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Abstract: Two groups of facts have been established in previous drug development studies of
the non-benzodiazepine anxiolytic fabomotizole. First, fabomotizole prevents stress-induced de-
crease in binding ability of the GABAA receptor’s benzodiazepine site. Second, fabomotizole is
a Sigma1R chaperone agonist, and exposure to Sigma1R antagonists blocks its anxiolytic effect.
To prove our main hypothesis of Sigma1R involvement in GABAA receptor-dependent pharma-
cological effects, we performed a series of experiments on BALB/c and ICR mice using Sigma1R
ligands to study anxiolytic effects of benzodiazepine tranquilizers diazepam (1 mg/kg i.p.) and
phenazepam (0.1 mg/kg i.p.) in the elevated plus maze test, the anticonvulsant effects of diazepam
(1 mg/kg i.p.) in the pentylenetetrazole-induced seizure model, and the hypnotic effects of pento-
barbital (50 mg/kg i.p.). Sigma1R antagonists BD-1047 (1, 10, and 20 mg/kg i.p.), NE-100 (1 and
3 mg/kg i.p.), and Sigma1R agonist PRE-084 (1, 5, and 20 mg/kg i.p.) were used in the experi-
ments. Sigma1R antagonists have been found to attenuate while Sigma1R agonists can enhance
GABAARs-dependent pharmacological effects.

Keywords: GABAA receptors; benzodiazepines; barbiturates; Sigma1R chaperone; elevated plus
maze; pentylenetetrazole-induced seizures; sleep duration; BD-1047; NE-100; PRE-084

1. Introduction

The evidence that the effect of the non-benzodiazepine anxiolytic fabomotizole de-
pends on the interaction with Sigma1R [1] became a key stimulus for setting up the study
of GABAA receptor’s (GABAAR) interplay with Sigma1R chaperone.

The rationale for the work was also based on previously established neurochemical
data, which determined the direction of the search for fabomotizole. GABAARs are the ma-
jor mammalian CNS receptors mediating rapid inhibitory neurotransmission. Structurally,
they are pentameric ligand-linked chloride channels activated by the endogenous agonist
γ-aminobutyric acid (GABA) [2]. In 1994, S. Deutsch et al. summarized the evidence of
a decrease in the binding capacity of the benzodiazepine site of GABAARs upon stress
exposure [3]. We confirmed these results. It was found that emotional stress causes a
decrease in 3H-labeled benzodiazepine binding in open-field (OF) stress-sensitive BALB/c
mice [4]. In OF stress-resistant C57Bl/6 mice, no changes were registered [5–7]. More
potent predator exposure stress caused a decrease in specific benzodiazepine binding in
BALB/c and C57Bl/6 mice as well [7,8]. Similar data were obtained for Maudsley reactive
(MR) and Maudsley nonreactive (MNRA) rats [9].
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Keeping in mind that anxiolytic effect depends on the binding capacity of the GABAAR
allosteric benzodiazepine site, we focused on the repeatedly confirmed phenomenon of
stress-induced specific benzodiazepine binding decrease in the search for a new anxi-
olytic [10,11]. In other words, we believed that a substance preventing the stress-induced
drop in specific benzodiazepine binding would possess anxiolytic effects.

Screening studies allowed us to select the 5-ethoxy-2-[2-(morpholino)-ethylthio]
benzimidazole dihydrochloride compound (fabomotizole), which prevented stress-induced
decrease in specific benzodiazepine binding [8,12]. Anxiolytic effect of fabomotizole in
standard tests was exhibited in a wide range of doses [5,8]. It did not cause sedation,
myorelaxation, or other undesirable effects of benzodiazepines, which was confirmed both
in the experiment and clinically [5,13,14]. Fabomotizole was registered in Russia in 2006 as
anxiolytic Afobazole.

Radioligand studies of fabomotizole interaction with the GABAARs’ benzodiazepine
site revealed no ligand properties [15]. To elucidate the primary interaction of fabomotizole,
we performed radioligand assays on a number of targets that theoretically mediate the
anxiolytic effect (Eurofins Scientific). Fabomotizole was found to interact with chaperone
Sigma1R (Ki = 5.9 µM), regulatory sites of NRH: quinone reductase 2 (NQO2, MT3 recep-
tor Ki = 0.97 µM) and monoamine oxidase A (MAO-A Ki = 3.6 µM), and MT1 receptor
(Ki = 16 µM) [15]. Among the metabolites of fabomotizole, compound 2-[2-(3-oxomorpholin-
4-il)-ethylthio]-5-ethoxybenzimidazole hydrochloride (M-11) was identified as the main
one [16]. M-11 has ligand properties only to the MT3 receptor, and its anxiolytic effect was
significantly weaker than that of fabomotizole [17].

Thus, the ability of fabomotizole to prevent stress-induced drop in specific benzo-
diazepine binding, and its interaction with chaperone Sigma1R, defining the anxiolytic
properties, were established. These results determined the task of investigating the de-
pendence of drugs effects mediated through GABAARs on the interaction of GABAARs
with Sigma1R.

In the present work, using Sigma1R antagonists and agonists, we studied anxiolytic,
anticonvulsant, and hypnotic effects.

2. Results
2.1. Anxiolytic Effect of Benzodiazepines

Anxiolytic effects of diazepam and phenazepam were reproduced on BALB/c mice in
the elevated plus maze test (EPM). Diazepam at a dose of 1.0 mg/kg and phenazepam at a
dose of 0.1 mg/kg administered 30 min before the animals’ exposure to the EPM statistically
significantly increased number of entries and time spent in the open arms (Figures 1 and 2,
Tables S2 and S3).

