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Abstract: Phosphate (PO4
3−) is an essential nutrient in agriculture; however, it is hazardous to

the environment if discharged in excess as in wastewater discharge and runoff from agriculture.
Moreover, the stability of chitosan under acidic conditions remains a concern. To address these
problems, CS-ZL/ZrO/Fe3O4 was synthesized using a crosslinking method as a novel adsorbent
for the removal of phosphate (PO4

3−) from water and to increase the stability of chitosan. The
response surface methodology (RSM) with a Box–Behnken design (BBD)-based analysis of variance
(ANOVA) was implemented. The ANOVA results clearly showed that the adsorption of PO4

3−

onto CS-ZL/ZrO/Fe3O4 was significant (p ≤ 0.05), with good mechanical stability. pH, dosage,
and time were the three most important factors for the removal of PO4

3−. Freundlich isotherm
and pseudo-second-order kinetic models generated the best equivalents for PO4

3− adsorption. The
presence of coexisting ions for PO4

3− removal was also studied. The results indicated no significant
effect on PO4

3− removal (p ≤ 0.05). After adsorption, PO4
3− was easily released by 1 M NaOH,

reaching 95.77% and exhibiting a good capability over three cycles. Thus, this concept is effective
for increasing the stability of chitosan and is an alternative adsorbent for the removal of PO4

3−

from water.

Keywords: phosphate adsorption; zeolite; chitosan; ZrO; Fe3O4; Box–Behnken design;
mechanical stability

1. Introduction

Phosphate (PO4
3−) is a macronutrient needed for plant growth and is frequently ap-

plied as a fertilizer on agricultural lands. The increasing demands of food supply nowadays
have led to the excessive application of fertilizer. However, excessive fertilizer use can
cause PO4

3− to leach into waterways, leading to eutrophication and harmful algal bloom.
These blooms diminish oxygen levels [1–3], interfere with aquatic life, and adversely affect
the quality of drinking water (taste and odor) [4]. According to [5], PO4

3− decontamina-
tion must be performed efficiently while having a minimal impact on the surrounding
ecosystem. Many methods have been reported to be effective in removing PO4

3− from
water, including biological [6] methods, electrochemical [7,8] methods, precipitation [9], ion
exchange [10], and adsorption [11,12]. Each strategy has advantages and disadvantages.
Biological techniques are more economical; however, the residue of dead bacteria left
behind after the process is inconvenient [13]. Electrochemical techniques are expensive but
have a lower effectivity toward PO4

3− removal [14]. The precipitation process is simple

Int. J. Mol. Sci. 2023, 24, 9754. https://doi.org/10.3390/ijms24119754 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms24119754
https://doi.org/10.3390/ijms24119754
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-2399-9737
https://orcid.org/0000-0003-0839-5193
https://doi.org/10.3390/ijms24119754
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24119754?type=check_update&version=1


Int. J. Mol. Sci. 2023, 24, 9754 2 of 19

and effective for chemical treatment but is inefficient for sewage sludge and waste dis-
posal [15]. Ion exchange may also be used to remove anions by exchanging sulfates (SO4

2−)
for PO4

3− ions; however, this would make the solution more corrosive, and it requires a
costly clean-up (Blaney et al. [16]). Adsorption is the best option and is the most widely
used method for water contaminants including PO4

3− ions [17,18]. This is because the
technique is environmentally safe, the operation is easy and fast, and the technology is
highly efficient.

Chitosan is currently gaining popularity as a potential adsorbent for water contam-
inants because it contains hydroxyl (–OH) and amino (–NH2) functional groups, which
can easily react with other materials and are environmentally friendly [19]. This mate-
rial, which cannot be accessed readily from nature, is synthesized through the chemical
deacetylation of chitin. However, because of its low tensile strength and dissolution under
acidic conditions, the use of chitosan directly in wastewater treatment technologies is not
recommended. Therefore, chitosan must be modified to increase its chemical stability
and adsorption capability [20]. The selection of an appropriate modification method and
modifying agent is crucial for assessing the quality and functionality of the product created
during the modification process. Crosslinking is one of the most frequently used proce-
dures to enhance the physicochemical characteristics of chitosan [21,22]. Crosslinking is
the process of combining two or more molecules via covalent bonds.

