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Abstract: Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most common inher-
ited mitochondrial metabolic disease of fatty acid β-oxidation, especially in newborns. MCADD
is clinically diagnosed using Newborn Bloodspot Screening (NBS) and genetic testing. Still, these
methods have limitations, such as false negatives or positives in NBS and the variants of uncer-
tain significance in genetic testing. Thus, complementary diagnostic approaches for MCADD are
needed. Recently, untargeted metabolomics has been proposed as a diagnostic approach for in-
herited metabolic diseases (IMDs) due to its ability to detect a wide range of metabolic alterations.
We performed an untargeted metabolic profiling of dried blood spots (DBS) from MCADD new-
borns (n = 14) and healthy controls (n = 14) to discover potential metabolic biomarkers/pathways
associated with MCADD. Extracted metabolites from DBS samples were analyzed using UPLC-
QToF-MS for untargeted metabolomics analyses. Multivariate and univariate analyses were used to
analyze the metabolomics data, and pathway and biomarker analyses were also performed on the
significantly identified endogenous metabolites. The MCADD newborns had 1034 significantly dys-
regulated metabolites compared to healthy newborns (moderated t-test, no correction, p-value ≤ 0.05,
FC 1.5). A total of 23 endogenous metabolites were up-regulated, while 84 endogenous metabo-
lites were down-regulated. Pathway analyses showed phenylalanine, tyrosine, and tryptophan
biosynthesis as the most affected pathways. Potential metabolic biomarkers for MCADD were PGP
(a21:0/PG/F1alpha) and glutathione, with an area under the curve (AUC) of 0.949 and 0.898, respec-
tively. PGP (a21:0/PG/F1alpha) was the first oxidized lipid in the top 15 biomarker list affected by
MCADD. Additionally, glutathione was chosen to indicate oxidative stress events that could happen
during fatty acid oxidation defects. Our findings suggest that MCADD newborns may have oxidative
stress events as signs of the disease. However, further validations of these biomarkers are needed in
future studies to ensure their accuracy and reliability as complementary markers with established
MCADD markers for clinical diagnosis.

Keywords: MCADD; DBS; newborns; untargeted metabolomics; mass-spectrometry; metabolic
biomarkers; oxidized lipids; glutathione

1. Introduction

Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is one of the inherited
metabolic disorders (IMDs) that are associated with metabolic disturbances [1]. MCADD
is the most common inherited fatty acid β-oxidation disorder, and it is caused by various
genetic mutations in the acyl-CoA dehydrogenase medium chain (ACADM) gene. It
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encodes a mitochondrial enzyme called medium-chain acyl-CoA dehydrogenase, located
on chromosome 1p31 in an autosomal recessive manner. The manifestation of MCADD
is contingent upon the inheritance of mutated alleles from both parents. Homozygous
mutations can be acquired through consanguineous unions or a random mutation in the
second allele in heterozygous parents [2]. In populations with higher consanguinity rates,
the incidence of autosomal recessive diseases increases 50-fold [3]. For instance, in eastern
Saudi Arabia, consanguinity rates are as high as 40% among first cousins, and up to 60% in
intermarriages between relatives [4,5].

The birth prevalence of MCADD has been estimated in North America and Northern
Europe to be approximately 1:5000 to 1:20,000 [6]. Another study reported that the estimated
incidence of MCADD in different populations, such as Caucasians, is 1:8000–1:20,000; in
Germany, it is 1:4900–1:8500; and in the United States, it is 1:10,000–30,000 [7,8]. In contrast,
the incidence of MCADD is relatively low among Asians, with estimations of 1:100,000 in
Japan, and China was reported at 1:80,332–1:282,591 [9], indicating that ethnic and regional
differences significantly and differently impact the incidence of MCADD. In Saudi Arabia,
MCADD has a prevalence of 1/18,000 [4,10]. Importantly, the prevalence of MCADD
only accounts for patients with obvious symptoms who had clinical visits and underwent
clinical examinations without including the suspected MCADD patients without signs
and at high risk. Thus, the true incidence of MCADD should not be underestimated and
requires accurate investigation.