The Sigma1R antagonist BD-1047 at a dose of 1.0 mg/kg injected 30 min before
diazepam interfered with the anxiolytic effect of the drug by reducing the % number of
entries into the open arms (%N open p < 0.05) and time spent in the open arms (T open
p < 0.01; %T open p < 0.01) (Figure 1, Table S2). The Sigma1R antagonist NE-100 at a dose
of 1.0 mg/kg administered 30 min before diazepam did not influence its anxiolytic effect.
However, when the dose was increased to 3.0 mg/kg, NE-100 reduced the time spent in
the open arms (T open p < 0.05; %T open p < 0.05) (Figure 1, Table S2). Administration of
BD-1047 prior to diazepam resulted in a peculiar feature of increased number of entries into
closed arms (N closed) compared to NE-100 (p < 0.01) (Figure S1, Table S2). Pretreatment
with the Sigma1R agonist PRE-084 at a dose of 1.0 mg/kg had no influence on diazepam
effect in the EPM (Table S4).

Sigma1R antagonists BD-1047 at a dose of 1.0 mg/kg and NE-100 at a dose of
3.0 mg/kg, administered 30 min before phenazepam, inhibited its anxiolytic effect by
reducing the number of entries into the open arms (N open p < 0.05, p < 0.001; %N open
p < 0.05, p < 0.001) and time spent in the open arms (T open p < 0.05, p < 0.001; %T open
p < 0.05, p < 0.001) (Figure 2, Table S3), consequently decreasing the total entries parameter
(N total p < 0.05, p < 0.01) (Figure S2, Table S3).
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Figure 1. Influence of Sigma1R antagonists BD-1047 and NE-100 on the anxiolytic effect of diazepam
in the elevated plus maze test. (a) The number of entries into the open arm (N open); (b) percentage
of the open-arm entries (%N open); (c) time in seconds spent in the open arm (T open); (d) percentage
of time spent in the open arm (%T open). Vehicle 2 and diazepam (1.0 mg/kg) were injected i.p.
30 min prior to the EPM exposition. Vehicle 1, selective Sigma1R antagonists BD-1047 (1.0 mg/kg),
and NE-100 (1.0 and 3.0 mg/kg) were injected i.p. 30 min prior to diazepam. Data are presented as
median with interquartile range. Statistically significant differences according to the Kruskal–Wallis
test and Dunn’s multiple comparison test: ns—not significant; * p < 0.05; ** p < 0.01; *** p < 0.001.
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Figure 2. Influence of Sigma1R antagonists BD-1047 and NE-100 on the anxiolytic effect of
phenazepam in the elevated plus maze test. (a) The number of entries into the open arm (N open);
(b) percentage of the open-arm entries (%N open); (c) time in seconds spent in the open arm (T open);
(d) percentage of time spent in the open arm (%T open). Vehicle 2 and phenazepam (0.1 mg/kg) were
injected i.p. 30 min prior to the EPM exposition. Vehicle 1, selective Sigma1R antagonists BD-1047
(1.0 mg/kg), and NE-100 (3.0 mg/kg) were injected i.p. 30 min prior to phenazepam. Data are
presented as median with interquartile range. Statistically significant differences according to the
Kruskal–Wallis test and Dunn’s multiple comparison test: * p < 0.05; *** p < 0.001.
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Administration of vehicle before the EPM exposure had no effect on the behavior of
BALB/c mice except for a slight increase in the % of time spent in the open arms (%T open;
p = 0.048) compared with intact animals. The Sigma1R antagonists BD-1047 at a dose of
1.0 mg/kg and NE-100 at doses of 1.0 and 3.0 mg/kg, injected 60 min before testing, had
no effect on mouse behavior in the EPM (Table S1).

To exclude the association of Sigma1R antagonists’ effects on the anxiolytic action
of diazepam and phenazepam with the affinity to the benzodiazepine site of GABAARs,
the competitive displacement of [N-methyl-3H] flunitrazepam in P2 fractions of BALB/c
mouse brain homogenates was evaluated. BD-1047 and NE-100 were found to have no
affinity to the benzodiazepine site of GABAAR (Figure S3).

2.2. Anticonvulsant Effect of Benzodiazepines

Clonic jerks, generalized clonic seizures, generalized tonic seizures, and their time of
onset were recorded during the experiment (Figure 3).

Figure 3. Drug administration design in a model of pentylenetetrazole-induced seizures in mice. The
i.p. injection of BD-1047 (1, 10 and 20 mg/kg), PRE-084 (5 and 20 mg/kg), or their vehicle marked the
start of the experiment. Diazepam (1 mg/kg i.p.) was administered 60 min after the first injection. A
1% PTZ solution was administered i.v. 90 min after the first injection.

Intravenous injections of pentylenetetrazole (PTZ) to control groups of mice induced
clonic jerks and generalized clonic seizures at doses ranging from 35 to 52 mg/kg and
generalized tonic seizures at doses of 68 and 100 mg/kg (Figures 4 and 5, Tables S5 and
S6). In control experiments, BD-1047 at doses of 1, 10, and 20 mg/kg had no effect on
PTZ-induced seizure thresholds (Figures 4 and S4, Table S5). Diazepam administered at a
1 mg/kg dose 30 min before PTZ increased the clonic jerk threshold 2.9-fold and generalized
clonic and tonic seizures 1.8-fold. Pre-injected BD-1047 (1–20 mg/kg) attenuated the effect
of diazepam in a dose-dependent manner, statistically significantly reducing the PTZ dose
inducing generalized clonic and tonic seizures by 21% and 26% at the 20 mg/kg dose
(Figure 4, Table S5). The findings indicate the ability of a 20 mg/kg BD-1047 dose to inhibit
the anticonvulsant effect of diazepam.