Zeolites are crystalline aluminum silicate (Al2O3·2SiO2) minerals with a porous and
highly stable structure, and they could enhance the adsorption of chitosan onto their surface,
leading to the improved stability of chitosan. These materials can be obtained from natural
sources, such as shrimp, or can be synthesized using various methods [23]. Several reports
have proven the use of chitosan and zeolite to remove dyes [24,25], pharmaceuticals [26],
nitrate [27], and humic acid [28]. On the other hand, the fabrication of chitosan–metal
oxides has attracted the attention of a lot of scientists owing to their numerous beneficial
characteristics, such as chemical stability, a large surface area, and favorable adsorptive
characteristics [29]. Magnesium oxide (MgO) [30], titanium oxide (TiO) [31], zinc oxide
(ZnO) [32,33], zirconium oxide (ZrO) [34], and copper oxide (CuO) [35] are examples of
metal oxides. ZrO was selected for this study owing to its strong affinity for anions [36].

The separation of the adsorbents is another issue of concern since the usual separation
procedures result in the loss of the adsorbents as well as possible dangers to the environ-
ment [37,38]. Magnetite (Fe3O4) is one of the most magnetic particles that can be used in the
manufacture of magnetic adsorbents for water purification because of its biodegradability,
thermal stability, and large surface area [39,40]. The use of the crosslinking method to
combine magnetite, zeolite, ZrO, and chitosan is a viable strategy. This is because the
magnetic particles allow for easy separation when subjected to an external magnetic field,
while the chitosan, zeolite, and ZrO provide many adsorption sites [41]. Therefore, the
amalgamation of chitosan/zeolite/ZrO, and Fe3O4 (CS-ZL/ZrO/Fe3O4) may result in the
development of novel composite materials with multifunctional constituents.

This study synthesized CS-ZL/ZrO/Fe3O4 with the target of using it as a novel
adsorbent for PO4

3− removal from water. The response surface methodology (RSM) with
the Box–Behnken design (BBD) optimization strategy was used to acquire insight into the
effect of process factors such as pH, adsorbent dosage, temperature, and time to achieve
the maximal adsorptive removal of PO4

3−. This process was performed to obtain the
highest PO4

3− adsorptive removal. The adsorption isotherms and kinetic models were also
calculated to figure out the adsorption mechanism.

2. Results and Discussion
2.1. Characterization of CS-ZL/ZrO/Fe3O4

The experimental results of BBD are listed in Table 1. It can be concluded that a pH of
2 offers the best conditions for PO4

3− removal. The pHZPC findings revealed that, at a pH
of 2, the surface of CS-ZL/ZrO/Fe3O4 had a positive charge (pH < pHzpc) (Figure 1a). This
might indicate the protonation of the -NH2 groups to -NH3

+ groups on the surface. These
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attract negatively charged H2PO4
− ions to CS-ZL/ZrO/Fe3O4, resulting in the construction

of a surface complex between PO4
3− ions and CS-ZL/ZrO/Fe3O4. This study was similar

to that reported by [42,43], which used SCBC-La and leftover coal, respectively, for PO4
3−

removal under acidic conditions. The other possible reaction that could occur is shown in
Equation (1).

Fe3O4 + 4Zr(OH)4 + 6H2PO4−→ FeZr(PO4)3 + 12H2O (1)

Table 1. Experimental data results from 4 factors of BBD for PO4
3− removal onto CS-ZL/ZrO/Fe3O4.

