editing effects brought upon by double-stranded break (DSB) repair
mechanisms such as indels, chromosomal translocations, rearrangements and tumorigene-
sis [18,19]. In base editing, the Cas9 nuclease activity is disabled and replaced with a nickase
Cas9 (nCas9), which is fused with a base deaminase, thereby introducing single-strand
breaks instead of DSBs. This is achieved using either the cytosine base editor (CBE, C con-
verts to T, G converts to A; in other words, conversion of C:G to T:A base pair, an example
of base transition) [20,21], or the adenine base editor (ABE, A converts to G, T converts to
C, conversion of A:T to G:C base pair, another example of base transition) [22,23]. Base
editing in cereal crops has been reported to offer great prospects in inducing efficient point
mutations for improved agronomical traits [24]. For example, the enhancement of grain
weight and crop yield in rice (Oryza sativa) [25], and herbicide tolerance in wheat (Triticum
spp.) and maize (Zea mays) [26,27].

There have been numerous advances in the BE systems. A combination of CBEs and
ABEs in a so-called “dual deaminase CRISPR base editor”, namely CRISPR-Cas9-based
Synchronous Programmable Adenine and Cytosine Editor (SPACE) [28], Adenine and
Cytosine Base Editor (ACBE) [29], Saturated Targeted Endogenous Mutagenesis Editors
(STEMEs) [30] and Target-ACEmax [31], were developed to engineer the simultaneous
conversion of A-to-G and C-to-T transitions at a target site. In rice using STEMEs, a
near-saturated mutagenesis of 73.21% was obtained for the rice coenzyme A carboxylase
(OsACC), conferring herbicide resistance. [30]. Continuous improvements to the efficiency
of dual base editors in plants have been reported, thus expanding the CRISPR-Cas toolkit
for plant genome editing [32].

Prime editing (PE) was designed to cover the limitations of base editors in that it
performs all types of single and multiple base substitutions including transversion and
transition types of point mutations, as well as insertions and deletions, which offers higher
flexibility than CBEs and ABEs [33]. In crops, the initial application of PE was in rice and
wheat [34], and it was further applied in maize to create mutations in two acetolactate
synthase (ALS) genes, conferring a herbicide-resistance trait to the plant [35] with ongoing
improvements in PE systems in plants for greater editing efficiency [36–38].

Herein, we delineate the different classes and types of CRISPR-Cas systems with their
corresponding features, discuss the application of each of these systems in plant research
and provide updates on emerging and promising genome editing systems that could benefit
plant breeding research.
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2. The Immune Response Stages and Classification of CRISPR-Cas Systems

CRISPR-Cas is an adaptive immune system found in bacteria and archaea that plays
a role in defence mechanisms against invading pathogens, such as virulent phages and
plasmids, and also offers protection against invasion of harmful foreign mobile genetic
elements (MGEs) acquired through horizontal gene transfer [39]. The CRISPR-Cas system
works by integrating fragments of foreign nucleic acids into CRISPR arrays as new spacers.
These new spacers are located between pre-existing palindromic repeats that are typically
25–35 base pairs long and are separated by unique spacers that are usually 30–40 base
pairs long. By acquiring new spacers into the CRISPR array, the immune memory is stored,
and the system is able to recognize and target specific pathogens for destruction in future
encounters [40,41].

There are three stages in the CRISPR-Cas immune response: adaptation, expression
and processing of the precursor CRISPR RNA (pre-crRNA) and interference [42,43], which
are the basic mechanisms for the systems to carry out programmable genome editing.
Detailed information of the three steps is described below (Figure 1).
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in three stages. (1) Adaptation: spacers are acquired from foreign MGEs and inserted into CRISPR loci
between repeats as immune memory. (2) Pre-crRNA expression and processing stage: CRISPR loci are
transcribed into pre-crRNAs and processed into mature specific crRNAs. (3) Cas proteins and gRNA
form a complex, recognize the homologous foreign sequence and cleave at target sites. (B) Class 1
CRISPR-Cas systems. Effector module consists of a complex series of Cas proteins. Protein Cas6
participates in the pre-crRNA processing. (C) Class 2 CRISPR-Cas systems. Their effector module
is always a single protein with multi domains, including the function of pre-crRNA processing. In
CRISPR-Cas9 systems, this function is realized by RNase III. Protein Cas1, Cas2 and sometimes Cas4
form a common adaptation module in both classes. These two figures present simplified architectures
of two classes, with subtle difference and unknown domains between subtypes unshown here.

1. Adaptation stage. The CRISPR-Cas system employs a complex of Cas proteins that
bind to a target DNA by recognizing a specific protospacer-adjacent motif (PAM),
a short DNA sequence located immediately adjacent to the target sequence. This
recognition triggers the production of double-stranded breaks (DSBs) in the target
DNA with a segment excised. This excised segment, called the protospacer, is then
inserted between two repeats of the CRISPR array, where it becomes a spacer. During
this adaptation stage, a complex of Cas1 and Cas2 proteins serves as the adaptation
module, which is a highly conserved structure present in most CRISPR-Cas systems.
Cas1 acts as an endonuclease to cleave both the target DNA and CRISPR array, while
Cas2 forms the structural scaffold of this complex [44,45]. Additional proteins, such
as Cas4, can fuse with Cas1 or Cas2 to contribute to the adaptation stage [46]. In some
Cas13 subtypes, the cas1 and cas2 genes are absent from their CRISPR-Cas loci but can
be obtained from other CRISPR-Cas systems within the same genome. This allows
for the functionality of Cas1 and Cas2 to be provided from an additional Cas locus of
either type I or type II [47].

2. Pre-crRNA expression and processing stage. The CRISPR array is transcribed into pre-
crRNA, which is then processed into mature crRNAs through different mechanisms
depending on the CRISPR-Cas system. For example, in most class 1 CRISPR-Cas
systems, a dedicated processing nuclease called Cas6 accomplishes the processing,
while in class 2 CRISPR-Cas systems, a housekeeping RNase III is responsible for
processing in the case of CRISPR-Cas9. In other class 2 systems, crRNA processing is
carried out by a single large Cas protein [42,48,49].

3. Interference stage. After the pre-crRNA is processed into mature crRNAs, it can form
a complex with a trans-acting crRNA (tracrRNA), and together they act as a guide
RNA (gRNA). The effector module, either a Cas protein complex in class 1 or a single
large Cas protein in class 2, is then directed by the gRNA to recognize the specific
PAMs in target DNA or RNA. Upon binding, the Cas nuclease is activated when the
crRNA spacer is base-paired with the complementary target strand, resulting in the
cleavage of the target DNA/RNA [48].

Encoded by cas genes associated with the adjacent CRISPR array, Cas proteins are a
cluster of multiple endonucleases, and major components of both adaptation and effector
modules as described above [50]. The constituents of the adaptation module are conserved,
while the components of the effector module vary between groups. This variation comes
from the co-evolution during the perennial arms race between mobile genetic element
(MGE) and host CRISPR-Cas systems, which underlies the classification of modern CRISPR-
Cas systems.