PRE-084 showed no independent effect on PTZ-induced seizure activity (Figure S5,
Table S6). Pretreatment of mice with 5 mg/kg PRE-084 statistically significantly enhanced
the anticonvulsant effect of diazepam at a 1 mg/kg dose, increasing all seizure reaction
thresholds (Figure 5, Table S6). Raising the dose of PRE-084 to 20 mg/kg increased the
anticonvulsant effect of diazepam only on the thresholds of clonic jerks and generalized
tonic seizures (Figure 5a,c, Table S6) but not generalized clonic seizures (Figure 5b, Table S6).
PRE-084 increased the anticonvulsant effect of diazepam in a dose-dependent manner
when registering the threshold of generalized tonic seizures (Figure 5c, Table S6). The
obtained data indicate the ability of high doses of Sigma 1R agonist PRE-084 to enhance the
anticonvulsant effect of diazepam.
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Figure 4. Effect of the selective Sigma1R antagonist BD-1047 on the anticonvulsant activity of
diazepam in the pentylenetetrazole-induced seizure model. (a) Clonic jerks; (b) generalized clonic
seizures; (c) generalized tonic seizures. The dotted line represents the threshold for PTZ-induced
seizures. The upward arrow indicates that the compound increases the seizure threshold and has
anticonvulsant effects. BD-1047 (1, 10, and 20 mg/kg) was injected i.p. 90 min before PTZ infusion.
Diazepam (1 mg/kg) was administered i.p. 30 min before the PTZ infusion. Data are presented as
mean ± S.E.M. Statistically significant differences vs. diazepam (1 mg/kg) according to one-way
ANOVA with Dunnett post-hoc test: ** p < 0.01; **** p < 0.0001.
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Figure 5. Effect of the selective Sigma1R agonist PRE-084 on the anticonvulsant activity of diazepam
in the pentylenetetrazole-induced seizure model. (a) Clonic jerks; (b) generalized clonic seizures;
(c) generalized tonic seizures. The dotted line represents the threshold for PTZ-induced seizures. The
upward arrow indicates that the compound increases the seizure threshold and has anticonvulsant
effects. PRE-084 (5 and 20 mg/kg) was administered i.p. 90 min before the PTZ infusion. Diazepam
(1 mg/kg) was administered i.p. 30 min before the PTZ infusion. Data are presented as mean ± S.E.M.
Statistically significant differences vs. diazepam (1 mg/kg) according to one-way ANOVA with
Dunnett post-hoc test: * p < 0.05; ** p < 0.01; **** p < 0.0001.
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2.3. Hypnotic Effect of Pentobarbital

To evaluate the influence of Sigma1R ligands on the pharmacological effects depen-
dent on the barbiturate binding site of GABAARs, an experiment was performed on a
pentobarbital-induced sleep model in mice (Figure 6).

Figure 6. Drug administration design in a pentobarbital-induced sleep model in mice. The i.p.
administration of BD-1047 (1 and 10 mg/kg), PRE-084 (1 and 5 mg/kg), diazepam (1 mg/kg), or their
vehicles marked the start of the experiment. Pentobarbital was injected i.p. at a dose of 50 mg/kg
60 min after the first injection. After pentobarbital administration, the time to fall asleep and the
duration of sleep were recorded. The time to fall asleep was registered by the loss of the righting reflex,
and sleep duration was recorded from the moment of falling asleep to the moment of spontaneous
righting reflex recovery.

BD-1047 at a dose of 1 mg/kg prevented the hypnotic effect of pentobarbital by
statistically significantly increasing the falling asleep time (Figure 7a, Table S7) and reducing
pentobarbital-induced sleep duration (Figure 7b, Table S7). At a dose of 10 mg/kg, BD-1047
statistically significantly reduced only pentobarbital-induced sleep duration (Figure 7b,
Table S7).

Figure 7. Effect of the selective Sigma 1R antagonist BD-1047 on pentobarbital-induced sleep.
(a) Falling asleep time; (b) sleep duration. BD-1047 (1 and 10 mg/kg) was administered i.p. 60 min
before pentobarbital administration. Pentobarbital was administered i.p. at a dose of 50 mg/kg. Data
are presented as mean ± S.E.M. Statistically significant differences vs. control group according to
one-way ANOVA with Dunnett post-hoc test: ** p < 0.01; *** p < 0.001.
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The Sigma1R agonist PRE-084 at a dose of 1 mg/kg enhanced the effects of pentobarbi-
tal by statistically significantly increasing pentobarbital-induced sleep duration (Figure 8b)
but not changing the falling asleep time (Figure 8a, Table S7). Increasing the dose of PRE-
084 to 5 mg/kg revealed a statistically significant decrease in falling asleep time (Figure 8a,
Table S7) and an increase in pentobarbital-induced sleep duration (Figure 8b).

Figure 8. Effect of the selective Sigma 1R agonist PRE-084 on pentobarbital-induced sleep. (a) Falling
asleep time; (b) sleep duration. PRE-084 (1 and 5 mg/kg) was administered i.p. 60 min before
pentobarbital administration. Pentobarbital was administered i.p. at a dose of 50 mg/kg. Data
are presented as mean ± S.E.M. Statistically significant differences vs. control group according to
one-way ANOVA with Dunnett post-hoc test: * p < 0.05; *** p < 0.001; **** p < 0.0001.

The results indicate opposite effects of Sigma1R antagonists and agonists on the
hypnotic properties of pentobarbital.