Phenotypically, MCADD patients, particularly newborns, vary in their clinical manifes-
tations, which range from mild-to-severe symptoms, such as hypoglycemia and cardiomy-
opathy. However, a growing number of asymptomatic or pre-symptomatic newborns with
MCADD make the diagnosis of MCADD challenging [11,12].

At the cellular level, fatty acids with various lengths enter mitochondria for the
β-oxidation pathway. Medium-chain fatty acids can enter mitochondria through membrane
diffusion in contrast with long-chain fatty acids requiring the carnitine shuttle system
for transporting. Once medium-chain fatty acids are transported into the mitochondria
matrix, they are activated into their corresponding medium of fatty acyl-CoAs, which are
targeted and oxidized by medium-chain acyl-CoA dehydrogenase—an enzyme involved
in the mitochondrial fatty acid β-oxidation to produce acetyl-CoA—thus, reducing agents
and ATP in the mitochondrial matrix [13]. Defects or absences of the enzyme medium-
chain acyl-CoA dehydrogenase, as in MCADD, lead to the accumulation of medium fatty
acyl-CoAs in the mitochondria matrix, which subsequently binds to the mitochondrial
carnitine molecules, resulting in the formation of medium acylcarnitines. The latter need
to be eliminated from the mitochondrial matrix and released into circulation as medium
acylcarnitines [12].

In the MCADD condition, there is an abnormal accumulation of acylcarnitines with a
length of (C6-C12) in circulation [14]. For that reason, the concentration of octanoylcarnitine
(C8) and decanoylcarnitine (C10), and their ratios C8/C10 and C8/C2, are mostly used as
MCADD markers for the purpose of diagnosis [15].

Early diagnosis of MCADD helps alleviate the disease complications and improves
affected newborns’ health outcomes by providing proper treatments and interventions.
MCADD diagnosis is achieved using Newborn Bloodspot Screening (NBS) and genetic
testing. NBS measures the MCADD markers (i.e., C8, C8/C10, C8/C2, and acylcarnitines)
through tandem mass spectrometry [16]. However, the NBS programs’ efficiency in detect-
ing IMDs, including MCADD, shows drawbacks concerning clinical diagnosis. To illustrate,
NBS could miss certain babies with IMDs, called false-negative results, which delay the
detection of IMDs and can cause health implications [17–19]. In addition, NBS has been
associated with false-positive results for IMDs in babies who are not truly affected, causing
overuse of healthcare services, as well as stress and anxiety for the parents of the suspected
babies [20–22]. A Canadian study has reported several MCADD infants diagnosed as false
positive; such a fact significantly impacts the health system by increasing the demand for
unneeded health services for those who are not truly MCADD-affected infants [23]. Thus,



Int. J. Mol. Sci. 2023, 24, 0 3 of 14

a study suggested utilizing the genetic sequencing of DBS from false-positive-diagnosed
MCADD patients as a validation method for the diagnosed patients [24].

Therefore, the positive NBS results for MCADD are confirmed using molecular genetic
testing, such as whole or exosome sequencing, which detects mutations in the ACADM gene.
Abnormal newborn screening results are linked to 54 variants of uncertain significance
(VUS), previously unknown, in the ACADM gene [25]. Undoubtedly, VUS is a dilemma
for clinicians because they could be misleading in diagnosing MCADD due to the lack of
information about these unknown mutations and whether they are functionally related
to MCADD. Based on these drawbacks associated with the NBS program and genetic
approaches, there have been demands in the clinical field to identify other alternative and
complementary diagnostic approaches for MCADD.

