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Abstract: Diabetic kidney disease (DKD) affects 30–40% of patients with diabetes and is currently the
leading cause of end-stage renal disease (ESRD). The activation of the complement cascade, a highly
conserved element of the innate immune system, has been implicated in the pathogenesis of diabetes
and its complications. The potent anaphylatoxin C5a is a critical effector of complement-mediated
inflammation. Excessive activation of the C5a-signalling axis promotes a potent inflammatory
environment and is associated with mitochondrial dysfunction, inflammasome activation, and the
production of reactive oxygen species. Conventional renoprotective agents used in the treatment of
diabetes do not target the complement system. Mounting preclinical evidence indicates that inhibition
of the complement system may prove protective in DKD by reducing inflammation and fibrosis.
Targeting the C5a-receptor signaling axis is of particular interest, as inhibition at this level attenuates
inflammation while preserving the critical immunological defense functions of the complement
system. In this review, the important role of the C5a/C5a-receptor axis in the pathogenesis of diabetes
and kidney injuries will be discussed, and an overview of the status and mechanisms of action of
current complement therapeutics in development will be provided.
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1. Introduction

The estimated prevalence of diabetes mellitus has increased threefold over the past
two decades, from approximately 150 million at the turn of the century to over 530 million
today [1]. The two most common forms of diabetes mellitus are type 1 (T1DM) and
type 2 (T2DM). T1DM is an autoimmune disease in which insulin-secreting pancreatic
β-cells are targeted, leading to a loss of insulin secretion and subsequent impaired glucose
metabolism, causing hyperglycemia [2]. The cause of T2DM is more complex, with genetic
and lifestyle factors, among other variables, contributing to the development of impaired
glucose metabolism and hyperglycemia [3]. Both individuals with T1DM and T2DM are
at risk of developing diabetic complications [4,5], and between 30 and 40% will develop
diabetic kidney disease (DKD) [6–9].

2. Diabetic Kidney Disease

The diabetes-induced chronic hyperglycemic milieu promotes alterations across metabolic,
hemodynamic, and inflammatory pathways [10,11]. Hyperglycemia dysregulates blood
pressure and vascular resistance due to renin-angiotensin-aldosterone system (RAAS)
activation [12]. The resultant hypertension, a primary hallmark of DKD, is especially
detrimental to the kidney [13]. The overproduction of pro-inflammatory mediators, includ-
ing reactive oxygen species (ROS), advanced glycation end products (AGEs), cytokines,
chemokines, and complement proteins, induces a positive feedback loop of chronic inflam-
mation [4,14,15]. Transforming growth factor β (TGF-β), connective tissue growth factor
(CTGF), and vascular endothelial growth factor (VEGF) promote collagen and fibronectin
deposition and the replacement of the normal tissue architecture with extracellular matrix
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(ECM) proteins across the kidney [16,17]. These renal structural changes activate intracellu-
lar signaling pathways that promote the expansion of the mesangial matrix, glomerular
hypertrophy, tubulointerstitial fibrosis, and glomerulosclerosis [10,18]. Microalbuminuria
and worsening hypertension are the first clinical markers of disease development [19,20],
and as the glomeruli fail to filter the blood, proteinuria becomes severe and persistent [5].
The estimated glomerular filtration rate (eGFR), a measure of kidney function, continues to
decline as the disease progresses.

Unfortunately, current measures to treat DKD—reducing hypertension, managing
cardiovascular disease, making dietary changes, and avoiding nephrotoxins—do not stop
progression to ESRD. In the absence of robust biomarkers for early detection of those likely
to develop DKD, the available treatments are employed after kidney function has already
begun to decline. Novel biomarkers, in addition to therapeutic targets, are critical if diag-
nosis, intervention, and treatment are to be improved before renal damage is irreversible
and to reduce the significant morbidity and mortality associated with DKD.

A large and accumulating body of evidence indicates that activation of the comple-
ment system is increased in preclinical models of diabetes and in clinical samples from
individuals with diabetes and may be a biomarker for DKD development [21–27].

3. The Complement System

The complement system is a highly conserved element of the innate immune system.
Over 40 circulating proteins, surface-bound receptors, and plasma proteases comprise
the complement cascade, which is activated by three distinct pathways, as described
elsewhere [28–31]. As illustrated in Figure 1, the classical, lectin, and alternative pathways
all converge at protein C3 and share a common downstream signaling cascade termed
the terminal pathway. Cleavage of C3 generates the effector proteins C3a and C3b. C3a
is an anaphylatoxin that induces inflammatory signaling upon binding its receptor, C3aR,
expressed on various immune and non-immune cells [32,33]. C3b acts as an opsonin,
supporting phagocytic cells to engulf their targets [33]. Further, the C3b fragment can also
form part of the alternative pathway C3 convertase (C3bBb), creating an amplification loop
of complement activation.