3. Discussion

GABAAR is a heteropentameric ligand-gated ion channel of the Cys-loop family, re-
sponsible for incoming Cl− current and subsequent inhibition of neuronal excitability
through hyperpolarization and decreased membrane resistivity [2,18]. To date, nineteen
subunits of GABAARs have been described: α1–6, β1–3, γ1–3, δ, ε, θ, π, and ρ1–3. The
GABAAR α1β2γ2 subtype is the most common in the CNS (∼60%). Less common are
α2β3γ2 (∼15–20%) and α3βnγ2 (∼10–15%). Receptors containing α4-, α5-, and α6- sub-
units, as well as β1-, γ1–3, δ-, π-, and θ-subunits, form a minor population [2,19]. De-
pending on their subunit composition, cellular localization, and expression in brain struc-
tures, GABAARs have different biophysical properties and allosteric binding sites formed
by subunit interfaces, which determine the assignment of GABAARs to a particular sub-
type [20–23]. The ligands of these sites induce conformational changes in the corresponding
subunits and modulate the activity of GABAARs, affecting the channel opening both posi-
tively (barbiturates, benzodiazepines, ethanol, etomidate, glutethimide, anesthetics, and
some neurosteroids with a reduced 3α-hydroxy A-ring) and negatively (pregnenolone
sulfate and Zn2+). Several positive allosteric modulators (PAMs) of GABAARs are widely
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used to treat anxiety, insomnia, and seizures including status epilepticus. For a review,
see [2,11,19,24–26].

PTZ was shown to act as a GABAAR competitive antagonist through the binding with
the picrotoxin site, decreasing the frequency of Cl− channel opening rather than an open-
channel state duration [27,28]. We tested the effect of selective Sigma1R agonist PRE-084
and antagonist BD-1047 in a mouse PTZ-induced seizure model to prove that Sigma1R is
engaged in the regulation of anti-convulsive activity of diazepam. Single administration of
PTZ at a submaximal dose is generally used to model epileptic seizures in rodents, which
is believed to reflect myoclonic seizures in humans [29].

The main full-length isoform of the mammalian Sigma1R chaperone is constituted
by 223 amino acid residues, which form the transmembrane and chaperone domains, as
well as the ligand-binding site [30–34]. The amino acid sequence of mouse Sigma1R is 90%
identical to that of humans [35,36]. In the CNS, Sigma1R is expressed in both neurons and
glial cells [37], where it is predominantly localized in mitochondria-associated membranes
(MAMs) of endoplasmic reticulum (ER) [34,38–42]. Sigma1R is capable of interacting with ER
and cytoplasmic membrane client proteins and regulating their functional activity [43–46].

In the present study, the GABAAR-dependent anxiolytic and anticonvulsant effects of
benzodiazepines (diazepam, phenazepam) and the hypnotic effect of pentobarbital were
attenuated by Sigma1R ligands with antagonistic activity.

The negative influence of Sigma1R antagonists on the anxiolytic-like effect of ben-
zodiazepines is consistent with the anxiety-like behavior of Sigmar1−/− mice in standard
tests [47]. In our study, the Sigma1R agonist PRE-084 (1 mg/kg) did not alter the anxiolytic-
like effect of diazepam, but in in vivo experiments, compounds with Sigma1R agonist
properties can interfere with anxiety-like behavior [48–52].

The attenuation of diazepam anticonvulsant action by Sigma1R antagonist BD-1047
established in our study is consistent with the results of E. Vavers et al. [53], who showed
a decrease in the threshold of seizures induced by PTZ [28] and GABAARs antagonist
bicuculine [54] in mice with Sigmar1 gene inactivation. These effects of PTZ and bicuculine
were independent of the expression levels of α4, α5, β3, γ2, and δGABAAR subunits, which
did not change in Sigmar1−/− mice [53,55]. Similar to [56], our study showed that Sigma1R
antagonists had no effect on the pro-convulsive activity of PTZ at doses less than 20 mg/kg.
It is important to note that the independent pro-convulsive activity of NE-100 detected at
doses above 25 mg/kg was attenuated by Sigmar1 gene inactivation [53,56]. The effects
of Sigma1R antagonists on GABAAR-dependent effects were recorded not only in vivo
but also in vitro. Thus, NE-100 increased synaptosomal transporter-mediated [3H]-GABA
uptake but enhanced the negative effect of flumazenil, a benzodiazepine GABAAR site
antagonist, in the process. Moreover, NE-100 reduced stimulated transporter-mediated
and exocytotic release of [3H]-GABA from nerve terminals [57]. The above data together
with the lack of affinity of BD-1047 and NE-100 to the benzodiazepine site of GABAARs
and competition of NE-100 for [3H]-muscimol binding site [53] indicate the ability of
Sigma1R antagonists to prevent pharmacological effects of PAMs of GABAARs by changing
functional activity of Sigma1R at relatively low doses.

In our study, PRE-084 at doses of 5 and 20 mg/kg increased the anticonvulsant effect
of diazepam. It also shortened the falling asleep time (5 mg/kg PRE-084) and prolonged
pentobarbital-induced sleep duration (1 and 5 mg/kg PRE-084). Similarly, prior single
administration of the non-selective Sigma1R ligand opipramol, which has anxiolytic proper-
ties [58], also increased the latency of the PTZ-induced clonic seizures [59]. The data on the
attenuation of seizures by Sigma1R ligands with agonist properties [60] are consistent with
the results obtained in the anhedonia modeling with the proconvulsive GABAAR antagonist
picrotoxin. Only fluvoxamine and S-(+)-fluoxetine, high-affinity Sigma1R ligands with ago-
nist properties [61,62], were shown to attenuate picrotoxin-induced anhedonia [63], unlike
antidepressants with lower affinity for Sigma1R [64]. Pre-administration of Sigma1R antag-
onist BD-1047 prevented this effect of fluvoxamine. However, the anti-anhedonic effect of
paroxetine interacting with Sigma1R in the micromolar concentration range was manifested
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in this experimental model only when administered together with the selective Sigma1R
agonist (+)-SKF-10.047 [64]. In PTZ-induced seizures and kainic-acid-induced status epilep-
ticus models, compounds with agonist activity to Sigma1R (SKF-10.047, dextromethorphan,
and carbetapentane) and Sigma1R positive modulators (SKF83959, SOMCL-668, and E1R)
showed anticonvulsant properties. The effects of Sigma1R positive modulators were elimi-
nated by prior administration of BD-1047 or NE-100 [56,65,66]. The opposite influence of
Sigma1R antagonists and agonists on the effects of PAMs of GABAAR found in our work
is consistent with the study results where PRE-084 attenuated NE-100-induced seizures
in mice [56]. The effects of Sigma1R ligands and modulators in various seizure models
are discussed in the review [67]. Thus, most experimental data point to attenuation of
seizures by compounds with Sigma1R agonist activity. However, in Zebrafish, the scn1a
mutant model of Dravet syndrome antagonistic ligand regulation of Sigma1R attenuates
epileptiform behavior [68]. Seizure disorders in Dravet syndrome mouse models caused
by mutations in the Scn1a gene are accompanied by disturbances in GABAergic firing in
hippocampal neurons [69], which may also indicate attenuation of epileptiform behavior
due to Sigma1R-dependent modulation of GABAARs activity.