Untargeted metabolomics, which measures small metabolites, has recently emerged as
a promising diagnostic tool for IMDs due to its exceptional ability to detect a broad range
of the altered metabolites affected by these disorders. This approach allows for identifying
IMD-specific biomarkers and pathways [26,27]. Only one metabolomics study has explored
the metabolic changes in dried blood spots (DBS) that were collected from MCADD, and it
revealed abnormal levels of oxidized phosphatidylcholines in MCADD patients [28]. In
order to have a better understanding of the underlying mechanisms of MCADD, and to
discover new potential metabolic biomarkers for MCADD, more metabolomics studies
are required; these studies will help in the clinical diagnosis of MCADD and improve the
drawbacks found in the current diagnostic approaches. Thus, we aimed to investigate
potential metabolic biomarkers and pathways for MCADD by using DBS samples from
MCADD newborns and healthy newborns to be analyzed by a high-throughput untargeted
metabolomics approach.

2. Results
2.1. Demographic Data

The demographic data of MCADD and healthy control newborns are summarized in
Table 1. The LC-MS-based acylcarnitine data of MCADD and healthy newborns generated
from the NBS program were used and carefully analyzed for DBS sample selection. The
LC-MS-based measurements of the acylcarnitine panel were specifically for C8-carnitine,
C6-carnitine, the C8\C10-carnitine ratio, and the C8\C2-carnitine ratio. Then, the DBS
cards from MCADD (n = 14), as well as from the age- and gender-matched healthy controls
(n = 14) were collected from the metabolomics section lab for metabolomics profiling.
Additionally, we considered the age of the participants to be at an early age. Thus, the
average age for the MCADD group and healthy control were 15.3 ± 11.0 and 11 ± 9.4,
respectively. MCADD newborns were not diagnosed with other diseases and received no
treatment at the sample collection stage.

Table 1. Demographic data of MCADD newborns and healthy controls.

Group MCADD Healthy
Control p-Value

Number 14 14 NA

Age average (Day) 15.3 11 0.2710

Female (%) 78% 71% NA

Data

C8\C10-carnitine ratio (cutoff: <1.6) 15.2 <1.6 5.30 × 10−6

C8-carnitine (cutoff: <0.32 µM) 2.1 <0.32 0.0007

C6-carnitine (cutoff: <0.35 µM) 0.6 <0.35 0.0004

C8\C2-carnitine ratio (cutoff: <0.1) 0.3 <0.1 0.04
For statistical analyses, an unpaired student t-test was conducted. Significance is considered when the p-value < 0.05.
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2.2. Metabolomics Profiling of MCADD Newborns

A total of 17,542 mass ion features were detected—11,318 in positive and 6224 in
negative ionization modes (Table S1). Features with missing values of >80% were excluded
(22.2%), thus 13,500 features remained for further statistical analysis. The results from
the orthogonal partial least squares-discriminant analysis (OPLS-DA) are displayed in
Figure 1A; these results show a significant difference between the two groups (MCADD
newborns and healthy controls) with an R2Y = 0.99 and Q2 = 0.611, indicating a significant
metabolic difference between the two groups. The permutation analysis (Figure 1B) shows
the observed and cross-validated R2Y and Q2 coefficients.
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Figure 1. (A) The orthogonal partial least squares-discriminant analysis (OPLS-DA) displays a clear
separation between the two groups (MCADD newborns vs. healthy controls). The robustness of
the created models was evaluated by the fitness of the model (R2Y = 0.99) and predictive ability
(Q2 = 0.611) values in a larger dataset (n = 100). (B) The permutation analysis showing the observed
and cross-validated R2Y and Q2 coefficients.

A univariate analysis was conducted to identify the significantly different features
between the two groups. A volcano plot analysis was conducted, and the 13,500 features
between the two groups were evaluated. (Moderated t-test, raw p-value ≤ 0.05, FC 1.5).
These features showed 1034 significantly dysregulated metabolites (Table S2), 504 up-
regulated, and 530 down-regulated in newborns with MCADD (Figure 2). A heatmap
of the 107 identified endogenous metabolites is displayed in Figure S1. Heatmaps of the
significantly dysregulated up- and down-regulated metabolites in MCADD newborns and
healthy controls are shown in Figure 3A,B.