Downstream formation of the C5 converses (C4b2a3b and C3bBbC3b) and subsequent
cleavage of C5 produce C5a and C5b. C5a is an anaphylatoxin 50-fold more potent than
C3a [34], which binds its receptors C5aR1 and C5aR2. C5b associates with complement
proteins C6, C7, C8, and C9, polymerizing to create the membrane attack complex (MAC), a
pore-forming molecule that inserts itself into plasma membranes, triggering osmotic shock
and cell lysis. Thus, the three results of complement activation are broadly inflammation
through the anaphylatoxins C3a and C5a, opsonization through C3b and subsequent
phagocytic action, and cell lysis mediated by the MAC.

The complex physiology and function of the kidney render it especially vulnerable to
complement-mediated injury, and as a consequence, systemic complement dysregulation
often results in isolated kidney disease [31]. Furthermore, a number of studies have
highlighted that intrarenal synthesis and activation of complement proteins are crucial
mediators in the pathogenesis of both acute [35,36] and chronic kidney injuries [37–39]. The
increasing recognition of the complement system as a pathophysiologic mediator of renal
injury emphasizes the importance of targeting complement for the treatment of various
renal conditions.
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Figure 1. The complement cascade. Three pathways of complement activation, the classical, lectin, 
and alternative pathways, converge at the formation of C3, initiating the common terminal pathway. 
Cleavage of C3 leads to the formation of complement products C3a, an anaphylatoxin that binds the 
receptor C3aR, and C3b, an opsonin, in addition to contributing to the formation of C5. Cleavage of 
C5 leads to the formation of C5a, the most potent anaphylatoxin, which binds receptors C5aR1 and 
C5aR2, and C5b, which forms part of the membrane attack complex (MAC) through polymerization 
with complement components C6, C7, C8, and C9. The pore-forming MAC inserts itself into cell 
membranes, inducing osmotic damage and cell lysis. The complement cascade is regulated by a 
range of membrane-bound and soluble inhibitors, including C1INH, MCP, DAF, factor H, factor I, 
and CD59. Abbreviations: CRP, C-reactive protein; MCP, membrane co-factor protein; DAF, decay 
accelerating factor; MASP, MBL-associated serine protease. 

4. The Hyperglycemic Milieu Promotes Complement Activation 
The chronic hyperglycemic setting that characterizes diabetes is believed to promote 

complement activation. Post-translational protein modifications, in particular glycation, 
may prompt activation of the lectin pathway through association of MBL with the sugars 
that have been deposited on cells [40–42]. Elevated serum C5b-9, indicative of the MAC, 
is frequently reported in patients with diabetes [43,44]. Glycation of the complement in-
hibitor CD59 renders the glycoprotein unable to bind C9 and thus unable to inhibit the 
formation of the MAC, which may also contribute to excessive complement-mediated 
damage in diabetes [45]. AGEs have also been reported to bind C1q, activating the classi-
cal pathway [46]. While the precise molecular mechanisms underpinning complement ac-
tivation in diabetes and its complications remain to be fully elucidated, a significant body 
of evidence indicates complement proteins are dysregulated in patients with diabetes and 
its complications, as summarized in Table 1. Increased levels of circulating MBL are asso-
ciated with the development and progression of albuminuria in patients with both T1DM 
and T2DM [47–53], while increased levels of anaphylatoxins C3a and C5a are associated 
with renal function decline [43,44]. Moreover, deposition of complement proteins C1q, C3, 

Figure 1. The complement cascade. Three pathways of complement activation, the classical, lectin,
and alternative pathways, converge at the formation of C3, initiating the common terminal pathway.
Cleavage of C3 leads to the formation of complement products C3a, an anaphylatoxin that binds the
receptor C3aR, and C3b, an opsonin, in addition to contributing to the formation of C5. Cleavage of
C5 leads to the formation of C5a, the most potent anaphylatoxin, which binds receptors C5aR1 and
C5aR2, and C5b, which forms part of the membrane attack complex (MAC) through polymerization
with complement components C6, C7, C8, and C9. The pore-forming MAC inserts itself into cell
membranes, inducing osmotic damage and cell lysis. The complement cascade is regulated by a
range of membrane-bound and soluble inhibitors, including C1INH, MCP, DAF, factor H, factor I,
and CD59. Abbreviations: CRP, C-reactive protein; MCP, membrane co-factor protein; DAF, decay
accelerating factor; MASP, MBL-associated serine protease.