There are two distinct classes of CRISPR-Cas systems based on the makeup of the
effector module [51]. In class 1, the effector module comprises a multiple-subunit complex
containing several Cas proteins. In class 2, the effector module consists of a single, large and
multidomain Cas protein (Figure 1B,C), the structure of which is always bilobed, containing
the REC (nucleic acid recognition) lobe and NUC (nucleic acid cleavage) lobe [52]. Further
differences are also recognized in how these nucleases conduct processing. In class 1,
the CRISPR-associated complex for antiviral defence (Cascade), comprising multiple Cas



Int. J. Mol. Sci. 2023, 24, 8623 5 of 27

proteins, binds to the pre-crRNA and Cas6 is employed for processing (Figure 1B) [53,54].
In class 2, instead of Cas6, the tracrRNA plays a critical role in processing, particularly in
type II and type V-B of the CRISPR-Cas systems [51,55,56]. Other major differences pertain
to the nuclease domain for DNA cleavage. In class 2, a single large Cas protein harbors
the nuclease domain for cleavage (Figure 1C). In class 1, the nucleases are more diversified
between types and subtypes. There are different types and subtypes in class 1 and 2—type
I, III and IV in class 1 (multi-unit effector molecules) and type II, V and VI in class 2 (single
effector molecule). Each type is defined by its effector module, especially the subunit for
target cleavage (Table 1).

Table 1. Characteristics of the six types in CRISPR-Cas systems.

Class Type Substrate gRNA Nuclease
Domains

Stages and Related Cas Proteins
Indels

Adaptation crRNA
Processing Target Binding Target

Cleavage

1

I dsDNA;
ssDNA crRNA HD Cas1, Cas2, Cas4 Cas6 Cas5, Cas7, Cas8,

Cas11/Cas5, Cas7 Cas3/Cas10 Long-range
deletions

III RNA:
DNA crRNA RRM Cas1, Cas2 Cas6 Cas5, Cas7,

Cas10, Cas11 Cas10 Degraded
RNA/RNA

IV * DNA crRNA HD/lost Cas1, Cas2/lost Cas6 Cas5, Cas7,
Cas11, Csf1 lost Unknown

2

II dsDNA crRNA,
tracrRNA HNH, RuvC Cas1, Cas2, Cas4 Cas9,

RNase III Cas9 Cas9 Small indels

V dsDNA;
ssDNA

crRNA/crRNA,
tracrRNA RuvC Cas1, Cas2, Cas4 Cas12 Cas12 Cas12 Small indels

VI RNA crRNA HEPN Cas1, Cas2 Cas13 Cas13 Cas13 Degraded
RNA

* Some type IV CRISPR-Cas systems lack adaptation module, Csf1 and/or Cas6; some information remains unknown.

3. CRISPR-Cas Types and Their Application in Plant Genome Editing

After the target breaks are introduced, cellular endogenous DNA repair pathways
are carried out by non-homologous end joining (NHEJ), microhomology-mediated end
joining (MMEJ) or homology-directed repair (HDR) [57]. NHEJ is the main repair pathway,
resulting in editing at the target sites and introducing favourable modifications, but it is
error-prone and often generates indels in the repair process [57–59].

Currently, Cas9 is the most prevalent Cas effector used in genome editing; how-
ever, other nucleases, such as DNA-targeting Cas12a/Cpf1 and RNA-targeting Cas13,
have received considerable attention. There are also emerging Cas proteins and systems
which show advantageous features, possibly overcoming some of the current drawbacks
of CRISPR-Cas systems and pushing the boundaries of genome editing [60]. Here, the
characteristics, specific domains, applications and limitations of each CRISPR-Cas type are
discussed within the context of plant genome editing, starting with well-known types and
then those that are emerging.

3.1. Class 2 Type II CRISPR-Cas9 Systems

The class 2 type II dual-RNA-guided DNA-targeting endonuclease Cas9 was the first
Cas protein exploited for genome editing, among which SpCas9 (Cas9 from Streptococcus
pyogenes) is the most commonly used [61]. In CRISPR-Cas9 systems, a gRNA is formed by
annealing the mature CRISPR RNA (crRNA) to its corresponding tracrRNA. The resulting
gRNA directs the Cas9 to bind to the target DNA, ultimately resulting in DSBs. As a
multifunctional effector, Cas9 has two distinct nuclease domains in its NUC lobe, HNH and
RuvC-like, which cleave the target and non-target strands, respectively, and the nucleases
of both domains are activated by correct base pairing [42,62]. The recognition of the target
strand is dependent on G-rich PAMs, which are canonical NGGs (N is A, T, C, or G) in the
case of SpCas9. Blunt ends created by HNH and RuvC-like domains are proximal to the
PAM (Figure 2A) [61]. Besides Cas1 and Cas2, Cas4 also takes part in the adaptation stage
in subtype II-B by binding to Cas1 [63]. In the pre-crRNA processing stage, tracrRNA and
the conserved endonuclease RNase III process the pre-crRNA into mature crRNA [55,56]
(Figure 1C). In the interference stage, tracrRNA and crRNA trigger site-specific DNA
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cleavage by the two domains in Cas9. Cas9 orthologues acquired from different bacterial
strains show sequence variability in PAM and Cas9 sizes, suggesting potential to expand
the genome modification sites.
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Figure 2. Schematics of typical or promising CRISPR-Cas systems. Cas proteins and crRNAs are
targeted at DNAs except in C, which is single-strand RNA. Target sequence recognition is directed by
PAM, except in C, by PFS. (A) Class 2 type II CRISPR-Cas9. A Cas9 protein forms a complex with
crRNA and corresponding tracrRNA, cleaving dsDNAs at target sites and producing blunt ends.
(B) Class II type V CRISPR-Cas12a. Single Cas12a protein forms a complex crRNA and cleaves dsDNA
at target site, producing sticky ends. When activated, two RuvC domains would be superimposed
and generate ssDNA activity, indicated by the dotted arrows. (C) Class 2 type VI CRISPR-Cas13.
Single Cas13 protein forms a complex with crRNA and cleaves single-strand RNA of target gene.
When activated, two HEPN domains would come close to each other and generate an active site,
indicated by the dotted arrows. (D) Class 1 type I-D CRISPR-Cas10 or type I-E CRISPR-Cas3. In
CRISPR-Cas10, Cas10 and Cas3 bind to the Cascade complex containing Cas5, Cas6, Cas7 and crRNA,
then Cas10 cleaves and digests dsDNA at target site bidirectionally, indicated by the scissor in dotted
box; HD is histidine aspartate. In CRISPR-Cas3, Cas3 is recruited to the Cascade complex containing
Cas5, Cas6, Cas7, Cas8, cas11 and crRNA, and digests dsDNA at target sites. All filled patterns are
common components shared by both subtypes, while the unfilled patterns are components specific to
subtype as noted. The Cas3 in type I-D lacks the nuclease domain. Origins of Cas11 subunits differ
between two subtypes, from independent ORF and Cas10d domains, respectively. (E) Class 2 type V
CRISPR-Cas12b. Single Cas12b protein forms a complex with crRNA annealing to tracrRNA and
cleaves dsDNA at target site, producing sticky ends. (F) Class 2 type V hypercompact CRISPR-CasΦ.
Single CasΦ protein forms a complex with crRNA and cleaves dsDNA at target site, producing sticky
ends. The scissors refer to where strand was cleaved and blunt or cohesive ends appeared.