A total of 360 significantly dysregulated metabolites were identified (Table S3). In
total, 107 endogenous metabolites remained after excluding exogenous compounds (drugs,
drug metabolites, environmental exposures, etc.), and these were retained for the analyses
of pathways and biomarkers (Table S4).

2.3. Metabolomics Pathway Analysis

Pathway analysis was performed on the significantly dysregulated metabolites (n = 107)
to identify the most altered pathways. The most affected pathways between the two groups
were phenylalanine, tyrosine, and tryptophan biosynthesis (Figure 4).
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Figure 2. The volcano plot analysis showing significantly dysregulated metabolites between the
two groups. (Moderated t-test, raw p-value ≤ 0.05, fold change (FC) 1.5). A total of 530 metabolites
were up-regulated (red) and 504 were down-regulated (blue) in MCADD newborns.
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Figure 3. (A) Heatmap demonstrating the up-regulated metabolites and (B) down-regulated metabo-
lites in MCADD newborns compared with healthy controls. Red indicates down-regulated metabo-
lites, and green indicates up-regulated metabolites.

2.4. Biomarker Analysis

A receiver operating characteristic (ROC) curve analysis (Figure 5A) was created;
this was achieved by using PLS-DA as a classification and feature ranking approach to
evaluate potential biomarkers. Figure 5B shows a frequency plot of 15 identified metabo-
lites. Figure 5C,D show the glutathione (AUC = 0.898) and PGP (a-21:0/PGF1alpha)
(AUC = 0.949) that were up- and down-regulated in MCADD newborns compared to
healthy controls, respectively. The top 15 dysregulated metabolites with their AUC are
mentioned in (Table S5).
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3. Discussion
3.1. Untargeted Metabolomics as a Complementary Diagnostic Approach for MCADD

Due to the limitations of the current diagnostic approaches—including NBS and
genetic testing—and the demands in the clinical field to identify a complementary approach
for the diagnosis of MCADD, few studies have advised—by highlighting the potential
altered metabolic pathways and biomarkers associated with the disease—on the great
ability of untargeted metabolomics to diagnose MCADD [26,28,29]. Similarly, our study
has fully exploited the benefits and capabilities of untargeted metabolomics to identify
metabolic biomarkers/pathways for MCADD. Our metabolomics study demonstrated
interesting findings. MCADD newborns had 1034 dysregulated metabolites, of which
107 endogenous identified metabolites were altered, and 23 and 84 were up-regulated and
down-regulated, respectively. Moreover, the most affected metabolic pathways in MCADD
newborns were the phenylalanine, tyrosine, and tryptophan pathways. Cellular oxidative
stress and defense-mechanism-related metabolites such as oxidized lipids and glutathione
were significantly affected. Some of our findings have been reported previously [1,28];
however, for the first time, we reported that the DBS from MCADD newborns had elevated
glutathione and had altered certain types of oxidized lipids, notably those not reported
before, which is suggestive of increased oxidative stress events. These findings may be
used as potential biomarkers for MCADD as a complementary diagnostic approach in
addition to the most currently known acylcarnitine biomarkers.

3.2. Dysregulated Amino Acids Resulted from the Defective Mitochondrial Oxidation of
Medium-Chain Fatty Acid in MCADD Newborns

The study findings showed that several amino acids were dysregulated in MCADD
newborns. Furthermore, multiple amino acid-related pathways, including phenylalanine,
tyrosine, and tryptophan biosynthesis, were altered in MCADD. Generally, it is well ac-
cepted that glucose, fatty acids, and amino acids are the substrates required to preserve the
metabolic homeostasis in living organisms. Amino acid homeostasis fundamentally differs
from carbohydrate and lipid homeostasis in the human body and, except in endogenous
proteins, amino acids have no independent storage form [30]. Endogenous amino acids that
are biosynthetically made are the primary substrates for hepatic gluconeogenesis, which
requires a consistent supply of acetyl-CoA being produced from fatty acid oxidation [31],
indicating the important link between amino acids and fatty acids. Due to this link, the
altered amino acid levels in MCADD newborns could be explained by the defects in fatty
acid oxidation and the reduction in acetyl-CoA production, which affect the homeostasis of
amino acids.