In our study, the Sigma1R antagonist BD-1047 attenuated the hypnotic effect of pen-
tobarbital. The current literature does not provide sufficient data on the relationship of
Sigma1R with sleep regulation and the effects of barbiturates. However, orexin-system-
mediated/controlled sleep–wake cycle effects may be dependent on Sigma1R [70,71].
The role of chaperone-dependent reduction of ER stress in sleep normalization is also
known [72].

Based on the data on the relationship between the subunit composition of GABAARs
and the effects mediated by them, we might predict which subtypes of GABAARs could be
involved in the regulatory effects of Sigma1R. Diazepam binds with the benzodiazepine
site of GABAARs at the α+/γ2– interfaces. Synaptic subtypes of GABAARs that mediate
the sedative (α1βγ2) [73], anticonvulsant (α1-containing GABAARs) [74], hypnotic (α2-,
α3-, or α5-containing GABAARs) [19] and anxiolytic (α2βγ2 as well as α2/α3-containing
GABAARs) [75] effects were shown to be the main targets of diazepam. Pentobarbital
predominantly allosterically modulates α4β2γ2, α4β2δ [76], and α1β3δ [77] GABAARs
subtypes. Sigma1R-mediated effects may also depend on the interactions with extrasynaptic
GABAARs subtypes, predominantly represented by α4–6, β2/3, and δ subunits [21,78–80].

However, given the opposite influence of Sigma1R antagonists and agonists on the
effects of GABAAR PAMs interacting with different GABAAR binding sites, we cannot
rule out other Sigma1R-dependent mechanisms of GABAAR regulation modulating the
functional activity of the latter in general. Possible mechanisms of Sigma1R chaperone
influence on GABAAR-dependent effects can be discussed based on the knowledge of
Sigma1R physiological properties.

First, Sigma1R-dependent influence on the effects of GABAAR PAMs may be mediated
by chaperone properties toward cytoplasmic membrane proteins involved in the regulation
of anxiety and seizures [44]. Under misfolded proteins’ accumulation conditions (ER stress)
or ligand activation, Sigma1R is capable of intracellular translocation within lipid domains,
including the plasma membrane region [12,38,81,82]. On the other hand, antagonistic
action on the chaperone is able to reduce Sigma1R levels in the cell surface membrane
and the expression of α and β subunits of GABAARs in vivo [83]. Examples of such target
proteins of the chaperone are cannabinoid (CB1R) [67,84–86] and NMDA glutamate (GluN1,
GluN2) receptors [87–91], ligands of which inhibit anxiolytic effects of benzodiazepine
tranquilizers [92,93]. To date, no data on protein–protein interactions of Sigma1R with
GABAARs have been found in the available literature. Clarification of these issues requires
further investigation.

Second, it is possible that the effects of PAMs of GABAARs are dependent on the disso-
ciation of activated Sigma1R from the main chaperone ER BiP (GRP78, HSPA5) [32,38,46],
which contributes to the increased activity of both chaperones [32,38,94–96], enhanced pro-
tein folding [43,97], and regulation of ER stress sensor IRE1α, which triggers the unfolded



Int. J. Mol. Sci. 2023, 24, 9580 12 of 22

protein response (UPR) signaling [39,42,98]. This assumption is supported by data on the
interaction of the BiP chaperone with GABAARs subunits [99–102] and the enhancement of
their folding and cell trafficking properties [103–105]. According to [106] the anticonvulsant
drug valproate [107,108] is able to enhance BiP expression without activating ER stress.

Third, Sigma1R plays an important role in the maintenance of Ca2+ cell homeosta-
sis [38,109–111]. Interestingly, Sigma1R activation is also accompanied by PKC translocation
to the membrane vicinity [112], which may contribute to the phosphorylation of GABAARs
and enhance the potentiating effect of PAMs on GABAARs [113]. The influence of Sigma1R
antagonists on the effects of PAMs of GABAARs detected in our study is consistent with the
down-regulation of protein kinase C (PKC) in Sigmar1−/− mice [114]. E. Sallard et al. [20]
discuss the possibility of activation and inhibition of GABAARs under conditions of Ca2+

release from the ER at low and high concentrations, respectively [115,116]. A similar regu-
lation of GABAARs may depend on the activated Sigma1R ability to increase intracellular
calcium, eliminated by chaperone antagonists [117–119]. The contribution of Sigma1R-
dependent regulation of L- and N-type voltage-gated Ca2+ channels [120] to the effects
mediated by GABAARs [121,122] is not excluded.