4. The Hyperglycemic Milieu Promotes Complement Activation

The chronic hyperglycemic setting that characterizes diabetes is believed to promote
complement activation. Post-translational protein modifications, in particular glycation,
may prompt activation of the lectin pathway through association of MBL with the sugars
that have been deposited on cells [40–42]. Elevated serum C5b-9, indicative of the MAC, is
frequently reported in patients with diabetes [43,44]. Glycation of the complement inhibitor
CD59 renders the glycoprotein unable to bind C9 and thus unable to inhibit the formation
of the MAC, which may also contribute to excessive complement-mediated damage in
diabetes [45]. AGEs have also been reported to bind C1q, activating the classical path-
way [46]. While the precise molecular mechanisms underpinning complement activation
in diabetes and its complications remain to be fully elucidated, a significant body of ev-
idence indicates complement proteins are dysregulated in patients with diabetes and its
complications, as summarized in Table 1. Increased levels of circulating MBL are associated
with the development and progression of albuminuria in patients with both T1DM and
T2DM [47–53], while increased levels of anaphylatoxins C3a and C5a are associated with
renal function decline [43,44]. Moreover, deposition of complement proteins C1q, C3, C3c,
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and C4d in the kidney is associated with DKD, worsening albuminuria, and the progression
to ESRD [26,46,54,55]. Further, urinary complement C3 and C9 are negatively correlated
with eGFR and associated with progressive renal decline in patients with diabetes [54,56].

Given the complexity of the complement cascade, comprised of inflammatory medi-
ators and their receptors, regulatory proteins, and intrinsic factors, the measurement of
individual complement proteins often does not adequately reflect the biology and activity
of the complement system in its entirety. As such, a reproducible systematic complement
system assaying protocol capable of measuring total complement activity in addition to
individual complement components needs to be established in order to fully investigate
this intricate system [57]. Such a protocol would aid in both the development of comple-
ment therapeutics as well as improve laboratory techniques to investigate complement as a
biomarker of disease progression.

Table 1. Evidence of complement activation in patients with diabetes and DKD.

References Biospecimen Type Complement
Protein Key Finding/s

[46,54] Renal tissue C4d C4d deposition associated with diabetic nephropathy and correlated
with disease severity

[46,54] Renal tissue C1q C1q deposition associated with renal dysfunction and
disease progression

[46] Renal tissue C5b-9 MAC deposits associated with diabetes and correlated with severity
of disease

[21,26,55] Renal tissue C3
Increased C3 deposition or expression associated with kidney
function decline (including albuminuria) and/or progression

to ESRD

[43] Renal tissue C5 C5 deposition increased in diabetes vs. non-diabetic controls

[43,44] Plasma C3a Plasma C3a is significantly elevated in diabetic disease and DKD,
and is associated with albuminuria

[43,44] Plasma C5a Plasma C5a is significantly elevated in the diabetic milieu and is
associated with reduced eGFR

[43] Plasma sC5b-9 Circulating C5b-9 is upregulated in DKD versus diabetic patients
without kidney involvement

[47–52,58] Serum MBL MBL levels are associated with the progression and/or progression
of albuminuria in patients with T1DM and T2DM

[53] Serum MAp19 MAp19 concentration associated with increased risk of progression of
albuminuria in T1DM patients

[59] Serum C7 Serum C7 levels are increased in patients with early diabetic
nephropathy in comparison to controls

[54,56] Urine C3 Urinary C3 abundance is negatively correlated with progressive
decline in eGFR; urinary C3 is elevated in DKD versus diabetes alone

[54] Urine C9 Urinary C9 abundance is negatively correlated with progressive
decline in eGFR

[56] Urine C3b Urinary C3b significantly increased in DKD versus diabetes alone

Currently, it is not clear which activation pathway contributes predominantly to
complement activation in diabetes. Bus and colleagues investigated complement expression
in autopsied renal biospecimens from individuals with T1DM or T2DM, in addition to non-
diabetic controls [46]. Renal biospecimens from patients with diabetes had increased C4d
deposits, which correlated with reduced eGFR. Further, C1q was observed in over one-third
of the diabetic samples and almost absent in non-diabetic controls, indicating activation of
the classical pathway [46]. Additionally, patients with DKD also had increased kidney IgM
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deposition, further strengthening evidence that the classical pathway is likely activated
in diabetes. Analyses of gene expression reveal that complement proteins C3, C1q, MBL,
and C5b-9 are increased in patients with DKD in comparison to non-diabetic controls [60].
Increased deposition of complement C3 and C1q has Increased kidney function decline
has been reported in patients with C3 and C1q deposits [60], and C3c deposition has
been identified as an independent risk factor for the progression to ESRD [55]. Moreover,
in vitro studies indicate the proximal tubules are able to activate the alternative pathway
via intrinsic convertase activity [61], and a lack of complement regulator expression may
exacerbate complement-mediated local tissue damage [62]. Nevertheless, each activation
pathway converges on the shared terminal pathway, making effectors of the terminal
pathway ideal therapeutic targets for the prevention of complement-mediated injury.

5. C5a and C5a Receptors

C5a is the most potent anaphylatoxin produced by the complement system. It induces
diverse immunological effects through binding its receptors, C5aR1 and C5aR2. With
functions across chemotaxis, adhesion, migration, and cell arrest, C5a also modulates
cytokine profiles and promotes the production of ROS [63,64]. Despite human C5aR2
sharing 58% amino acid sequence homology with C5aR1 [65], differences in structural
regions important for G protein coupling and receptor internalization [66–69] render the
receptors distinct from one another [70]. The key differences between C5aR1 and C5aR2 in
terms of signaling, expression, and localization are summarized in Table 2.