As we found that several amino acids are affected by the condition of MCADD,
proline—a non-essential amino acid—was down-regulated in the metabolic profile of
the MCADD newborns. This compound plays a part in protein structure and function,
and it maintains cellular redox homeostasis [30]. Previously, studies have shown the
role of proline in maintaining redox homeostasis [32]. Furthermore, several pathological
conditions have been connected to the dysregulation of tryptophan biosynthesis. It has also
been shown that metabolites related to the tryptophan pathway may influence the function
of mitochondria and the redox status [33], which is consistent with our metabolomics data;
this reveals that the tryptophan in MCADD newborns was altered. Taken together, amino
acids that were affected in MCADD newborns are probably linked to the altered fatty acid
oxidation process and the defective mitochondrial redox status in the context of MCADD.

3.3. Distinctive Lipid Patterns Observed in MCADD Newborns

The accumulation of acylcarnitines accompanies MCADD. Thus, medium acylcar-
nitines, including octanoylcarnitine (C8) and decanoylcarnitine (C10), and the ratios of
C8/C2 and C8/C10, are used as well-known biomarkers for MCADD [15]. However,
these biomarkers have been reported as false-positive results in some MCADD cases [23],
which has pushed researchers toward finding other acylcarnitine species to diagnose
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MCADD. Few studies have focused on identifying the new acylcarnitine species or lipid
metabolites used for MCADD-affected patients. A study that used plasma samples from
MCADD patients for untargeted high-throughput metabolomics analyses revealed certain
distinctive acylcarnitines related to MCADD, including L-Hexanoylcarnitine and 2-trans,4-
cis-Decadienoylcarnitine [26]. Consistent with previous findings, our metabolomics anal-
yses of DBS discovered other acylcarnitine species, including octa-3,5-dienoylcarnitine,
glutaconylcarnitine, and (8Z,11Z)-3-Icosa-8,11-dienoylcarnitine. Not only were the acylcar-
nitines declared to be altered in the context of MCADD, but other lipids species can also
be affected (as explained below), such as oxidized phospholipids, CDP-diacylglycerols,
and cardiolipin.

Dysfunctional mitochondria, as seen in the MCADD condition, can be correlated
with the excessive production of the reactive oxygen species (ROS) oxidants, which can be
subsequently viewed as a leading cause of oxidative stress. The latter occurs when there
is an imbalance between the ROS production and the antioxidant defense system in the
cells that represent increased ROS production, as well as due to the decreased antioxidants
involved in defense mechanisms. The increased level of ROS can target several biological
molecules, including lipids, with their various classes. Membrane phospholipids are ROS
targets. Our study is the second that has used untargeted metabolomics for the DBS samples
from MCADD newborns. One of the hallmarks observed in our data is that different
oxidized lipids, including oxidized phosphocholines, oxidized phosphatidylserines, and
oxidized CDP-diacylglycerols, were detected and altered; these results are suggestive of
the increased oxidative stress that occurs in the MCADD condition. Our data are consistent
with the previously published data that used targeted metabolomics analyses on DBS from
MCADD patients, and which also showed elevated oxidized phospholipids, particularly
oxidized phosphatidylcholines [28]. Our study has further highlighted oxidized lipids,
including oxidized phosphatidylserines and CDP-diacylglycerols, as the altered lipid
species that are found in MCADD.