Run pH Dosage Temperature Time % Removal

1 2 0.02 45 35 58.95
2 10 0.02 45 35 51.75
3 2 0.10 45 35 72.77
4 10 0.10 45 35 54.54
5 7 0.06 30 10 61.83
6 7 0.06 60 10 56.68
7 7 0.06 30 60 64.95
8 7 0.06 60 60 64.94
9 2 0.06 45 10 59.09
10 10 0.06 45 10 54.34
11 2 0.06 45 60 72.75
12 10 0.06 45 60 59.57
13 7 0.02 30 35 56.02
14 7 0.10 30 35 61.46
15 7 0.02 60 35 56.69
16 7 0.10 60 35 59.69
17 2 0.06 30 35 66.84
18 10 0.06 30 35 60.16
19 2 0.06 60 35 64.70
20 10 0.06 60 35 55.08
21 7 0.02 45 10 54.40
22 7 0.10 45 10 58.87
23 7 0.02 45 60 56.72
24 7 0.10 45 60 69.58
25 7 0.06 45 35 53.48
26 7 0.06 45 35 55.47
27 7 0.06 45 35 53.47
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Figure 1. (a) pHzpc of CS-ZL/ZrO/Fe3O4, (b) XRD spectra of CS-ZL/ZrO/Fe3O4, and (c) photograph
of CS-ZL/ZrO/Fe3O4 (taken by phone).

Table 2 summarizes the physical characteristics of these adsorbents. The results show
that the BET-specific surface area was 88.1 m2/g, with a pore volume of 0.572 mL/g, an
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average diameter of 43.9 µm, and a porosity of 59%. These parameters show that the
adsorbent had a substantial surface area for the adsorption of PO4

3− ions.

Table 2. Physical properties of the adsorbent.

Specific Surface Area Value

BET-specific surface area (m2/g) 88.1
Pore volume (mL/g) 0.572
Average diameter (µm) 43.9
Porosity (%) 59

Figure 1b shows the XRD data used to verify the crystalline structure of the composite
material. The XRD pattern shows a huge hump around 2θ = 21.22, which is a chitosan-
specific peak [20]. Furthermore, the sharp peaks at 30.11, 35.49, 43.21 are mostly composed
of crystalline phases, such as quartz, hematite, and alumina, which are all formed from
zeolite- and zirconium-based materials. Magnetite corresponds to the peaks at 53.52, 57.08,
and 62.78 [44]. Figure 1c shows a photograph of CS-ZL/ZrO/Fe3O4. It can be seen that the
adsorbent is attached to the external magnet.

The SEM-EDS characterization of CS-ZL/ZrO/Fe3O4 was carried out to explore the
surface properties and chemical components of the material. Figure 2 and Table 3 compare
the SEM images and EDS data before and after PO4

3− adsorption. Before adsorption, the
surface morphology of the adsorbent was sticky, rough, and porous. The surface became
smooth and compact after PO4

3− adsorption, and this indicates that PO4
3− ions were

trapped on the adsorbent surface. The primary objective of the EDS data analysis was to
identify the components of the adsorbent materials. The weight percentages of Zr and
Fe were the highest at 50.68 and 38.92%, respectively. The N value was derived from
the chitosan materials [45–47]. Al, Si, and Fe were derived from zeolite and magnetite,
respectively. Furthermore, the presence of P after the adsorption process indicates that
PO4

3− was successfully adsorbed.
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Figure 2. SEM images before (a), and after (b) PO4
3− adsorption.

Table 3. EDS data before and after PO4
3− adsorption.

Element
Weight % Atomic %

Before After Before After

N 3.27 2.06 13.43 7.66
Al 0.78 0.93 1.65 1.79
Si 6.35 1.70 12.98 3.15
Fe 38.92 56.39 40.03 52.69
Zr 50.68 27.76 31.91 15.88
P 11.17 18.82
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Figure 3 shows the functional groups in CS-ZL/ZrO/Fe3O4 before and after PO4
3−

adsorption through an FTIR-ATR analysis. A CS-ZL/ZrO/Fe3O4 band was detected
following PO4

3− adsorption from 3326 cm−1 to 3320 cm−1. This shows that PO4
3− ions

interact with the stretching vibrations of hydrogen and amine in chitosan [48]. After
PO4

3− adsorption, a decrease in the peak from 1634 to 1627 cm−1 was observed, which is
associated with carboxyl groups (–COOCH3) [49]. An increased peak and a more curved
and newer peak appeared after PO4

3− adsorption from 951 to 1006 cm−1 and at 2161 cm−1,
which were assigned to Si-O-Al, Fe-O-Si, or Zr-O-Fe and CN stretching, respectively. This
indicated a strong interaction with PO4

3− ions.
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Figure 3. FTIR-ATR before, and after PO4
3− adsorption.