Table 2. Comparison of the C5a anaphylatoxin receptors.

C5aR1 C5aR2

Topology Seven transmembrane receptor Seven transmembrane receptor

G protein coupling Coupling to G proteins of Gα family No known coupling to Gα family proteins

β-arrestin recruitment Recruitment of β-arrestins 1 and 2 Recruitment of β-arrestins 1 and 2

Expression
Immune cells: myeloid lineage,

some lymphocytes
Non-immune cells: epithelial cells

Immune cells of myeloid lineage with particularly
strong expression on granulocytes

Non-immune cells: neurons, fibroblasts, adipose
cells, hepatocytes

Cellular localisation Predominantly on cellular surface Predominantly intracellular

6. C5a-C5aR1 Signaling

C5aR1 (CD88) is a canonical seven-transmembrane (7TM) G protein-coupled receptor
(GPCR) predominantly expressed on the cell surface [69,71]. Activation of the receptor
induces downstream G protein-mediated ERK 1/2 phosphorylation in addition to β-
arrestin signaling pathways [43,72], as illustrated in Figure 2. C5aR1 is expressed across
cells of the myeloid lineage [73], in addition to epithelial and endothelial cells and subsets
of T and B lymphocytes [68]. In the healthy kidney, C5aR1 protein is expressed in tubular
epithelial cells [74,75], with strong expression in the basolateral distal tubule and weaker
expression in the proximal tubules [76]. Renal mRNA expression has also been reported in
glomerular cells and vascular endothelial cells [74], though protein expression in podocytes
is scarce [77].
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In biopsied renal biospecimens from transplant patients with delayed graft function, 
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[75]. In contrast, minimal or focally positive staining in the distal tubules was identified 
in control biospecimens. In preclinical models, the induction of murine ischemic injury is 
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Figure 2. C5a receptor signaling. C5aR1 is a canonical G protein-coupled receptor (GPCR) that
predominantly mediates signal transduction through Gα family proteins. Downstream signaling
through PI3K or Ras MAPK pathways regulates cell growth, motility, metabolism, survival, and
cytokine production. C5aR2 preferentially signals through β-arrestins, activating the downstream
transcription factor NF-κB. C5aR1 and C5aR2 may also form heteromers and recruit β-arrestins;
however, the precise signaling pathways and intracellular trafficking pathways are currently poorly
characterized.

7. C5aR1 Promotes Inflammation and Tissue Damage in Diverse Models of Acute
Kidney Injury

In the diseased or injured kidney, C5aR1 expression is significantly altered [74–76]. In
biopsied renal biospecimens from transplant patients with delayed graft function, staining
revealed a diffuse pattern of C5aR1 expression in the proximal and distal tubules [75]. In
contrast, minimal or focally positive staining in the distal tubules was identified in control
biospecimens. In preclinical models, the induction of murine ischemic injury is associated
with an increased expression of C5aR1 in the tubular cells as well as in infiltrating neu-
trophils, while in control mice, C5aR1 is predominantly expressed in the mesangial cells [78].
A number of preclinical studies indicate that genetic ablation or pharmacological inhibition
of C5aR1 decreases markers of renal injury, immune cell infiltration, and fibrosis in renal
IRI [29,75,79,80], unilateral uretal obstruction (UUO) models of obstructive nephropathy
and fibrosis, uropathogenic Escherichia coli (UPEC)-induced pyelonephritis [81,82], and folic
acid (FA)-induced AKI [73]. These studies highlight the pathogenic role the receptor plays
in acute renal injury.

A proposed mechanism of C5a-C5aR1/2-induced renal injury is summarized in
Figure 3. Complementary activation and production of the powerful chemoattractant
C5a recruit inflammatory cells, particularly macrophages and neutrophils, to the site of
injury. Renal C5a may modulate macrophage polarization to an M1 phenotype via C5aR1,
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promoting the production of pro-inflammatory cytokines and ensuing inflammation and
fibrosis [83]. The C5a/C5aR1 signaling axis has also been reported to stimulate the acti-
vation and proliferation of renal fibroblasts, in addition to upregulating gene expression
of pro-fibrotic mediators PDGF and TGF-β in renal tubular epithelial cells [79]. These
mediators promote EMT, contributing to fibrosis [79]. Interestingly, C5a has been shown
to stimulate ROS production via NOX-dependent pathways in mouse kidney endothelial
cells [84], and further, C5a stimulation can induce pyroptosis in renal podocytes [85]. Col-
lectively, these mechanisms promote the activation and proliferation of renal and immune
cells, exacerbating inflammation and fibrosis, which ultimately leads to renal injury and
kidney dysfunction.
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Figure 3. C5a receptors in renal inflammation and fibrosis. Complement activation and downstream
production of the potent anaphylatoxin C5a promote the recruitment of inflammatory cells to the renal
compartments. Local production of pro-inflammatory cytokines and chemokines, such as MCP-1 and
IFNγ, exacerbates inflammation and prompts the release of pro-fibrotic cytokines and mediators, such
as TGF-β and CTGF. These mediators promote fibrosis through collagen and fibronectin deposition
and the replacement of the normal renal architecture with extracellular matrix proteins. Renal
function declines as fibrosis becomes more severe.