Additionally, cardiolipin is a type of phospholipid embedded in the inner mitochon-
drial membrane (IMM), where an oxidative phosphorylation system takes place to produce
cellular energy in the form of ATP [34,35]. Additionally, cardiolipin is important for mi-
tochondrial morphology and dynamics, which are required to support mitochondrial
function and bioenergetics. Indeed, cardiolipin alterations are associated with dysfunc-
tional mitochondria, as is seen in the pathologies of certain diseases [36,37]. In addition,
as cardiolipin is naturally composed of four fatty acids and glycerol forming its tight
composition for ultimate function, the cellular and mitochondrial lipid changes that occur
in rare metabolic and mitochondrial diseases could affect the composition of cardiolipin,
which can, in turn, decrease cardiolipin function and production. Experimentally, it was
evident that the mitochondrial function was defective in MCADD0-patient-derived skin
fibroblasts as they represented declined oxidative phosphorylation-system-related proteins
and oxygen consumption [38]. To our knowledge, in line with the previous facts, we
are the first to report that cardiolipin is decreased in the metabolomics profiling of DBS
from MCADD newborns, revealing the pathological impact of MCADD on the reduced
abundance of cardiolipin, which may contribute to the observed mitochondrial dysfunction
in MCADD in previous studies [38].

Moreover, based on the biomarker analyses, certain oxidized lipids were altered,
including PGP (a-21:0/PGF1alpha), which was an oxidized lipid molecule in the top
15 biomarkers, and could be used as potential biomarkers for MCADD. However, further
validation experiments could be conducted using targeted metabolomics analyses of DBS
samples from MCADD to verify its usage as an MCADD biomarker.

3.4. Elevated Glutathione, a Non-Enzymatic Antioxidant Defense System, Found in
MCADD Newborns

Glutathione is a tripeptide composed of glutamate, cysteine, and glycine residues
that are joined by γ-peptidic bonds through the action of the glutamate–cysteine ligase
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and GSH synthetase. Glutathione is a non-enzymatically antioxidant defense system
involved in several cellular compartments, including mitochondria. It plays an important
role in detoxifying the ROS produced in cells to protect against lipid, protein, and DNA
damage, which can lead to the development of diseases [39]. Interestingly, our untargeted
metabolomics profiling of DBS from MCADD newborns showed that the glutathione
level is significantly elevated compared with the healthy controls. This finding could be
explained by the notion that glutathione might be used as a compensatory mechanism in
MCADD newborns to protect against the oxidized lipids; this find was also found in our
metabolomics data, and could potentially alleviate the symptoms of oxidative stress. In
2004, a study was conducted by Koruk et al. to investigate the status of oxidative stress and
antioxidant enzymes in the development of nonalcoholic steatohepatitis (NASH), which
is in part associated with mitochondrial dysfunction and lipid accumulations [40]. Their
results showed that the serum level of glutathione in NASH patients was significantly
increased compared with the controls, indicating the involvement of glutathione in this
pathological condition [41].

In contrast, an animal study, which conducted in vitro experiments, focused on under-
standing the pathological mechanisms involved in the neurologic symptoms in MCADD
patients. Their study used rat cerebral cortex homogenates treated with octanoate (OA)
and decanoate (DA) to mimic the real brain pictures of MCADD-affected patients with
accumulated OA and DA. Their results showed that the treated brain homogenates had
decreased glutathione levels [42]. However, the contradictory findings of the in vitro study
could be explained based on the following fact. The in vitro experiment does not mimic
the complex interplay between oxidative stress and glutathione in the living cellular and
whole system of MCADD patients, which is more complicated than those found in vitro
studies. For example, in vitro experiments must account for the many biological factors
and regulators in living organisms that can impact the glutathione level. In comparison, be-
tween our data and previously published data, for the first time, we found that glutathione
is elevated in MCADD, which is attributed to the expected oxidative stress events during
the diseases. Thus, after further validation studies, glutathione could also be used as a
potential metabolic biomarker for MCADD.