2.2. Mechanical Stability

The mechanical stability of the CS-ZL/ZrO/Fe3O4 composite was determined through
the percentage of the initial mass that was preserved after drying. Figure 4a shows that
increasing the concentration of the solution led to a higher WR%. Compared to the HCl-
containing solution, the H2SO4-containing solution exhibited a higher WR%. Consequently,
the crystalline structure of CS-ZL/ZrO/Fe3O4 was deformed, indicating that H2SO4 had
significant contact with the chitosan group. Figure 4b shows the IR spectra after treatment.
The positions of the peaks were consistent for all the samples. According to [50], the broad
band visible at 3176–3345 cm−1 is assigned to the -NH2 groups changing to –NH3

+ groups.
The peaks between 1611 and 1630 cm−1, which were ascribed to the carboxyl (–COOCH3)
and –NH2 groups, were generated through H+ generation by HCl and H2SO4. The peak
shifted to 1068 cm−1, and expansion occurred when treated with 0.1 M H2SO4. SO4

2− ions
have been shown to be associated with Si, Al, Fe, and Zr [51]. According to these results,
the physical and chemical characteristics of the CS-ZL/ZrO/Fe3O4 composites did not
change significantly.
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after treatment. Solution a (0.01 M HCl), b (0.1 M HCl), c (0.01 M H2SO4), and d (0.1 M H2SO4).
Standard deviation (error bars).

2.3. ANOVA and Equations for Fitting Empirical Models

Table 4 shows the results of the statistical analysis, using the ANOVA test to evaluate
the relationship between the input effective variables (A, B, C, and D) and their responses
(Y). Table 4 shows that the F-value of the quadratic model was 16.68 and that the p-value
was <0.0001, indicating that this model was significant. Models A, B, D, A2, C2, D2, A × B,
A × D, and C × D, marked with an asterisk (*), were found to be significant parameters of
the model. The statistical variables obtained from the ANOVA test (Equation (2)) provide a
full quadratic regression model for PO4

3− removal (%).

PO4
3− removal (%) = 99.2 − 1.72 A + 63 B − 1.478 C − 0.472 D + 0.2333 A2 + 840 B2 + 0.01575 C2 + 0.00661 D2 −

17.23 A*B − 0.0123A*C − 0.02107 A*D − 1.02 B*C + 2.098 B*D + 0.00343 C*D
(2)

Table 4. ANOVA results for PO4
3− removal.

Source DF Sum of Squares Mean of Squares F-Value p-Value Remarks

Model 14 839.751 59.982 16.68 <0.0001 * Significant
A 1 296.610 296.610 51.8093 <0.0001 *
B 1 149.672 149.672 12.5582 <0.0001 *
C 1 15.143 15.143 1.2835 0.063
D 1 156.241 156.241 0.6342 <0.0001 *
A2 1 74.285 74.285 12.8151 0.001 *
B2 1 9.642 9.642 1.4722 0.127
C2 1 67.008 67.008 7.1279 0.001 *
D2 1 90.952 90.952 1.9374 <0.0001 *
A × B 1 30.415 30.415 4.2734 0.013 *
A × C 1 2.161 2.161 0.3036 0.453
A × D 1 17.766 17.766 8.2118 0.046 *
B × C 1 1.488 1.488 0.2091 0.532
B × D 1 17.598 17.598 0.0540 0.047 *
C × D 1 6.605 6.605 1.84 0.200
Error 12 43.157 3.596
Lack-of-Fit 10 40.504 4.050 3.05 0.272
Pure Error 2 2.653 1.3267
Total 26 882.908
R2 95.11
R2 adj 89.41

* Significant.