8. C5aR1 Mediates Pathogenesis in Diabetic Kidney Disease

C5aR1 plays a pathogenic role in diverse preclinical models of both T1DM and T2DM.
In db/db mice, a murine model in which mutations in Leprdb render the mice diabetic, mod-
eling a T2DM-like phenotype, C5 and C5aR1 expression are upregulated in comparison to
non-diabetic db/m mice [44,86]. Furthermore, treatment with C5a or C5aR1 antagonists has
been reported to significantly attenuate renal injury [44,86]. Yiu and colleagues observed
that blockade of C5a with a novel mixed RNA/DNA a-tamer, NOX-D21, markedly reduced
fibrotic injury, including tubulointerstitial fibrosis and glomerulosclerosis [87]. Of note,
NOX-D21 did not have any observable impact on proteinuria. The predominantly tubular-
specific expression of C5aR1 and lack of expression in the glomeruli, as the group proposed,
may account for the absence of an effect on proteinuria observed [87]. Interestingly, a
number of other studies using C5aR1 antagonists in db/db mice have reported that the
interruption of the C5a-C5aR1 signaling axis reduces albuminuria.

The administration of the C5aR1 antagonist W-54011, a potent and orally active
non-peptide antagonist, to db/db mice significantly attenuated renal injury, with reduc-
tions in pro-inflammatory cytokines IL-6 and MCP-1 decreases in mRNA expression of
pro-inflammatory gene markers TLR2, MCP-1, and macrophage marker F4/80 in db/db
kidneys [86]. These changes were independent of glucose and lipid metabolism pathways.
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Similarly, previous studies from our laboratory underscore the protective benefit achieved
by disrupting the C5a/C5aR1 signaling axis in murine models of diabetes [44]. Mice mod-
eling streptozotocin-induced type 1 diabetes treated with the C5aR1 antagonist PMX53, an
orally active peptide, experienced significant reductions in inflammation, oxidative stress,
and tissue damage, as indicated by reductions in albuminuria, urinary 8-isoprostane, and
cytokines such as IL-18 [44]. Further, PMX53 administration also reduced macrophage
infiltration into the tubulointerstitium of diabetic mice.

Emerging research suggests C5a may play a role as an epigenetic mediator capable of
modulating the expression of genes involved in cellular senescence pathways [88,89]. C5a
stimulation in renal tubular epithelial cells has been found to upregulate gene expression of
senescence mediators, particularly mediators from the Wnt/β-catenin pathway [88], which
is associated with the progression of AKI to chronic kidney disease, including DKD [90,91].
Moreover, inhibition of C5aR1 with PMX53 attenuates cortical expression of genes involved
in cellular senescence, in addition to reducing markers of the inflammatory senescence-
associated secretory phenotype (SASP) in streptozotocin-induced diabetic mice [89]. Thus,
in addition to the direct effects of C5a/C5aR1 signaling in inflammatory cells in terms of
chemotaxis and the release of chemokines and cytokines, this axis may also exacerbate
renal inflammation and injury through modulating cellular senescence.

These important preclinical findings highlight the potential of targeting the anaphyla-
toxin receptor signaling pathway in the treatment of DKD. Unlike anti-C5 inhibitors, C5a
and C5aR1 antagonists preserve the upstream functions of C3a and C3b as well as the
downstream formation of the MAC, a critical defense against microbial infection. Thus,
targeting complement at this axis may balance the attenuation of excessive inflammation
with the preservation of immune defense functions. However, the potential contribution of
the second receptor for C5a, C5aR2, must be elucidated before the therapeutic potential of
inhibiting the C5a-signaling axis may be realized.

9. C5a-C5aR2 Signaling

Until Ohno et al. discovered C5aR2 in 2000 following the cloning of the c5ar2 gene into
a human immature dendritic cell line [92], C5aR1 was believed to be the only receptor for
C5a. The then orphan receptor was subsequently characterized with genetic sequencing and
transfection studies and found to share significant homology with C5aR1 and other GPCRs,
which inspired the name C5L2—“C5a-like receptor 2” [92]. Over the past two decades,
the receptor has been labeled a scavenging, non-signaling decoy receptor [67,93], an anti-
inflammatory receptor [71,94–98], and more recently a pro-inflammatory receptor [99–104].
The great variety in experimental designs, in addition to the lack of selective C5aR2 ligands,
both agonists and antagonists, has led to great discrepancies in the findings of early
C5aR2 research. Today, the signaling pathways and molecular functions of C5aR2 remain
poorly understood.