As mentioned previously, the current diagnostic tests for MCADD, including genetic
sequencing and NBS, have some limitations causing inaccuracy in the diagnosis of MCADD
due to the existence of VUS and false positive/negative results. As an alternative approach,
untargeted metabolomics offers great opportunities for MCADD diagnosis because it can
detect thousands of altered metabolites within a very tiny number of biological samples,
thus reflecting the pathological status of the disease, that are collected from MCADD
patients. Focusing on these altered metabolites gives a high potential to identify new
metabolic biomarkers that could be correlated with MCADD disease in addition to the
current limited acylcarnitine markers. For these reasons, our study used an untargeted
metabolomics approach to analyze the samples collected from MCADD patients to discover
new potential biomarkers that could be used for diagnosis in the future. However, to
ensure the specificity of the biomarkers, they needed to be validated by larger, independent
cohorts of MCADD and other types of metabolic diseases from separate studies. Addi-
tionally, targeted metabolomics approaches can measure our newly discovered metabolic
biomarkers in MCADD samples. In addition, other omics studies are required to compre-
hensively understand MCADD patients’ pathophysiology. Omics-based measurements
can provide insights regarding the changes in several of the biological molecules involved
in genomics, transcriptomics, proteomics, metabolomics, epigenomics, epitranscriptomics,
epiproteomics, and—recently—redox omics [43,44]. Moreover, the biological DBS samples
were used for our metabolomics studies and needed to be compared with other sample
types, including plasma and urine samples, which ultimately expanded information about
the suitable sample type for the proper diagnostic tests and helped to design the exact
diagnosis process for MCADD. Following the suggestions mentioned above, more accurate
predictive diagnostic approaches could be utilized to diagnose MCADD, which help to
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determine the proper treatments given to the affected newborns for longer survival and
greater health outcomes.

4. Materials and Methods
4.1. Ethical Approval

The Institutional Review Boards at King Faisal Specialist Hospital and Research Centre
(KFSHRC) in Riyadh, Saudi Arabia (RAC # 2160027) reviewed and approved this study
and its related procedures.

4.2. Biological Samples

DBS samples were obtained from the metabolomics section in the Center for Genomic
Medicine at King Faisal Specialist Hospital and Research Center (KFSHRC). The samples
were collected from MCADD newborns (n = 14) and healthy newborns (controls) (n = 14).
These newborns were age- and gender-matched. The inclusion criteria for the patient
group included newborns that were positively diagnosed, through the newborn screening
program’s platform, with only MCADD. For the control group, the inclusion criteria were
healthy, gender-, and age-matched newborns. Additionally, newborns who were less than
a month old were included as the average age of the MCADD newborns was 15.3 days, and
for healthy newborns it was 11 days. Any DBS samples collected from newborns diagnosed
with other IMDs or were older than a month were excluded.

4.3. Chemicals and Materials

LC-MS grade water, acetonitrile (ACN), methanol, and formic acid, were purchased
from Fisher Scientific (Ottawa, ON, Canada).

4.4. Sample Preparation

The metabolites were extracted as reported before with some modifications [45]. In
detail, one punch, at a 3.2 mm size, was collected from each DBS sample and transferred
into a 96-well plate for metabolite extraction. Metabolite extraction was performed by
adding 250 µL of extraction solvent (20:40:40) (H2O: ACN: MeOH) to each well with
agitation for 2 h at room temperature. Subsequently, the sample extracts were dried using
SpeedVac Thermo Fischer, (Christ, Germany). The dried samples were reconstituted in
100 µL of 50% A: B mobile phase (A: 0.1% Formic acid in H2O, B: 0.1% FA in 50% ACN:
MeOH). Additional punches were taken for quality control (QC) from the project samples
to maintain the instrument performance. All study and quality control samples were
placed on the UPLC-QToF-MS autosampler for metabolomics analyses. The quality control
samples were analyzed once after 10 study samples for the metabolomics analyses.