In 2013, CRISPR-Cas9 was applied in HDR-mediated genome modification in rice
protoplasts [64]. Strategies vary in its application for precise plant genome modification,
such as knockout of genes expressing undesirable traits, and knock-ins or replacements
of new alleles encoding anticipated phenotypes, with applications in yield and quality
improvements, and stress tolerance as summarized by Chen et al. [65]. For example,
completely sterile spo11-1 mutants were generated in hexaploid wheat for the first time,
using CRISPR-Cas9 to edit all three homoeologues of SPO11-1 in a loss-of-function man-
ner [66]. This study not only revealed the role of SPO11-1 in meiosis, but also supported
the possibility of editing meiotic recombination in wheat using CRISPR-Cas9 systems,
potentially increasing the efficiency of plant breeding programs by reducing the time and
resources required to produce crops with improved nutritional content, increased yield or
other desirable traits. Another remarkable feature of the CRISPR-Cas9 system is the RNA-
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targeting SpCas9 (RCas9). Using synthetic PAM-presenting oligonucleotide (PAMmer),
RCas9 is able to recognize and cleave RNA in a programmable manner. Given a matching
gRNA, the PAMmer allows precise manipulation of RNA molecules, thereby expanding
the scope of plant genome editing applications [67]. The inactivation of either the HNH
or RuvC-like domain creates a Cas9 nickase (nCas9) that is capable of cleaving only one
DNA strand. This property makes nCas9 useful in base editors and prime editors [68].
This base editing technique has been shown to effectively modify the Pi-d2 gene in rice, a
type of R gene that has high GC content, and in which a non-synonymous mutation causes
the plant to be susceptible to Magnaporthe oryzae [69]. The inactivation of both nuclease
domains generates catalytically inactive Cas9 (dCas9), which still binds to target DNA
but lacks any nuclease activity, giving rise to CRISPR interference (CRISPRi) systems, or
CRISPR activation (CRISPRa) systems when fused with transactivator domains [70,71]. The
effectors employed by CRISPRa/CRISPRi systems to specific sites have been used for regu-
lating gene expression, modifying the epigenome and visualizing genomic loci or telomeric
regions [72–75]. Understanding the dynamics of chromosomes, including DNA–protein
interactions and studying the 3D chromosomal conformations, potentially through CRISPR-
based live cell imaging, could provide us valuable insights into the evolutionary history of
domesticated traits in complex polyploid plant genomes. In Arabidopsis, CRISPRa/CRISPRi
was applied to improve the plant’s tolerance towards drought stress [76–78]. However,
some disadvantages have been found in these derivative editing tools. For example, the
catalytic domains of the dCas9-effector may become fused to neighbouring or even unre-
lated loci, resulting in off-target effects. Additionally, the efficacy of these systems could be
species-dependent, which could limit their further promotion [79].

Despite the wide application and significant revolution in biological sciences using
CRISPR-Cas9 systems, there are obvious drawbacks, such as its off-target effect, dependence
on specific PAM sequences and large gene size. To fully leverage the potential of the
CRISPR-Cas systems, genome editing tools developed from other types have been applied
and assessed using CRISPR-Cas9 as a benchmark, which will be summarized below.

3.2. Class 2 Type V CRISPR-Cas12a (Cpf1) Systems

Compared to type II (Cas9), type V-A Cas12a (Cpf1, from the bacteria Prevotella and
Francisella) is smaller in size and contains two RuvC-like domains in its NUC lobe, which is
superimposed once activated by correct base pairing, cleaving both target and non-target
strands and generating cohesive ends [80,81] (Figure 2B). Unlike Cas9, the PAM site of
Cas12a is T (thymidine)-rich, such as TTTV (V is A, C, or G), and DNA cleavage is distal
from the PAM, generating 5′ staggered DSBs [80,82]. Cas12a was the first Cas12 nuclease
used for genome editing, with dual functions not only in processing pre-crRNA into mature
crRNA without the assistance of tracrRNA (that is cleaving its own crRNA), but at the same
time cleaving the target sequence, suggesting Cas12a is useful for multiplexed genome
editing [83].

Cas12a has been widely used in mediating plant genome modification, enabling gene
deletion, insertion, base editing or locus tagging in rice and other economically important
plants such as macroalgae and citrus [83–85]. CRISPR-Cpf1 and CRISPR-Cas9 were compar-
atively studied in rice, mediating the knockout editing of the EPFL9 (Epidermal Patterning
Factor like-9) gene. Accordingly, the CRISPR/LbCpf1 (LbCas12a) system generated a higher
mutation percentage and longer deletion size than that of Cas9 [86]. A system named STU
(single transcript unit)-Cas12a has been developed to facilitate both single and multiplexed
genome editing in rice [87]. In both transient expression and stable transgenic T0 lines,
the transformation of four single STU-Cas12a systems targeting one crRNA each, and one
multiplexed STU-Cas12a system targeting an array with four crRNAs, was carried out,
achieving considerable editing efficiency (29.2% to 50%) at the four independent target
sites [87]. This suggests that the CRISPR-Cas12a system can be used to efficiently edit
multiple target sites and generate heritable mutations in plant genomes, which could lead
to the production of crops with improved yields, resistance to pests and diseases and other
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desirable traits. Furthermore, the catalytically dead Cpf1 has been reported to function
as a transcriptional repressor in plants and bacteria, demonstrating a more than 10-fold
reduction in miR159b transcription in Arabidopsis, suggesting its promising application
in plant transcriptome regulation [88]. This represents a powerful tool for gene silencing
in gene functional studies. It enables us to investigate the regulation and expression of
target genes, and to establish connections with complex phenotypes, such as quantitative
resistance in plants.

3.3. Class 2 Type VI CRSIPR-Cas13 Systems

Type VI CRISPR-Cas13 (C2c2) is the only known system to exclusively bind and cleave
single-stranded RNA (ssRNA) among the six major CRISPR-Cas systems. Cas13 is a kind
of RNA-guided RNA-targeting ribonuclease. The mechanisms of protospacer acquisition
differ between class 2 subtypes, with or without the adaptation module, Cas1 or Cas2, in the
adaptation stage [51]. The processing stage of the CRISPR-Cas13 system is mainly carried
out in the REC lobe, where Cas13 binds to the pre-crRNA and cleaves within the crRNA
direct repeat (DR) to generate a mature crRNA. Unlike Cas9 or Cas12, which requires a
PAM to recognize the target strand, some Cas13 proteins have a preference for protospacer
flanking site (PFS) [52,89,90] (Figure 2C). All known Cas13 nucleases contain two distinct
HEPN (higher eukaryote and prokaryote nucleotide binding) domains in the NUC lobe,
which are recognized as the active sites for targeted RNA cleavage. In the interference stage,
the Cas13-crRNA complex binds to the targeted ssRNA, a ternary ribonucleoprotein (RNP)
complex is then formed, following the precise complementary pairing between crRNA
seed region and target RNA [91,92]. A single catalytic site is generated following the
conformational reordering and spatial proximity of two HEPN domains after the formation
of an RNP complex, where the ssRNA is cleaved [52,90,93].