C5aR2 is a 7TM GPCR that binds both complement proteins C5a and C5adesArg with
high affinity [70,105,106]. Sharing 37% homology with GPCR C5aR1, C5aR2 is unusual in
that it has not been found to couple G proteins [70,105,107]. Initially, the absence of observed
G protein-coupling was believed to be indicative of a lack of downstream signaling. Recent
advances in GPCR research have revealed that the signaling pathways of these receptors
are far more complex than once thought. GPCRs may engage various G proteins or signal
independently from them [108,109], as seems to be the case with C5aR2. In fact, C5aR2
is one of many unusual GPCRs that preferentially signal through alternative scaffold
proteins [110,111]. C5aR2 recruits β-arrestins [32,112–114], and modulates downstream
ERK1/2 signaling pathways across various cell types, including human monocyte-derived
macrophages (HMDMs) [113], neutrophils [115], and macrophages [116]. Further, C5aR1-
C5aR2 heteromer formation can be induced by C5a stimulation, resulting in the recruitment
of β-arrestins and ERK1/2 signaling [113,117–119]. In this heteromer formation, C5aR2
mediates C5aR1 internalization [114], though the specific trafficking pathways are currently
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unknown. In the kidney, C5aR2 is expressed in the renal tubules [76] and in resident
inflammatory cells [120], though expression in mesangial cells has not been reported.

10. C5aR2 Promotes Inflammation in AKI

The role of C5aR2 in chronic kidney diseases, including DKD, still remains to be eluci-
dated; however, a number of groups have reported the receptor contributes to inflammation
in AKI.

Consistent with systemic complement activation following the induction of hypoxic
injury [78–80,121–123], C5aR2 is upregulated in response to hypoxic conditions in vitro [75].
In order to investigate the potential contribution of C5aR2 to C5a-mediated damage in renal
IRI, Poppelaars et al. generated both C5aR1−/− and C5aR2−/− mice [102]. Genetic ablation
of C5aR2 was associated with significantly reduced levels of the inflammatory cytokines
IL-6, TNF-α, and IL-1β, as well as the chemokines IL-8 and MCP-1. Moreover, knockout
was protective against renal injury in a model of renal IRI, with knockout mice experiencing
decreased acute tubular necrosis as well as reduced blood urea nitrogen levels, a marker
of kidney dysfunction [102]. Interestingly, C5aR2 knockout was more protective against
injury than C5aR1 knockout [102]. Thorenz et al. subsequently confirmed this important
finding by modeling renal IRI in C5aR1−/− and C5aR2−/− mice [103]. While both knock-
out mice were protected against IRI-induced inflammation and demonstrated improved
renal perfusion in comparison to wild-type mice, C5aR2−/− mice showed significantly
attenuated inflammation and fibrosis in comparison to C5aR1−/− mice [103].

In a murine model of UPEC-induced acute pyelonephritis, C5aR2−/− mice were pro-
tected against renal damage, as indicated by decreased renal KIM-1 and pro-inflammatory
cytokines IL-1β and TNFα [120]. Abolition of C5aR2 led to significant reductions in in-
trarenal HMGB1 levels, a marker of cellular damage, reduced bacterial load in the kidney,
and attenuated tubular damage in comparison to wild-type littermates [120]. Moreover,
in macrophages from C5aR2−/− mice lacking C5aR1 but expressing C5aR2, C5a stimula-
tion led to increased levels of HMGB1 and inflammasome-related proteins NLPR3, ASC,
and cleaved caspase-1, in conjunction with increased release cytokines of IL-1β and TNF-
α [120]. These results indicate a role for C5aR2 in the expression and release of HMGB1, as
well as activation of the multi-protein NLRP3 inflammasome in macrophages, which may
contribute to renal inflammation independent of C5aR1 signaling.

At present, C5aR2 has never been studied in DKD. The few papers available in the
current literature suggest a pro-inflammatory role for the receptor in AKI. It is important to
note that individuals with diabetes are especially susceptible to AKI, and accumulating
evidence suggests that AKI can progress to chronic kidney disease and DKD, as reviewed
elsewhere [124,125]. Thus, since C5aR2 mediates the pathogenesis of AKI, it may also
promote the progression of acute injury to chronic disease, though this remains to be
fully elucidated.

11. Dysregulated C5aR2 Is Associated with Impaired Immunometabolism

Interestingly, a number of human studies have indicated that C5aR2 may contribute to
dysregulated metabolism and chronic inflammation. These findings may provide an insight
into the receptor’s potential role in DKD. A genome-wide association study identified the
19q13 region—the location of the c5ar2 gene—as a putative risk area for the development
of immunometabolic disorders by Marcil and colleagues in 2006 [126]. Subsequently, a
single nucleotide polymorphism (SNP) S3231 in c5ar2 has been reported in individuals
with familial combined hyperlipemia, a disease characterized by increased cholesterol and
triglycerides in the blood and insulin resistance [126]. The same SNP was later found to be
associated with the loss of C5aR2 internalization, trafficking, and recycling [127]. A separate
SNP (C698T) in c5ar2 has been associated with the development of both coronary artery
disease and T2DM in Chinese Han as well as Saudi populations [128–131]. The fact that
c5ar2 SNPs are associated with metabolic dysregulation, including cardiovascular disease
and diabetes, may indicate a role for the receptor in diabetic complications, including DKD.
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C5aR2 has also been reported to be strongly expressed on human plaques in the chronic
inflammatory condition atherosclerosis [132], a common comorbidity of diabetes. C5aR2
was predominantly expressed on infiltrating macrophages and positively correlated with
plaque severity, suggesting the receptor promotes the chronic inflammatory milieu through
modulating macrophage chemotaxis and cell arrest [132].