Fourth, it is plausible that chaperone Sigma1R contribution to the regulation of
GABAAR-dependent effects is mediated by Sigma1R action on cell membranes. The
influence of Sigma1R on the lipid environment of GABAARs is consistent with the estab-
lished role of Sigma1R in cholesterol metabolism in cell membranes and reorganization
of lipid raft proteins [42,123–128]. This property of Sigma1R can influence the functional
activity of GABAAR, which depends on the lipid environment [129,130]. This assumption
is supported by the fact that the stimulatory effect of GABA and diazepam on GABAAR
chloride current depends on lipid raft integrity [131]. In turn, pentobarbital anesthesia
contributes to disruption of lipid–protein stability [132].

Therefore, our study demonstrates for the first time the opposite action of Sigma1R
antagonists and agonists on the effects of allosteric modulators of GABAAR. The find-
ings demonstrate that Sigma1R chaperone contributes to the mechanisms of GABAARs-
dependent effects. Further studies will be aimed at revealing the mechanisms of interaction
between Sigma1R and GABAARs.

4. Materials and Methods
4.1. Chemicals

The following chemicals were used: diazepam (J.S.C. «Organica», Novokuznetsk, Rus-
sia), phenazepam (FSBI “Zakusov Institute of Pharmacology”, Moscow, Russia), pentobar-
bital sodium salt (FSBI “Zakusov Institute of Pharmacology”, Moscow, Russia), pentylenete-
trazole (Sigma Aldrich, Burlington, MA, USA), polysorbate-80 (tween-80) (Sigma Aldrich,
USA), polyethylene glycol 400 (Sigma-Aldrich, Burlington, MA, USA), BD-1047 hydrobro-
mide (Tocris Bioscience, Bristol, UK), NE-100 hydrochloride (Santa Cruz Biotechnology,
Dallas, TX, USA), [N-methyl-3H] flunitrazepam (Amersham, UK), BD-1047 hydrobromide
(Tocris Bioscience, Bristol, UK), NE-100 hydrochloride (Santa Cruz Biotechnology, Dallas,
TX, USA), Tris(hydroxymethyl)aminomethane (Sigma-Aldrich, Burlington, MA, USA),
sucrose (Sigma-Aldrich, Burlington, MA, USA), 1,4-dioxane (Ecos-1, Moscow, Russia),
naphthalene (Sigma-Aldrich, Burlington, MA, USA), 2,5-diphenyloxazole (Sigma-Aldrich,
Burlington, MA, USA), and 1,4-Bis(5-phenyl-2-oxazolyl)benzene (Sigma Aldrich, Burling-
ton, MA, USA).

4.2. Experimental Animals

A total of 207 male BALB/c mice (20–22 g) were used for the EPM. BALB/c mice were
obtained from Pushchino Breeding Center (Branch of the Institute of Bioorganic Chem-
istry, Russian Academy of Sciences). Studies in models of pentylenetetetrazole-induced
seizures and barbiturate-induced sleep were performed on male ICR mice (25–40 g) ob-
tained from the “Stolbovaya” Nursery of Laboratory Animals at the Scientific Center
for Biomedical Technology of the Federal Medical and Biological Agency (Stolbovaya,
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Moscow Region, Russian Federation). Animals were housed under standard vivarium
conditions (20–22 ◦C, 30–70% humidity, 12 h light/dark cycle) in plastic cages with
sawdust bedding and 6–12 animals per cage.

4.3. Ethical Approval

All experimental procedures were approved by the bioethics committee of the FSBI
“Zakusov Institute of Pharmacology”, protocols #09 of 29 October 2022 and #03 of 31
January 2023. All applicable national [133] and international [134] guidelines for the care
and use of experimental animals were followed.

4.4. In Vivo Study
4.4.1. In Vivo Experimental Design

In vivo experimental design was developed in compliance with the 3R principles [135].
(1) Elevated plus maze test: For injections, BD-1047 hydrobromide and NE-100 hydrochlo-
ride were dissolved in water (vehicle 1), while diazepam and phenazepam were dissolved
in 50% PEG 400 solution (vehicle 2) immediately before administration [136–138]. Injec-
tions were made intraperitoneally (0.1 mL/10 g body weight). Diazepam at a dose of
1.0 mg/kg [8,139,140] and phenazepam at a dose of 0.1 mg/kg [141] were injected 30 min
prior to the EPM exposition. Selective Sigma1R antagonists BD-1047 at a dose 1.0 mg/kg
and NE-100 at a dose of 1.0 and 3.0 mg/kg were injected 30 min prior to diazepam or
phenazepam. The animals were randomly divided into experimental groups: intact mice
(n = 15), mice treated with vehicle 1 and vehicle 2 (3 groups; n = 15 for each group),
mice treated with BD-1047 1.0 mg/kg and vehicle 2 (n = 15), mice treated with NE-100
1.0 mg/kg and vehicle 2 (n = 15), mice treated with NE-100 3.0 mg/kg and vehicle 2
(n = 15), mice treated with vehicle 1 and diazepam 1.0 mg/kg (n = 15), mice treated with
BD-1047 1.0 mg/kg and diazepam 1.0 mg/kg (n = 15), mice treated with NE-100 1.0 mg/kg
and diazepam 1.0 mg/kg (n = 14), mice treated with NE-100 3.0 mg/kg and diazepam
1.0 mg/kg (n = 15), mice treated with vehicle 1 and phenazepam 0.1 mg/kg (n = 15), mice
treated with BD-1047 1.0 mg/kg and phenazepam 0.1 mg/kg (n = 14), and mice treated
with NE-100 3.0 mg/kg and phenazepam 0.1 mg/kg (n = 14).