4.5. LC-MS Metabolomics

The metabolomics analyses were conducted with a Waters Acquity UPLC system cou-
pled with a Xevo G2-S QTOF mass spectrometer (which was equipped with an electrospray
ionization source (ESI) [45,46]). In detail, the extracted metabolites were chromatographed
using an ACQUITY UPLC using a XSelect (100 × 2.1 mm, 2.5 µm) column (Waters Ltd.,
Elstree, UK). The mobile phase was composed of 0.1% formic acid in distilled water (dH2O),
as solvent A and solvent B consisted of 0.1% formic acid in 50% ACN: MeOH. A gradi-
ent elution schedule was run at a 300 µL/min flow rate as follows: 0–16 min 5–95% A,
16–19 min 5% A, 19–20 min 5–95% A, and 20–22 min 95–95% A. The MS spectra were
acquired separately under positive and negative electrospray ionization modes (ESI+,
ESI−). The MS conditions were as follows: source temperature was 150 ◦C, the desolvation
temperature was 500 ◦C (ESI+) or 140 (ESI−), the capillary voltage was 3.20 kV (ESI+) or
3 kV (ESI−), cone voltage was 40 V, desolvation gas flow was 800.0 L/h, and cone gas flow
was 50 L/h. The collision energies of the low and high functions were set, in MSE mode, at
0 and 10–50 V, respectively. The mass spectrometer was calibrated with sodium formate
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in 100–1200 Da. Data were collected in continuum mode with a Masslynx™ V4.1 (Waters
Technologies, Milford, MA, USA) workstation.

4.6. Data Processing and Statistical Analyses

The MS raw data were processed following a standard pipeline, starting from an
alignment based on the m/z value and the ion signals’ retention time, and the peak picking
and signal filtering were based on peak quality using the Progenesis QI v.3.0 software
from Waters (Waters Technologies, Milford, MA., USA). Features detected in at least
80% of the samples were retained for further analyses. Multivariate statistical analysis
was performed using MetaboAnalyst version 5.0 (McGill University, Montreal, Canada)
(http://www.metaboanalyst.ca, accessed on 5 January 2023) [47]. For proper selection of the
right statistical model, the datasets (compounds and abundances) were mean-normalized,
Pareto-scaled, and log-transformed to maintain their normal distribution. The normalized
datasets generated partial least squares-discriminant analysis (PLS-DA) and orthogonal
partial least squares-discriminant analysis (OPLS-DA) models. OPLS-DA models created
were evaluated using the fitness of model (R2Y) and predictive ability (Q2) values with
a permutation validation of 100 samples. Univariate analysis was performed using Mass
Profiler Professional software (Agilent Inc., Santa Clara, CA, USA) [48]. In addition, volcano
plots were used to identify, using MPP Software, the significantly altered mass features,
which were based on a fold change (FC) cut-off of 1.5 and a no correction p value < 0.05.
The heatmap analysis for the altered features was performed using the distance measure of
Pearson. Pathway analysis, biomarkers linked with MCAD disorder, and receiver operating
characteristic (ROC) curves were created using the PLS-DA approach in MetaboAnalyst v
5.0 for the purpose of global analysis, which was conducted to identify possible biomarkers.

4.7. Peak Annotation (Metabolite Identification)

The significant features in each dataset were selected and tagged in ProgensisIQ
software for peak annotation. The chemical structures of the metabolites were identified by
acquiring their accurate precursor masses, fragmentation pattern, and isotopic distribution
to the Human Metabolome Database (HMDB) [49]. The precursor mass and theoretical
MS/MS fragmentation tolerance values were set to 12 ppm. The exogenous compounds,
such as drugs, food additives, and environmental compounds, were excluded manually
from the final list.

5. Conclusions

Our metabolomics findings have added more significant insights into the pathological
and diagnostic aspects of MCADD, which should be integrated with the general knowledge
driven by NBS and genetic testing to provide a complementary understanding of MCADD
and its pathology. Our study gives a metabolomics basis for future studies that are focused
on MCADD. It also helps clinical scientists and physicians visualize a larger picture of the
pathophysiology of MCADD, which could assist in the improved diagnosis and treatment
of MCADD.
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