12. Therapeutic Targeting of C5 and the C5a-Signalling Axis
12.1. Eculizumab and C5-Targeted Therapeutics

Genome-wide association studies (GWAS) at the turn of the 21st century identified
polymorphisms in the gene encoding complement factor H, a regulator of the alternative
pathway, as a major risk factor in age-related macular degeneration [133,134]. This finding
prompted intense interest in the potential contribution of complement to diseases of the
vasculature. While the structure and function of the eye share few similarities with those of
the kidney, the intricacy of the microvasculature predisposes both organs to complement-
mediated attack [135].

The emergence of the anti-C5 monoclonal antibody Eculizumab marked the develop-
ment of the first complement-targeted drug approved for clinical use [136,137]. Initially
approved by the Food and Drug Administration in 2007 for the treatment of the rare
blood disorder paroxysmal nocturnal hemoglobinuria (PNH) [135,138], and subsequently
approved in 2011 to treat the rare kidney disease atypical hemolytic uremia (aHUS) [138],
Eculizumab has been life-changing for patients. The great success of Eculizumab has
prompted further trials in other diseases, including C3 glomerulopathy [139,140], IgA
nephropathy [141], and renal transplant [142–144]. Antagonists directed against other
complement proteins, including serine proteases and GPCRs, are in development.

Given the kidney’s unique susceptibility to complement attack, considerable research
is being undertaken to elucidate the potential efficacy of complement inhibitors in the
setting of various kidney pathologies, including renal transplant [145–148], lupus nephri-
tis [149,150], IgA nephropathy [141,151], immune complex-mediated membranoprolifera-
tive glomerulonephritis [152,153], and C3 glomerulopathies [139,140,154,155]. The potential
therapeutic benefit of targeting complement in chronic kidney pathologies, such as DKD,
remains to be further explored.

Characteristic of all treatments that disrupt the immune system, targeting complement
requires a careful balance between suppression of pathogenic activity and preservation
of immune defense to be achieved [156]. Administration of Eculizumab, for example,
is accompanied by an increased risk of meningococcal infection due to the downstream
function of the MAC being abolished [157,158]. Prophylactic antibiotic use in conjunction
with vaccination has reduced the incidence of infection in patients treated with Eculizumab
as well as the anti-C5 monoclonals Ravulizumab [159,160] and Crovalimab [161]. The
long-term impact of prolonged antibiotic use in these patients, however, requires further
investigation. Furthermore, the necessity of high doses (Eculizumab 1200 mg) and biweekly
intravenous administration [135] contributes to the treatment burden for patients, and the
high cost of Eculizumab, approximately US$500,000 annually per patient, significantly
restricts availability. The drawbacks associated with targeting C5 have prompted great
interest in designing alternative complement inhibitors that do not promote an immuno-
compromised state and do not rely on intravenous administration.

12.2. Inhibition of C5aRs in Preclinical Models

A number of orally active compounds against C5aR1, both peptides and small molecule
drugs, are in varying stages of development, as outlined in Figure 4. Targeting at the C5a-
signaling axis may rectify the adverse consequences of targeting C5 directly, as inhibition
of C5a or its receptors preserves the downstream MAC in addition to the upstream actions
of C3a and C3b. PMX53, an orally active peptide antagonist of C5aR1, has been trialed for
safety in human studies [162], and has previously been tested in clinical trials in the context
of rheumatoid arthritis [163]. Our laboratory has previously highlighted the protective
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benefit of inhibiting the C5a/C5aR1 signaling axis in a murine model of T1DM using
PMX53 (Ac-Phe-[Orn-Pro-cha-Trp-Arg]) [44]. Administration of this orally active peptide
significantly reduced albuminuria and oxidative stress in diabetic mice and decreased the
severity of renal structural injury, including both glomerulosclerosis and mesangial matrix
expansion [44]. PMX205 (hydrocinnamate-[Orn-Pro-dCha-Trp-Arg]) is a lipophilic ana-
logue of PMX53 that demonstrates enhanced efficacy and stability in vivo in comparison
to its parent molecule PMX53 [164,165], making the drug an ideal candidate for human
disease. Both PMX53 and PMX205 have completed Phase I clinical trials, demonstrating
safety in healthy volunteers [166,167]. While peptide-based drugs are generally associated
with poor oral bioavailability and a short half-life in vivo due to enzymatic degradation, Xu
and colleagues recently developed a technique to overcome these limitations and improve
the function of PMX205 in vivo [168]. Through entrapping PMX205 within a biodegradable
polymer-based nanoparticle, the group was able to increase the half-life twenty-fold in vivo
in mice. Encapsulation in the nanoparticle did not interfere with the ability of PMX205 to
inhibit C5a-induced ERK1/2 activity, and its functional activity was comparable to that
of free PMX205 [168]. The establishment of this methodology promises to propel PMX
compounds from early-phase clinical trials into the clinic. Moreover, such a technique may
be used to improve the bioavailability of other peptide-based therapeutics.
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Figure 4. Complement inhibitors targeting the terminal pathway in development. The great success
of the anti-C5 monoclonal antibody Eculizumab has prompted a renaissance in the development
of complement therapeutics. In addition to monoclonals, a number of small molecules, peptides,
biologics, and nucleic-acid-based aptamer drugs are in development for varied clinical applications.
Despite the advances in developing drugs against C5, C5a, and C5aR1, there has been great difficulty
in producing selective C5aR2 antagonists.