(2) Pentylenetetrazole-induced seizures: The Sigma1R agonist PRE-084 and antagonist
BD-1047 were dissolved in saline solution for injection (vehicle 1) immediately before
administration. Doses of 1, 10, and 20 mg/kg of Sigma1R antagonist BD-1047 and 5 and
20 mg/kg doses of Sigma1R agonist PRE-084 were chosen for the study based on the
literature data [142–145]. Diazepam was dissolved in 20% PEG 400 solution [136–138]
(vehicle 2) immediately before administration. Administration of 20% PEG 400 solution to
experimental animals did not alter seizure thresholds (Figure S6). PTZ was dissolved in
saline solution to a concentration of 1% (10 mg/mL) for intravenous infusion. PRE-084, BD-
1047, and diazepam were injected intraperitoneally (0.1 mL/10 g body weight), according
to the scheme above (Figure 3). PTZ was injected intravenously into the lateral caudal vein
according to [146].

ICR mice (m = 21–28 g) in the first group were randomly divided into subgroups:

(1) Control group: administration of vehicle 1 and vehicle 2 (n = 10);
(2) Three groups: administration of BD-1047 (1, 10, and 20 mg/kg) and vehicle 2 (n = 9–11);
(3) Three groups: administration of BD-1047 (1, 10, and 20 mg/kg) and diazepam

1 mg/kg (n = 5–8);
(4) Administration of vehicle 1 and diazepam 1 mg/kg (n = 8).

ICR mice (m = 24–31 g) in the second group were randomly divided into subgroups:

(1) Control group: administration of vehicle 1 and vehicle 2 (n = 12);
(2) Two groups: administration of PRE-084 (5 and 20 mg/kg) and vehicle 2 (n = 10–12);
(3) Two groups: administration of PRE-084 (1, 10, and 20 mg/kg) and diazepam 1 mg/kg

(n = 9–10);
(4) Administration of vehicle 1 and diazepam 1 mg/kg (n = 9).
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(3) Barbiturate-induced sleep: The Sigma1R agonist PRE-084 and antagonist BD-1047
were dissolved in saline solution for injection immediately before administration. Diazepam
was dissolved in 20% PEG 400 solution [136–138]. Pentobarbital sodium salt (pentobarbital)
was dissolved in saline solution [147]. The studied substances were injected intraperitoneally
into mice at the rate of 0.1 mL per 10 g of animal weight. All animals were injected with
pentobarbital in the dose of 50 mg/kg 60 min after the first injection of the studied drugs
(Figure 6). Immediately after pentobarbital injection, the mice were placed in individual
transparent Plexiglas boxes with openings for ventilation.

ICR mice were randomly allocated into six groups:

(1) Control group: administration of saline (n = 10);
(2) Two groups: administration of BD-1047 (1 and 10 mg/kg), (n = 10);
(3) Two groups, administration of PRE-084 (1 and 5 mg/kg), (n = 9–10);
(4) Administration of diazepam 1 mg/kg (n = 10).

4.4.2. Elevated Plus Maze Test

The EPM (RPC OpenScience Ltd., Moscow region, Russia) was elevated 40 cm above
the floor and illuminated by dim diffused light. The length and width of the arms were
30 cm and 5 cm, respectively; the central area was formed by a 5 × 5 cm square. The
wall height of the closed arms was 15 cm. The animals were kept in individual Plexiglass
containers after injection on the day of the experiment. For an EPM test, mice were removed
from their containers and placed in the central region of the test with their head toward an
open arm. The test lasted for 5 min. For each animal, the time in the open arms (T open),
time in the center (T center), time in the closed arms (T closed), number of entries into the
open arms (N open), number of entries into the closed arms (N closed), and number of
visits to the center (N center) were recorded. The total number of test area visits (N total)
was calculated as

N total = N open + N center + N closed. (1)

Percentages of open-arm visits and time spent in the open arms were calculated as

%N open = 100 × N open/(N open + N closed), (2)

%T open = 100 × T open/(T open + T closed) (3)

accordingly, abiding by recommendations [148].

4.4.3. Pentylenetetrazole-Induced Seizures

Injection of PTZ into the lateral caudal vein of experimental mice was performed
according to previously described methods with some modifications [56,149–152]. The
animals were kept in transparent Plexiglas boxes with holes for ventilation and tail. During
the intravenous infusion, the tail was kept outside the box to access the lateral caudal
vein, so the animal could move freely in the box without strain on the catheterized tail.
PTZ at a 10 mg/mL concentration was injected at a constant rate of 6 µL/s, set on an
MD-1020-K BASi Bee Hive Controller 240 V/50 Hz (BASi Corporate Headquarters, West
Lafayette, IN, USA) connected to an MD-1001 BASi Bee Baby Bee syringe drive (BASi
Corporate Headquarters, West Lafayette, USA). A 27G needle with an attached infusion
cannula was injected intravenously into the lateral caudal vein [146]. The insertion site was
preheated with an infrared lamp according to the recommendations [56,149–152]. Accuracy
of vein penetration and absence of thrombosis was confirmed by the presence of blood in
the catheter. The minimum dose required to induce a seizure was considered the seizure
threshold. The infusion was stopped when a generalized tonic seizure was observed.
Animal behavior was recorded via video camera and evaluated according to previously
described criteria [153]. In this experiment, clonic jerks, generalized clonic seizures, and
generalized tonic seizures were recorded.
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4.4.4. Barbiturate-Induced Sleep

The test was performed according to previously described methods with some modifi-
cations [154–158]. After intraperitoneal infusions, the animals were kept in a transparent
Plexiglass box with ventilation holes and sawdust bedding. The animals could move freely
without restrictions. Injection of test substances was performed according to the scheme
shown above (Figure 6). After intraperitoneal injection of pentobarbital (50 mg/kg), animal
behavior was recorded on video. Falling asleep time in seconds was recorded by loss of the
righting reflex, sleeping time in seconds was recorded from the moment of falling asleep to
the moment of recovery of spontaneous righting reflex.