Owing to its RNA-targeting idiosyncrasy, Cas13 has immense potential in applications
in plant research, such as targeted RNA knockdown, RNA virus defence and epitranscrip-
tome modification [94]. The knockdown efficiency of LwaCas13a (Cas13a from Leptotrichia
wadei) was tested in rice protoplasts, with three guides designed for each of the three
endogenous transcripts, resulting in >50% knockdown for seven out of the nine gRNAs,
with no collateral degradation detected [91]. This result exhibits the successful manipu-
lation of cytoplasmic RNA in plants via Cas13a with satisfying efficiency, which implies
a significant achievement for crop breeding and improvement, given the possibility to
manipulate coding RNAs, such as mRNAs, and non-coding RNAs, such as microRNAs
(miRNAs) and long non-coding RNAs (lncRNAs), which regulate and control important
plant characteristics. Furthermore, the authors identified that dCas13a can be used as
a programmable RNA-binding protein in mammalian cells, which is useful in tracking
transcripts in live cells, similar to RCas9 [91]. LshCas13a (Cas13a from Leptotrichia shahii)
has been tested to engineer immunity against RNA viruses, such as tobacco turnip mosaic
RNA virus (TuMV) and potato virus Y (PVY), in both monocot and dicot plants, presenting
moderate efficiency [95–99], offering a promising opportunity to breed disease-resistant
plants using CRISPR. In their study, Mahas et al. [100] investigated nine different Cas13
variants and found that CasRx (Cas13d ortholog from Ruminococcus flavefaciens) exhibited
the highest efficiency in RNA virus targeting and interference in tobacco (Nicotiana ben-
thamiana), without producing any collateral cleavage activity. These findings support a
highly efficient and precise genome editing in plants, particularly in the search for editing
elements sourced from bacteria. A Cas13d subtype, which is smaller in size than Cas13a,
has been discovered to function effectively across a broad temperature range (i.e., 24–41 ◦C),
in some cases making it well-suited for use in highly sensitive reverse transcription recom-
binase polymerase amplification (RT-RPA) for nucleic acid detection. This feature makes
Cas13 enzymes an ideal candidate for developing molecular diagnostic tools [101–103],
for example developing a CRISPR-based diagnostic kit for the early detection of plant
pathogens in the field [104]. Furthermore, Cas13d targets RNA molecules without a strong
preference for a specific PFS sequence but rather recognizes the uracil base within the target
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RNA, which enables Cas13d to target a wider range of RNA molecules. It also tends to
degrade unfolded ssRNA while avoiding RNA with complex secondary structures [105].
In addition, dCas13d is generated by inactivating the HEPN domains, thereby retaining
its target-RNA-binding capacity while losing the cleavage activity. The dCas13d can then
be fused with a modified plant APEX2 (ascorbate peroxidase) to enable the detection
of RNA–protein interaction in vitro [106]. All these properties make Cas13d a powerful
editing scissor in transcriptome engineering.

Another cutting-edge application of dCas13 in plant research is the programmable
m6A (N6-methyladenosine) modification. m6A is the most prevalent and abundant post-
transcriptional mRNA modification in plants, which plays an important role in regulating
plant growth and development as well as biotic/abiotic stress resistance [107]. The devel-
opment of CRISPR-Cas13 systems provides a convenient tool for m6A modification via
targeting mRNA with higher efficiency and precision [108]. Two steps are included in the
m6A editing process: (1) dCas13 bound to the target RNA specific site directed by gRNA
and PFS at the single-base resolution and (2) writer (methyltransferase, such as METTL,
MTA or FIP) or eraser (demethylase, such as ALKBH) enzymes fused to dCas13 to add
or remove m6A at the target site. Reader enzymes (m6A binding proteins, such as ECT)
are recommended to be added to the dCas13-eraser complex to decrease the off-target
odds [108,109].

A recent noteworthy discovery shows that Cas13-guiding crRNA can lead to signif-
icant reductions in RNA levels even in the absence of the Cas13 protein, as observed in
Arabidopsis, tobacco and tomato (Solanum lycopersicum) species [110]. Cas13-independent
guide-induced gene silencing (GIGS) is speculated to be functional in numerous eukaryotes,
and it holds great promise as a compact, multigene silencing editing tool. This can be
particularly useful in polyploid plants, where there are multiple copies of a specific gene or
genes in the genome and where it is necessary to modify multiple genes simultaneously to
achieve desired quantitative traits such as increased yields and disease resistance. Further
studies could be carried out to take full advantage of this novel gene editing approach in
crop improvement.

3.4. Class 1 Type I Systems

Class 1 type I CRISPR-Cas systems are the most abundant CRISPR-Cas systems among
bacteria and archaea. Cas3, the signature protein of type I, has a histidine-aspartate (HD)
nuclease, functioning as a helicase-nuclease [111,112]. While Cascade-Cas3 has been widely
used in prokaryotic genome manipulation, its use in eukaryotes was impeded by the
multiple-subunit effectors, which required the simultaneous or sequential introduction of
multiple genes, until the recent creation of the repurposed Cascade-Cas3 [113,114]. The
long target sequence (about 30 bp) recognized by type I CRISPR-Cas systems offers great
advantages to genome editing [115].

The structure of type I-E has been well studied, in which Cascade was first identi-
fied [54,116] (Figure 2D). In the type I-E CRISPR-Cas system, the Cascade complex com-
prises five Cas proteins: Cas5e, Cas6e, Cas7e, Cas8e and Cas11e and crRNA. Upon PAM
recognition by Cas8, an R-loop structure is formed between crRNA and the target DNA.
Subsequently, a specific nuclease Cas3 is recruited, and the target DNA is cleaved and
degraded [111,112,117–120].

The only known application of type I-E in plant cells is the transcriptional control
in maize (Zea mays L.), using the type I-E system from Streptococcus thermophilus [115].
Using this system, the anthocyanin biosynthesis gene was successfully activated with an
approximately twofold enhancement and resulted in red pigmentation at the aleurone cell
layer in Zea mays [115]. In type I-E CRISPR, the presence of multiple activation domains
bound to the Cascade subunits at target sites may result in a more consistent and enhanced
activation of multiple genes, making it a suitable tool for investigating gene regulatory
networks and how genes are controlled, as compared to a single effector.
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A recently discovered type I-D CRISPR-Cas system, TiD, originally found in the bacte-
ria Microcystis aeruginosa, has been adapted as a genomic editing tool in eukaryotes [121,122].
TiD consists of five Cas proteins, Cas3d, Cas5d, Cas6d, Cas7d and Cas10d, and a crRNA
(Figure 2D). One unique feature of TiD is that it contains a mixture of type I and type III
effector modules—the helicase in type I (Cas3′) and Cas10d in type III fused with the HD
nuclease domain (Cas3”) to perform cleavage and ssDNA nuclease activity in vivo [121].
This hybrid nature of effector proteins demonstrating dsDNA and ssDNA cleavage quali-
fies this system, TiD, as a powerful tool in editing the inaccessible regions of complicated
crop genomes, for example in Brassica, wheat, cassava and potato, for trait improvements
such as disease resistance and high nutritional content [123,124]. Furthermore, TiD lacks
the Cas8 homologous protein that is responsible for PAM recognition. Instead, Cas10d is
involved in recognizing PAMs with the sequence 5′-GTH-3′ (H is A, C or T) [46,121,125,126].
Non-canonical small subunits such as Cas11d, which is a protein produced from within the
Cas10d gene (“hidden” components of the CRISPR system), are the first known example of
alternative internal translation, where the same mRNA transcript can produce multiple pro-
teins by initiating translation at different internal sites [126,127]. This finding is significant
because it expands our understanding of how genes can produce multiple proteins and
how these proteins may interact with each other in cellular processes. The other unique
feature of TiD is the capacity to perform small indels and long bi-directional deletions
(up to 7.2 kb) as shown in tomato in transgenic calli and shoots, targeting parthenocarpy
and fruit ripening genes [60]. More on-target sites for TiD were found in tomato and
Arabidopsis compared to Cas9, and these on-target mutations can be transmitted to the
next generation [121]. Given that Cas10 is regarded as the hallmark protein of the type III
CRISPR-Cas system, and given the similar structure of crRNA and Cas7 in type I-D to that
of type III, it is possible that type I-D represents an evolutionary intermediate between type
I and type III CRISPR-Cas systems [127]. The understanding of this hybrid nature and its
distinct recognition to dsDNA/ssDNA, especially the characteristics of the specific Cas10
protein, can help researchers identify new components and mechanisms of these CRISPR
systems, and potentially improve the efficiency and specificity of genome editing tools for
crop improvements [126].