The coefficients in the equation with positive and negative signs describe the additive
and multiplicative effects of the variables on the response. The “Lack of Fit” was determined
by comparing the residual error to the pure error in close proximity to the repeatedly



Int. J. Mol. Sci. 2023, 24, 9754 7 of 19

designed points. F = 3.05 and p = 0.272 for the “Lack of Fit” revealed that it was not
significant for the model (p < 0.05). It can be assumed that the model was adequately fitted
and that there was no lack of fit.

The R2 value of the calculated second-order response model was 95.11, which is also
known as the coefficient of determination. Consequently, it can be applied to reliably
calculate the response at any given parameter level regardless of their values. In addition,
a regression model was used to calculate the standardized influence of the independent
factors on PO4

3− removal. A response surface plot was generated to investigate the
influence of two components at initial the PO4

3− concentration of 20 mg/L (Figure 5).
This plot was used to determine the standardized effects of all the independent variables.
A surface plot is an easier way to display the response behavior that occurs when two
parameters are simultaneously altered at the same time. It is more beneficial to select
the quantity of various ingredients to obtain the desired response. Figure 5a displays a
Pareto chart that compares the relative magnitude and the corresponding main, square, and
interaction effects of the selected variables. The square effects of all four factors were found
to be very significant (p≤ 0.05) in addition to the main effects of the factors, which were also
found to be highly significant (p ≤ 0.05). The ANOVA results reported in Table 4 led to the
same conclusions. PO4

3− removal continuously increased in response to the pH, adsorbent
dosage, and time. Figure 5b,c show that pH is a key factor in the removal of PO4

3−, and
Figure 5d shows that increasing the contact time increases the percentage removal.
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2.4. Initial Concentration and Isotherm Studies

The effects of the initial PO4
3− concentrations ranging from 20 to 500 mg/L, 0.06 g

of adsorbent (CS-ZL/ZrO/Fe3O4), and pH (2.0) were investigated. Figure 6 shows that
the PO4

3− adsorption capacity rose from 30.64 to 682.31 mg/g; however, the percentage
of PO4

3− removal decreased from 91.91% to 81.88%. The adsorption capacity increased
with the concentration because the total number of molecules increased. Consequently,
the mass transfer resistance of adsorbate decreased. As a result, the percentage of removal
decreased [52].
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Figure 6. Effect of initial concentration on PO4
3− removal onto CS-ZL/ZrO/Fe3O4. Standard

deviation (error bars).

Adsorption isotherms are necessary to assess the capabilities of an adsorbent and the
interactions between an adsorbate (a solution containing PO4

3− ions) and an adsorbent
(CS-ZL/ZrO/Fe3O4). The acquired isotherm parameters can be used to conduct an ac-
curate analysis while constructing an effective adsorption system. Both the equilibrium
concentration and the adsorption capacity were estimated. The Langmuir model describes
the monolayer adsorption processes at the designated homogenous surfaces on the ad-
sorbent (Equation (3)). The essential property of the Langmuir model can be described
as a dimensionless constant also known as the separation factor (RL), which is shown in
Equation (4). By contrast, the Freundlich model is based on heterogeneous surfaces and
multilayer sorption (Equation (5)). This is a linear equation, which is shown as follows:

Ce/qe = (
Ce

qmax
) + 1/(K1qmax) (3)

RL= (
1

1 + bCo
) (4)