4.4.5. Statistical Analysis

To evaluate the experimental data distribution, D’Agostino–Pearson, Shapiro–Wilk
and Kolmogorov–Smirnov tests were used. Statistical significance was calculated using
one-way ANOVA (Sidak or Dunnet post hoc tests) or the Kruskal–Wallis test (Dunn’s
post hoc test). The data are presented as a mean with standard deviation (mean ± S.D.),
mean with standard error of the mean (mean ± S.E.M.), or median with interquartile range
(Mdn (q25–75)). A value of p < 0.05 was considered to be statistically significant. Statistical
analysis and visualization were performed using GraphPad Prism software version 8.0.1 for
Windows (GraphPad, La Jolla, CA, USA, www.graphpad.com (accessed on 28 May 2023)).

4.5. In Vitro Radioligand Binding Assay
4.5.1. Membrane Preparation

BALB/c mice (n = 2) were euthanized by cervical dislocation followed by decapitation.
The brains (forebrain, intermediate, and midbrain) of each mouse were extracted and
homogenized separately in 20 mL of TRIS-HCl buffer solution (pH = 7.4, T = 4 ◦C) using
the Utra-Turrax T25 dispersant (Janke&Kunkel, IKA-Labortechnik, Staufen, Germany) at
24,000 rpm. The obtained suspension was centrifuged at 54,000× g for 25 min in an Optima
L 70K centrifuge (Beckman Coulter, Brea, CA, USA) at 40C. The resulting precipitate was
resuspended in 20 mL of TRIS-HCl buffer solution (pH = 7.4, T = 4 ◦C) and centrifuged
again under same conditions. The resulting precipitate was resuspended in 20 mL of
TRIS-HCl buffer solution (pH = 7.4, T = 4 ◦C).

4.5.2. Radioligand Binding Procedure

To determine total [N-methyl-3H] flunitrazepam binding, 50 µL of 10 nM [N-methyl-
3H] flunitrazepam solution and 200 µL of cold buffer were added to 250 µL of membrane
fraction homogenate. To determine specific binding, 50 µL of 10 nM [N-methyl-3H] fluni-
trazepam solution, 50 µL of diazepam or Sigma1R antagonist BD-1047 or NE-100 solution,
and 150 µL of cold buffer were added to 250 µL of membrane fraction homogenate. In-
cubation was performed for 30 min at T = 4 ◦C. Radioligand binding was stopped by the
addition of 2 mL of ice-cold buffer followed by rapid filtration through GF/B glass fiber
filters with subsequent double rinsing with ice-cold buffer to reach a total volume of 8 mL.
The radioactivity of the samples was measured on a Tri Carb 2900TR liquid scintillation
counter (PerkinElmer, Waltham, MA, USA). The total [N-methyl-3H] flunitrazepam bind-
ing values obtained were taken as 100%. Specific [N-methyl-3H] flunitrazepam binding
was calculated as the difference between total and nonspecific binding determined in the
presence of diazepam (10 µM). Graphical representation of the data and calculation of the
IC50 parameter were performed using GraphPad Prism software version 8.0.1 for Windows
(GraphPad, La Jolla, CA, USA, www.graphpad.com (accessed on 28 May 2023)).

5. Conclusions

The study shows for the first time the multidirectional effects of compounds with
Sigma1R antagonist and agonist properties on GABAARs-dependent in vivo effects. Sigma1R
antagonists inhibited anxiolytic-like, anticonvulsant, and hypnotic effects of GABAARs
PAMs, whereas Sigma1R agonist enhanced their anticonvulsant and hypnotic effects. The

www.graphpad.com
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obtained results may be a consequence of the ligand influence on the functional activity
of Sigma1R, including chaperone interactions with receptors, enzymes and ion channels,
regulation of BiP-dependent signaling, and cell membranes remodeling, which requires
further studies.
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(+)-SKF 10.047 (1S,9S,13S)-1,13-dimethyl-10-prop-2-enyl-10-azatricyclo [7.3.1.02,7]
trideca-2(7),3,5-trien-4-ol

BD-1047 N’-[2-(3,4-dichlorophenyl)ethyl]-N,N,N’-trimethylethane-1,2-diamine
BiP Endoplasmic reticulum chaperone BiP; GRP78
CB1R Cannabinoid receptors type 1
E1R (4R,5S)-2-(5-methyl-2-oxo-4-phenyl-pyrrolidin-1-yl)-acetamide
EPM Elevated plus maze test
ER Endoplasmic reticulum
GABA γ-aminobutyric acid
GABAAR GABAA receptor
GluN NMDA Receptor Subunit
IRE1 Serine/threonine-protein kinase/endoribonuclease IRE1
MT1 receptor Melatonin receptor, type 1
MT3 receptor Melatonin receptor, type 3
NE-100 N-[2-[4-methoxy-3-(2-phenylethoxy)phenyl]ethyl]-N-propylpropan-1-amine
NMDARs The N-methyl-D-aspartate receptors
NQO2 Ribosyldihydronicotinamide dehydrogenase [quinone]; NRH: quinone

reductase 2; QR2
OF Open-field test
PAMs Positive allosteric modulators
PKC Protein kinase C
PRE-084 2-morpholin-4-ylethyl 1-phenylcyclohexane-1-carboxylate
PTZ Pentylenetetrazole
Scn1a Rodent sodium channel protein type 1 subunit alpha gene
scn1a Zebrafish sodium channel protein type 1 subunit alpha gene
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Sigma1R Sigma nonopioid intracellular receptor 1; Sigma1R chaperon
Sigmar1 Rodent Sigma1R gene
SKF83959 9-chloro-3-methyl-5-(3-methylphenyl)-1,2,4,5-tetrahydro-3-benzazepine-7,

8-diol;hydrobromide
SOMCL-668 3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-benzo[d]azepin-7-ol
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