Besides Cas3, Cas11 is another key effector in type I systems, which shows diver-
sity across the type I subtypes. In type I-E systems, Cas11e subtypes are encoded by a
well-annotated, independent Cas11 ORF; in both type I-C and type I-D systems, Cas11
subunits are “hidden” components encoded from domains in Cas8c and Cas10d, respec-
tively [127–129]. Cas11 effectors serve not only as essential components in most of the type
I systems [129], but also contribute to programmable RNA knockdown when fused with
Cas7 in type III systems [130]. Considering the numerous distinctive characteristics of class
I CRISPR-Cas systems commonly present in complex prokaryotic genomes, this system
holds great potential and is advantageous for editing the plant’s DNA to enhance its traits.

3.5. Class 2 Type V-B CRISPR-Cas12b/C2c1 Systems

Cas12b/C2c1 features a conserved Ruvc-like domain and a putative NUC domain
that differ entirely from those of Cas12a [131]. As a type V system, CRISPR-Cas12b/C2c1
uses a chimeric gRNA formed by hybridization between crRNA and tracrRNA to guide
its endonuclease activity [51,132] (Figure 2E). It recognizes T-rich PAMs and produces
a long-staggered end distal to the PAM, resulting in 5′ overhangs. The unique feature
of Cas12b includes the recognition of a T-rich PAM sequence instead of G-rich in Cas9,
which means a wider range of targeting sequence can be achieved. Furthermore, the size
of Cas12b is smaller than Cas9, making it an efficient and convenient delivery tool for
gene editing [133]. Cas12b is by far the only protein in CRISPR-Cas that produces the
longest number of nucleotides (6–8) in the sticky end [134] compared to the 1–3 nucleotides
overhang in Cas9 [135], which makes Cas12b useful because it minimizes editing errors
during the NHEJ repair process. In addition, Cas12b’s ability to function in a wide range of



Int. J. Mol. Sci. 2023, 24, 8623 11 of 27

temperatures and pH allows researchers to perform more efficient functional studies of
resilient crops such as heat- and salinity-tolerant traits.

As reviewed by Wada, Osakabe and Osakabe [60], the editing efficiency of Cas12b
proteins from various bacteria were studied in rice, among which AaCas12b (Alicyclobacillus
acidiphilus) showed high mutation specificity. Additionally, AaCas12b demonstrated up to
eightfold enhancement of gene transcriptional activation in rice, making it a very attractive
CRISPR system for plant genome engineering [136]. Cas12b favours the PAM sequences
of VTTV (V is A, C or G), leading to a high mutation efficiency (>50%) at ATTA, ATTC
and GTTC PAMs in rice protoplasts in a target-site-dependent manner, with deletions
occurring approximately 12–24 bp distal to the PAM sequence. Additionally, inactivated
AaCas12b proteins containing transcriptional repression or activation domains can be
used to regulate the expression of target genes [136]. AaCas12b has been demonstrated to
function effectively at high temperatures, as demonstrated in cotton (Gossypium hirsutum)
where the highest genome editing efficiency at 17.1% was observed at 45 ◦C for 4 days, with
1–16 bp deletions induced [134]; this makes AaCas12b a promising candidate for use in
developing heat-tolerant crops. Other types of Cas12b, such as BvCas12b (Bacillus sp. V3-13)
and BhCas12b v4 (Bacillus hisashii) in Arabidopsis, demonstrated possibilities of multiplexed
genome editing and generating heritable mutations [137]. These advantages are important
in stacking multiple transgenes at specific loci to ensure multiple traits can be genetically
inherited for cultivar improvement and development [138]. The advantage of Cas12b lies
in its ability to generate longer gene deletions in plants, making it possible to target and
remove gene loci that control undesirable traits or disrupt large genetic elements, such as
gene clusters or large cis-regulatory domains that control expression of desirable genes [139],
with minimal off-target effects and greater precision and efficiency [132,140]. Although
CRISPR-Cas12b has shown promise in plant cell editing, the low editing efficiency and
survival rate observed in pear calli highlight the need for the development of temperature-
insensitive systems before widespread implementation is possible [141].

3.6. Class 2 Type V CRISPR-CasΦ Systems

CRISPR-CasΦ, isolated from huge bacteriophage genomes, is a hypercompact genome
editing tool with fewer spacers in its CRISPR array that lacks the CRISPR spacer acquisition
machinery (Cas1, Cas2 and Cas4 proteins) [142] (Figure 2F). CasΦ (Cas12j) contains a
C-terminal Ruvc-like domain, and it has a relatively low sequence similarity with other Cas
proteins in type V CRISPR-Cas systems (Figure 2F) [143]. CasΦ utilizes a single RuvC-like
active site that is dependent on magnesium (Mg2+) for both crRNA processing and target
DNA cleavage, functioning on both dsDNA and ssDNA in cis [142,144]. This concentration
of structural and functional elements results in the generation of compact Cas12 proteins.
By recognizing minimal T-rich PAM sequences such as the 5′-TBN-3′ PAM (B is G, T, or C),
Cas12 proteins are able to expand their target recognition capability in comparison to other
Cas proteins [142].

One important advantage of CRISPR-CasΦ is the small size of the CasΦ protein, which
has a molecular weight half that of the Cas9 and Cas12a proteins. Its size is approximately
70 to 80 kDa, which makes it suitable for packaging in a virus-based vector, allowing for
the easy and efficient expression of transgenes [142].

In plant genome editing research, the minimal requirement of PAM using CasΦ-2 as
shown in the Arabidopsis 8–10 bp deletion of the PDS3 (phytoene desaturase 3) gene suggests
a broader editing scope, where there is more flexibility in the target site selection, thereby
increasing the chance of generating homozygous or biallelic mutations in plants [142].
Further optimization of the CRISPR-CasΦ-2 in Arabidopsis and tobacco shows promising
results in terms of improved genome editing efficiency and specificity, and can be applied
to economically important crops for enhancing their traits [145].
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3.7. Other Types of CRISPR-Cas System

In type III systems, Cas10 is the signature protein containing two RNA recognition
motif (RRM) domains, which is significantly different from type I-D [146,147]. The majority
of type III encoded proteins contain CARF (CRISPR-Associated Rossmann Fold) and/or
HEPN domains, with the former a predicted nucleotide-binding domain and the latter
a ribonuclease, similar to that of Cas13. Some other type III encoded proteins contain
CARF- and DNA-binding domains, presenting their flexibility in target recognition [148].
Among the multiple effectors, Cas7 is responsible for RNA cleavage, while Cas10 induces
non-specific ssDNA nicks [149,150]. In type III-E, a single multi-domain effector called
Cas7-11 (gRAMP) is identified to cleave RNA, which can be developed for RNA-targeting
engineering [130]. Type III CRISPR-Cas systems have been utilized in virus detection and
other prokaryote studies, with their wider application in mammalians and plants currently
hampered by the system’s complex structure, which therefore makes it challenging to
engineer and optimize for specific applications.