Ln q = lnKf +
1
n

x lnCe (5)

qe (mg/g) is the adsorption capacity; K1 (L/mg) is the equilibrium constant of adsorption;
qmax (mg/g) is the maximal adsorption capacity; Ce (mg/L) is the equilibrium concentra-
tion; Co (mg/L) is the initial concentration; RL is the separation factor; 0 < RL is favorable;
RL > 1 is unfavorable; RL = 1 is linear; and Kf (mg/g) and 1/n are the adsorption capacity
and the intensity of adsorption, respectively.
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Figure 7 shows the isotherm model curves, and Table 5 shows the fitting results
corresponding to these curves. The Freundlich model’s linear correlation coefficient (R2)
was 0.9970, indicating that it provided the best fit compared to the other models. More
importantly, the Langmuir and Freundlich parameters, known as RL and 1/n, indicate that
the PO4

3− ion has a type of <1. According to these data, the PO4
3− adsorption method

is favorable.
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Table 5. Isotherm model parameters for PO4
3− removal onto CS-ZL/ZrO/Fe3O4.

Isotherms Parameters Value

Langmuir

qmax 1259.79
KL 14.27
R2 0.7409
RL 0.0007

Freundlich
Kf 1135.07

1/n 0.7555
R2 0.9970

2.5. Adsorption Kinetic Studies

This study investigated the influence of the contact time (35–2880 min) on PO4
3−

adsorption at 30 ◦C. Figure 8 shows that the percentage of PO4
3− removal and the capacity

for adsorption increased rapidly from 35 to 60 min and then gradually increased up to
90 min. This is because the adsorbent includes carboxyl, amine, hydrogen, and magnetite
groups, all of which cause the adsorbent surface to become active and trap PO4

3− ions.
Subsequently, the adsorption capacity decreased and increased, resulting in fast/slow
PO4

3− adsorption, and it finally reached equilibrium at 1440 min, with an adsorption
capacity and percent removal of 732.56 mg/g and 87.91%, respectively.

Adsorption kinetic studies are important because they deliver information on the
adsorption mechanism, which is necessary to assess the effectiveness of the process [53].
Two kinetic models were used in this study: pseudo-first-order (PFO) (Equation (6)) and
pseudo-second-order (PSO) (Equation (7)) models were investigated. The linear form can
be obtained by calculating the following equation.

Log
(
qe − qt

)
= log qe −K1t (6)

t/qt = 1/
(

K2qe
2
)
+ t/qe (7)
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where k1 (min−1) is the rate constant of the PFO model, t (min) is the time, and a linear plot
of log t against log (qe − qt) and t against t/qt was used to determine K1 and K2 from the
slope of the linear plots, respectively.
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Figure 8. The effect of contact time on PO4
3− removal onto CS-ZL/ZrO/Fe3O4. Standard deviation

(error bars).

Figure 9 shows the fitting curves for the kinetic models, and Table 6 lists the fitting
results corresponding to those curves. The findings confirm that the PSO model provided
better results than the PFO model in terms of the linear correlation coefficient R2 value
(0.9979). These findings imply that chemical processes control the adsorption rate.
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Table 6. Kinetic model parameters for PO4
3− removal onto CS-ZL/ZrO/Fe3O4.

Kinetics Parameters Value

PFO
qe 2.5165
K1 1.42857 × 10−6

R2 1.00 × 10−4

PSO
qe 510,204.1
K2 0.000119
R2 0.9979
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2.6. Effect of Anions and Cations on PO4
3− Removal onto CS-ZL/ZrO/Fe3O4

Wastewater contains various substances, including anions and cations, which can
affect the adsorption process [54]; it is essential to investigate the effect of ionic strength
in an aqueous solution. This is because wastewater is made up of numerous components
that might be found together. Figure 10 depicts the effect of different anions and cations
on the PO4

3− adsorption capacity of CS-ZL/ZrO/Fe3O4. The experimental data indicate
that there was no significant influence on PO4

3− removal. It revealed that the fabrication of
CS-ZL/ZrO/Fe3O4 was effective in eliminating PO4

3− from water.
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2.7. Desorption Studies