JPE-1375 (Hoo-Phe-Orn-Pro-hle-Pff-Phe-NH2), a PMX53 derivative created through
a hydrophobic substitution at the C-terminus of PMX53, is another well-characterized
C5aR1 antagonist [169]. In a preclinical model of UUO-induced renal tubulointerstitial
fibrosis, inhibition of C5aR1 with JPE-1375 was associated with a marked reduction in
mRNA expression of pro-fibrotic mediators such as PDGF and TGF-β in the kidneys, as
well as reduced collagen deposition [170]. These findings emphasize the significant benefit
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achieved through inhibiting C5a-signaling to reduce the development of fibrosis, a hallmark
of DKD.

The promising results observed with peptide-based C5aR1 inhibitors in preclinical
disease models, in addition to the safety and tolerability of PMX53 and PMX205 validated
in Phase I trials, highlight the potential to advance these inhibitors into clinical practice
for the treatment of various inflammatory conditions, perhaps including DKD. Moreover,
the clinical approval and use of peptide-based drugs such as semaglutide, a glucagon-
like peptide (GLP) analog for the treatment of T2DM, has generated major advances in
large-scale peptide manufacturing to meet global demands [171]. As the limitations that
once hampered the clinical translatability of peptide-based therapeutics continue to be
overcome, the promise of these selective, stable, and low molecular weight compounds can
be fully realized.

Results have recently been published for the open-label pilot trial investigating the
orally active small molecule avacopan in the treatment of IgA nephropathy (IgAN), an
antibody-mediated chronic renal condition associated with glomerulonephritis [172]. The
majority of patients in the small cohort had reduced proteinuria following avacopan
treatment, in addition to reduced MCP-1, a marker of inflammation. Moreover, avacopan
was well tolerated and safe. While a randomized controlled study is required to assess
avacopan use long-term, these promising results further underscore the clinical benefit
of targeting C5a-signaling through C5aR1 inhibition in chronic kidney conditions such
as DKD.

The contribution of C5aR2 to kidney disease requires further investigation, and is
complicated by the controversies surrounding the receptor, including its ligands, cellular
localization, signaling, and function, as reviewed elsewhere [70]. Furthermore, the lack of
robust C5aR2-specific ligands, both agonists and antagonists, is a major barrier to investigat-
ing its potential therapeutic benefit in attenuating C5a-mediated inflammation. Fortunately,
advances are being made in identifying C5aR2-specific ligands to aid investigation into the
receptor’s function in health and disease. Two functionally selective C5aR2 peptide-based
ligands, the partial agonists P32 and P59, were identified by Croker and colleagues [173].
Given the potential that C5aR2 mediates an anti-inflammatory role in some disease states,
administration of a C5aR2 agonist may reduce C5a-mediated inflammation, though this
requires validation in vivo. It is critical that the elusive role of C5aR2 in chronic renal
conditions, including DKD, be fully elucidated in order to ascertain if there is a therapeutic
benefit to targeting both C5a receptors in chronic inflammatory conditions.

13. Conclusions

Ten percent of global healthcare expenditure is spent on addressing the complica-
tions of diabetes [14], and today, DKD is the primary cause of end-stage renal disease
(ESRD) [4,10]. The rapidly increasing prevalence of diabetes and the concomitant increase
in diabetic complications such as DKD place diabetes at the forefront of 21st century chal-
lenges in healthcare. The unmet therapeutic need associated with conventional treatments
highlights the urgency of novel biomarkers for enhanced diagnosis and early intervention,
in addition to new therapeutic targets. Promising preclinical evidence indicates that target-
ing the complement system may be protective in DKD; however, a rigorous characterization
of how complement expression and function contribute to disease pathogenesis is necessary
to fully realize the potential therapeutic benefit of complement inhibition.
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