Type IV is comparatively less studied, currently limited to prokaryotes, with character-
istics distinct from other CRISPR types. It is speculated to have evolved from type III, with
a lack of various components, such as the absence of CRISPR array, a loss of small units
such as Cas11, the partial deterioration of the large subunits such as Cas10 or Csf1 and
a loss of target cleavage nuclease as well as a lack of Cas6 and even adaptation modules,
having been detected among the subtypes [151]. The mechanism details and its potential
application remain unclear. A recent study described that the innate Pseudomonas oleovorans
type IV-A system targets DNA upon PAM recognition, and causes DNA interference with
the absence of cleavage activity [152].

There have been diversified subtypes discovered in type V, besides the three Cas
proteins mentioned above. Cas12e (CasX) has been adopted as a genome editing tool in
eukaryote and human cells, with a target strand loading (TSL) domain facilitating target
DNA strand cleavage [153]. Other various type V subtypes show RNA-guided nuclease
in prokaryotic cells, with further study in eukaryotic organisms anticipated, reviewed by
Liu et al. [154]. A brief summary of the advantages, limitations and suggested solutions of
the various CRISPR/Cas systems is demonstrated in Table 2.

Table 2. The advantages and limitations with suggested solutions applicable to the different
CRISPR systems.

CRISPR Systems Advantages Limitations Solutions

CRISPR/Cas9 [61,155,156]
• SpCas9 system is the first

CRISPR/Cas system to be used
in genome editing and shows
robust activity.

• Its specific requirement for
NGG PAM hiders its wider
application in precise
genome editing.

• The large size of Cas9 hinders
its editing efficiency and
packaging load.

• It introduces off-target
mutations.

• Its transformation systems rely
on tissue culture, which
is labour-intensive.

• The identification of other Cas9
orthologs expands the variety of
recognized PAM sequences.

• gRNA structure could be
optimized to increase its
editing efficiency.

• High-fidelity Cas9 varieties can
be designed; nCas9 and dCas9
lead to increased specificity;
highly specific gRNA could
be designed.

• Tissue-culture-free skills have
been developed to simplify
the process.

• Development of other CRISPR
systems, such as
CRISPR/Cas12a, could
overcome some major
limitations using
CRISPR/Cas9 system.
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Table 2. Cont.

CRISPR Systems Advantages Limitations Solutions

CRISPR/Cas12a [157,158]

• It requires only a crRNA and
can process pre-crRNA into
mature crRNA itself.

• It has high fidelity.

• It only recognizes TTTV PAM.
• Its engineering is

temperature-sensitive in plants.

• Variants have been engineered
to recognize alternative
PAM sequences.

• Cas12a variety with high
activity at lower temperature
has been identified.

CRISPR/Cas13 [94]

• It is the only known
CRISPR/Cas system to bind
and cleave RNA.

• It has a small size to be
packaged into a
virus-based vector.

• It may result in collateral
nonspecific RNA degradation.

• Engineered dCas13 with
inactivated catalytic domain
that is fused with RNase
domain can increase precision
in RNA targeting.

Type I subtypes [115,122]

• The Cascade structures exhibit
higher specificity by
recognizing longer target
sequences than Cas9 systems.

• It can create long deletions.

• Its wider application is
inhibited by the
multi-subunit effectors.

• Each subunit could be modified
to achieve various
engineering purposes.

CRISPR/Cas12b [134,140] • It induces deletions longer than
those induced by Cas9 system.

• It requires high temperature to
cleave DNA.

• Protein engineering has been
conducted to reduce its optimal
cleavage temperature and it
could be properly applied in
genome editing of
heat-tolerant plants.

CRISPR/CasΦ [142]

• It has a hypercompact structure
and is capable of being
packaged in
virus-based vectors.

• It recognizes a wide range of
PAM sequences.

• The size of packaged DNA is
limited when using a
virus-based vector.

• This system is at a quite early
study stage and further
investigation will expand its
application in the future.

4. Further Applications in Plant Science
4.1. De Novo Domestication

Plant domestication has been essential in producing the elite crop varieties that are
cultivated worldwide [159]. However, such intense selection, often for improved palatabil-
ity or higher yields, has reduced the genetic diversity of cultivars, making them vulnerable
to both biotic and abiotic stresses [160]. Crop wild relatives (CWRs) represent a largely un-
tapped pool of beneficial traits that can be applied toward breeding more climate-resilient
and durable cultivars [161]. Through recent advances in CRISPR-Cas9 editing, a novel
pathway to domesticate CWRs in extremely short time frames has emerged. De novo
domestication describes the editing of genes responsible for key agronomic traits in a crop
wild relative so that it becomes high-yielding, while also having beneficial wild-derived at-
tributes, for example improved nutrition, abiotic stress tolerance or disease resistance [162].
Owing to the rapid identification and improved understanding of genes associated with
domestication and yield-related traits in many major crops, targeted gene editing of such
genes is becoming more widespread, opening the door for de novo domestication to be-
come a powerful approach to capitalize on the genetic diversity retained in CWRs [163]
(Figure 3A).

The first example of de novo domestication was demonstrated in a wild tomato relative,
Solanum pimpinellifolium, which naturally produces smaller fruit compared to cultivated
tomato. Zsögön et al. [162] first identified a suite of domestication genes in tomato, and
using a CRISPR-Cas9 multiplex editing approach established transgenic S. pimpinellifolium
lines with loss-of-function alleles for four of these yield-related genes. Compared to the
parental wild type, the T1 generation displayed ten times the number of fruits, which
were three times as large [162]. In addition, the transgenic fruit contained five times the
amount of lycopene, a carotenoid found in tomatoes with beneficial antioxidant properties,
when compared to cultivated tomato [162]. Since this initial proof of concept, two other
successful attempts to domesticate CWRs de novo using genome editing have been made.
One example is the distant tomato relative, Physalis pruinose, or groundcherry, an orphan
crop commonly grown in Central and South America [164]. Notably, Lemmon et al. [164]
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carried out de novo domestication with limited genomic resources as no groundcherry
reference genomes were available. Instead, they generated whole-genome sequencing data
and relied on the phylogenetic relationship between groundcherry and tomato to identify
and edit orthologues of known tomato domestication genes using CRISPR-Cas9. As a result,
improvements were made to plant architecture and yield, including a more compact growth
form, and increased flower number and fruit size in the transgenic plants [164]. De novo
domestication was also employed in a wild rice relative with the aim of developing the first
ever domesticated polyploid rice crop [165]. After optimizing an efficient transformation
system and generating a high-quality genome assembly for the allotetraploid wild rice
Oryza alta, homologs of seven domestication-related genes and 113 agronomically important
genes from diploid rice were edited using a CRISPR-Cas9 multiplex approach [165]. In
this way, desirable characteristics for multiple agronomically important rice traits were
obtained, thus representing a promising approach to address the challenges of global
food security.
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Figure 3. Further application of CRISPR/Cas systems in agricultural science: (A) De novo domes-
tication demonstrated improvements in both plant architecture and yield. (B) Gene stacking of
homeologs in polyploid crops can lead to improved yield traits such as spikelet number. (C) The
prospective application of CRISPR screening using gRNA libraries. (D) Its potential application in
producing hybrid vigour crops for future food security. Arrows represent symbols for gene editing.

Despite the promising potential of rapidly domesticating new crops from their wild
relatives, there are several bottlenecks within the de novo domestication pipeline that
need to be considered [166,167]. For example, working with CWRs inherently introduces
challenges because many of their traits are not well suited for agronomic settings, such as
large non-compact growth forms and a high affinity for seed/pod shattering [168]. This also
extends to genetic transformation systems, as many CWRs are onerous to regenerate [169].
In addition, for the effective domestication of CWRs within a single generation and therefore
short timeframes, a multiplex editing approach targeting at least several domestication
genes is likely required [167]. This, as well as establishing genomic resources for CWRs
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(i.e., annotated genome assemblies), can be a laborious and costly processes. Advances
in genome editing technology will undoubtably aid in overcoming these bottlenecks in
the coming years. For example, a more recent system to deliver genome editing reagents
utilizes viral vectors, which completely bypasses the need for regeneration [170]. De
novo domestication represents a novel pathway toward developing new crop species with
diverse gene pools. While there have been several successful examples that serve as guides,
progress in domesticating CWRs will largely be governed by the rate of characterization of
domestication genes in major crops and the identification of agronomically beneficial traits
in CWRs [171].

4.2. Gene Stacking in Polyploid Crops

Crop wild relatives and landraces represent a natural reservoir of diverse alleles, many
of which are agronomically favourable. However, such natural alleles are restricted to
certain species or closely related species and are often not exploited for other cross-genus
crops. Even within its own closely related species, there is a chance that alleles cannot
be introgressed effectively, due to genetic and genomic barriers such as linkage drag,
which may introduce undesirable genes; genome incompatibility, resulting in unsuccessful
fertilization; and differences in genetic background, causing a lack of gene expression,
among others [172–174]. One of the ways to circumvent these introgression problems and
allow alleles to be transferable to other crop systems in a more controlled manner is to
generate alleles synthetically using genome editing. One successful example is the cloning
of the candidate gene FT-D1 in wheat, which is associated with total spikelet number
and heading date, where the allele is conserved in hexaploid wheat and is suitable to be
transferred across wheat species with different genetic backgrounds, and could potentially
be pyramided with other genes controlling yield to improve wheat yield [175] (Figure 3B).

CRISPR multiplex editing offers great promise in accelerating the crop breeding pro-
cess, where multiple gRNAs can be designed to target sequence modification at multiple
genomic sites. Gene pyramiding using a multiplexing strategy in an elite winter wheat
variety, Zhengmai 7698 (ZM), was recently performed using six constructs of gRNA target-
ing three homeologs for each gene with a tandem array of 2, 3, 4 and 5 tRNA-gRNAs each
in a single transcript unit targeting 6, 9, 12 and 15 genomic loci in common wheat, which
translates into a shortened breeding cycle time to reach the desired phenotypic outcomes,
from 10 years to within 1 year [176]. In Brassica oleracea, multiple gene edits targeting
the self-incompatibility, male sterility and phytoene desaturase genes were implemented
to achieve male sterility for breeding pure F1 hybrid cabbage seeds in a more efficient
way than the conventional backcrossing strategy [177]. Based on these achievements,
we are now able to study and better understand the regulation of paralogous genes in
polyploid crops, which increases the success rate of gene stacking efforts in these highly
complex genomes. Efficient delivery systems of gRNA into the host plant and its subse-
quent transgene expression play very important roles in multiplex genome editing [178].
Plant-based virus vectors such as Beet necrotic yellow vein virus (BNYVV) and Potato virus
X have been reported as a highly efficient tool to deliver the gRNA in multiplex forms into
N. benthamiana plants, with up to four simultaneous expressions of recombinant proteins
within the same cell, by making use of the virus replication method to accumulate large
amounts of gRNA with an advantage of having a transgenerational effect [179,180].

4.3. CRISPR Screen

Genome-wide CRISPR screening is a powerful approach to characterize genes at the
genome level and discover gene–phenotype relationships in various biological systems.
Genome scale screening of mutations, deletions, transcriptional activation or repression
in population genomics studies, or any fundamental biology studies, can be performed
with CRISPR gRNA libraries, which allows for high-throughput applications in functional
genomics studies of plants [181] (Figure 3C). An extension of this approach includes pooled
CRISPR screens, where a library of cells, each receiving different gRNAs, is created and
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these gene-edited cells are subjected to selective pressures to induce the cell’s competitive-
ness, and with those cells that are fit, their encoded gRNAs are read out via high-throughput
sequencing [182]. Pooled CRISPR can be linked with single-cell transcriptomes in CRISPR
droplet sequencing (CROP-seq) such that the effect of the edit on thousands of heterogenous
individual cells can be studied [183,184]. Other similar technologies such as CRISPR-seq
and Perturb-seq are examples of how CRISPR is linked with single-cell transcriptomes to
study the effect of multiple gene disruptions on gene transcription at the single-cell level in
a high-throughput manner [185–187]. The latest advancement in CRISPR screening is the
coupling with imaging technologies that allow us to visualize the changes in the cellular
phenotypes incurred by the edited gene [182], for example locating the long non-coding
RNA in the nuclear compartment [188]. In crop breeding, a pooled CRISPR screen using a
small-scale CRISPR library (5–10 gRNA) with multiple alleles per gRNA was implemented
in soybean, targeting 102 candidate genes in 407 transgenic lines, thus achieving multiplex
mutations within the genome of one transgenic plant [189].

4.4. Gene Drive

Gene drive is the process in which the allele of a gene is converted into the desired
version through deliberate means, where it can be the CRISPR-Cas-based approach, and
the outcome is transforming heterozygote cells into homozygotes so that all the offspring
carry the desired allele at 100% frequency [190]. The gene drive technology using CRISPR
has proved successful in the malaria mosquito vector, Anopheles gambiae, targeting the
inactivation of the gene controlling female reproduction with a progeny transmission rate
of 91.4 to 99.6% [191]. Another example was also reported on an insect, Drosophila suzukii,
a type of crop pest [192]. Successful allele sequence replacement in gene drive systems
relies on efficient homology-directed repair, HDR, with a high transmission rate, but this
is often lacking in plants [193,194]. However, it was shown that higher efficiency of HDR
can be achieved in Arabidopsis during early egg cells and/or early embryos stages and
immediately after transformation before T-DNA integration [195]. With improvements in
the efficiency of the HDR mechanism in plants, the application of the CRISPR gene drive in
plant breeding is promising and will gain momentum in future speed-breeding projects.
For example, to accelerate the breeding of pathogen-resistant crop varieties possessing the
mutated susceptibility (S) gene (S-mutants), the CRISPR gene drive system can be used
to develop a homozygous S-mutant in a single parental line and re-use this parental line
in numerous crossing experiments to produce high-quality cultivars without the need to
perform CRISPR edits on each parent for every hybrid combination, thus saving time and
resources [196]. Other potential applications of the CRISPR gene drive in plants include
weed control [197], improvement of yield traits [198] and homoeologous allele editing
in polyploid crop species with several factors to be considered for effective gene drives,
such as the plant life history, the DNA repair mechanism, the potential for unintended
evolutionary responses and ecological risk [194].

4.5. Application of CRISPR-Cas9 in Addressing Food Security Issues

Considering the compounding global shocks, such as the COVID-19 pandemic, the
Russia–Ukraine conflict and climate changes, which have impacted food security in recent
years, there is immense pressure to improve crop breeding. The production of hybrid
seeds could greatly facilitate stable crop yield and ensure seed quality. For example, the
application of male sterility technology in hybrid maize has benefited the smallholder
farmers and breeders in Africa by increasing the yields and reducing seed production
costs [199]. To expedite the lengthy process of producing male sterile lines for hybrid
breeding, CRISPR-Cas9 has been employed in rice [200], wheat (Triticum aestivum) [201]
and soybean (Glycine max) [202], thereby expanding the germplasm breeding pool for crop
heterosis. Genome editing tools have also been utilized in studies related to crop nutrient
uptake, such as the gene functional characterization of the OsZIP9 gene in rice, which plays
a role in Zn uptake in soil [203], and the ZmbHLH121 gene in maize, a transcription factor
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that regulates root cortical aerenchyma, enhancing uptake of water and nutrients from
the soil [204]. Successful applications of CRISPR/Cas9 systems in these areas have clearly
demonstrated the potential to improve crop adaptability to marginalized soils, a recurrent
problem in agricultural lands in developing or poor countries. Additionally, crop breeding
can be further accelerated through Haploid-Inducer Mediated Genome Editing (IMGE), as
demonstrated in maize plants that have been edited to produce homozygous pure doubled
haploid (DH) lines with the desired trait improvement, carrying the elite maize inbred line
genetic background within two generations [205], thus expanding the crop breeding tools
to secure food for the future.

5. Challenges, Prospects and Conclusions

As naturally evolved immune systems identified in bacteria and archaea, CRISPR-Cas
systems present inherent programmable gene editing capacity, which facilitates genome
engineering and leads to revolutionary findings in biological sciences. In this review, we
delineate the three genome editing phases using CRISPR/Cas systems, summarize the
distinct structural and functional features of the two classes, consisting of three types each,
and exemplify the applications in the plant genome editing of typical effectors.

One of the major bottlenecks hindering the widespread application of plant genome
editing is the arduous tissue culture protocol required to create gene-edited plantlets. This
step is not only labour- and time-intensive, but also presents drawbacks such as species-
dependent feasibility. Recently, the adaptation of the de novo meristems induction method
brings glimmers of light to overcome this barrier, via inducing the differentiated cells to
form meristems. Gene editing components, such as Cas proteins and gRNA, are combined
with specific regulation effectors to be delivered into seedlings or somatic cells of soil-grown
plants outside aseptic conditions. Gene-edited shoots are induced, which eventually grow
into gene-edited plants [156]. Once the existing limitations of this method are overcome,
it will advance plant genome editing with faster editing protocols on an expanded range
of plants.

The other limitation of CRISPR systems is in regard to the delivery of plasmid DNA,
which often suffers from low transformation efficiencies, species-dependence and trans-
gene integration into the host genome [206]. However, these limitations have now been
addressed by using nanoparticles such as carbon nanotubes carriers. In this approach,
DNA is adsorbed onto the surface of the nanoparticle, which is then successfully delivered
into monocots, such as rice and wheat, and dicot plant species, such as tobacco, arugula
(Eruca sativa) and cotton, without integration into the plant nuclear genome. It is worth
noting that the large size of Cas9 requires optimization steps to achieve better adherence of
the plasmids onto nanoparticles [206–208]. Another delivery mechanism, cell-penetrating
peptides, make use of the peptide’s properties to effectively transport various biomolecules
such as sgRNA and RNPs to its targeted location within the cell, through interactions with
the cell membrane [209]. This approach is ideal for the cellular uptake of large biomolecule
editing components into target cells and has been shown to be effective in a wide range of
cell types [210].

Another major setback of implementing the CRISPR-Cas system in the plant science
commercial sector relates to the complexity surrounding patent licensing and commercial-
ization, as no single entity claims ownership in all aspects of the CRISPR-Cas9 technology.
According to patent analytics data from IPStudies, a Swiss-based IP management con-
sultancy, there were more than 11,000 patent families applications filed for technologies
on different aspects of CRISPR-Cas9 systems such as gRNA-guide sequence, nuclease,
vector delivery, CRISPR sequence, among many others [211]. The CRISPR patent grant
holders enjoy a 20-year monopoly on the technology with the requirement of making the
details of the work transparent to all researchers [212]. The main patent holders—the Broad
Institute and the University of California—have granted certain “surrogate” companies
the license, whereby the companies have the right to commercialize the CRISPR prod-
uct and gain all the other perks of a patent owner, including sublicensing it out to other
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commercial enterprise [213]. For example, in plant science, Monsanto and Bayer Crop
Science obtained a non-exclusive license from the Broad Institute (Harvard and MIT), while
Dupont Pioneer acquired an exclusive license from the University of California-Berkeley
and University of Vienna through the “surrogate” Caribou Biosciences, and later entered
into a joint non-exclusive licensing agreement with the Broad Institute for commercializing
and developing CRISPR-Cas9 products [214–216]. In plant breeding applications, Corteva
Agriscience (Agricultural division of DowDuPont) and The Broad Institute of Harvard
and MIT have licensed the CRISPR/Cas 9 technology to one of the largest agriculture
companies in the world, the J.R. Simplot Company, which has successfully marketed the
gene-edited potato varieties that are resistant against pathogens with reduced acrylamide,
and is now working to edit the genes of strawberries for better qualities, in partnership
with Plant Sciences, Inc [217,218]. These for-profit patent ownership of “surrogate” setups
have obvious drawbacks, the main one being a limitation of commercial development by
small biotechnology companies who may wish to apply CRISPR technology in their R&D
innovation, thus hindering application-oriented improvement of CRISPR technology [219].

The exorbitant licensing fees for CRISPR technology which can reach USD 100 million
have hindered many plant agricultural commercial companies from using this technol-
ogy [220]. As a workaround strategy, these companies could work on different enzymes and
systems that fall outside of the CRISPR-Cas9 patents. Research universities that are patent
holders should offer free licenses to non-profit organizations, exemplified by Wageningen
University and Research providing free licenses to non-profit entities for using CRISPR
technology in their effort towards food security [221]. Additionally, there has been a huge
call for making the CRISPR license free of charge for research institutions while giving the
patent holders claim rights of any invention coming out from these institutions [222].

CRISPR-Cas systems are considered as a potent tool in synthetic plant biology, espe-
cially in synthetic plant genomes. The versatility of CRISPR-Cas genome editing tools may
make plant artificial sequences no longer a fantasy, via manipulating and designing gene
expression, transcriptional regulation and post-transcriptional behaviours using natural or
artificial DNA-binding domains and nucleases [65,223]. To achieve this goal, CRISPR-Cas
multiplex systems are under development, improving from a single catalytic function at
multiple sites simultaneously [224,225], to multiple enzyme activities per site at multiple
sites at the same time [223,226]. Gene stacking to add new and desirable traits by site-
specific recombination on chromosomes has been realized, as reviewed above. Further
endeavours are requested on the way to generate genuine plant artificial chromosomes
(PACs) and finally synthetic plant genomes (Figure 3D).

This review highlights the various CRISPR subtypes containing unincluded effec-
tors, which show distinct structural and functional differences from the currently applied
CRISPR-Cas systems. These Cas proteins have been applied in mammalian cells or for
human disease diagnosis and they offer great resources to expand the plant genome edit-
ing toolkit.

In conclusion, CRISPR-Cas systems have improved rapidly after their first identifi-
cation as genomic engineering tools. The domains and nuclease activity in Cas proteins,
gRNA components, plant species, transformation procedures and other details in the
CRISPR-Cas systems all play an important role in determining precise genome editing.
During the process, drawbacks of currently applied CRISPR-Cas systems, such as limita-
tions in target recognition and collateral cleavage, have repeatedly been recognized and
tackled unceasingly with now the availability of expanded CRISPR-Cas tools with higher
editing efficiency, lower off-target activity and wider application. We believe CRISPR-Cas
systems will become even more effective and flexible in plant genome editing to achieve
global food security in the changing climate.
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