Figure 11a shows the desorption percentage of PO4
3− at different NaOH concen-

trations from 0.01 M to 1 M for 30 min at 30 ◦C. The results indicate that increasing the
concentration increased the desorption percentage to 95.77%. Then, subsequent experiment
at different contact times, from 30 to 150 min, using 1 M NaOH (Figure 11b). The desorption
percentage increased and then decreased up to 150 min, which is similar to the results
of the adsorption studies. The highest desorption percentage was observed after 30 min.
The desorption mechanism may cause the hydroxide ions (OH-) in the sodium hydroxide
solution to react with the CS-ZL/ZrO/Fe3O4-P surface and replace the PO4

3− groups,
resulting in the release of PO4

3− into the liquid solution (Equation (8)). The reusability
studies of PO4

3− adsorption onto CS-ZL/ZrO/Fe3O4 showed good performance for three
cycles (Figure 11c).

H2PO4
− + OH− → HPO4

2− + H2O (8)
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2.8. Adsorption Performance Comparison

Table 7 compares the equilibrium and maximum adsorption capacity of CS-ZL/ZrO/
Fe3O4 with those of various adsorbents. It can be seen that the pH is one of the main factors
for PO4

3− removal onto the adsorbent, and the surface charge can become either positive
or negative over a wide pH range, which influences the interaction between the adsorbent
and PO4

3− ions. It is clear that the CS-ZL/ZrO/Fe3O4 adsorbent has a higher capacity than
the other adsorbents. It is feasible to conclude that these adsorbents are viable alternatives
for removing PO4

3− from water.

Table 7. List comparing PO4
3− adsorption amounts.

Adsorbent pH qe (mg/g) References

Magnetic iron oxide nanoparticles 11 5.03 [1]
Fe-HNT 4 5.46 [18]
Halloysite 4 3.56 [18]
20MMSB 4 121.25 [55]
Amine-functionalized nano magnetic Fe3O4 polymer 3.0 102.04 [56]
MFB-MCs 3.0 487.99 [57]
Fe3O4@SiO2 core/shell magnetic nanoparticles - 27.8 [58]
AgNPs-TAC 3 13.62 [59]
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Table 7. Cont.

Adsorbent pH qe (mg/g) References

Ce0.8Zr0.2O2 6.2 112.23 [60]
Zr/Al-Mt 5.0 17.2 [61]
PZC 7.3 11 2.41 [62]
Zeolite 11 0.69 [62]
Biochar 11 3.60 [62]
CS-ZL/ZrO/Fe3O4 2 732.56 Present study

3. Materials and Methods
3.1. Materials

Chitosan (CH) (C6H11NO4) with molecular weight of 100,000–300,000 Da was bought
from Acros Organics, Belgium. Zeolite (ZL) (Al2O3·2SiO2) was obtained from Tosoh Co.
Ltd., Japan. Sodium hydroxide (NaOH), acetic acid (CH3COOH), disodium hydrogen
phosphate (Na2HPO4), ferric chloride (FeCl3), ferrous sulfate (Fe2SO4), ammonium molyb-
date ((NH4)6Mo7O24·4H2O)), antimony potassium tartrate (K2Sb2(C4H2O6)2), ascorbic acid
(C6H8O6), hydrochloric acid (HCl), and sulfuric acid (H2SO4) were bought from Kanto
Chemical Co., Inc., Tokyo, Japan. ZrClO was purchased from Fujifilm Wako Chemical,
Tokyo, Japan.

3.2. Synthesis of CS-ZL/ZrO/Fe3O4

CS-ZL/ZrO/Fe3O4 was synthesized through crosslinking method; chitosan (1 g) was
dissolved in 100 mL of acetic acid (1%), and the resulting viscous solution was maintained at
ambient temperature (25–30 ◦C) with magnetic stirring for 24 h (Equation (9)). Subsequently,
25 mL of the resulting chitosan solution was mixed with 0.5 g of zeolite and 20 mL of 1 M
FeCl3 + 0.5 M Fe2SO4 + 0.5 M ZrClO. The mixture solution was then heated to 60 ◦C and
was stirred for 1 h. The pH of the solution was adjusted to 10 using 3 M NaOH over 24 h
with magnetic stirring at ambient temperature (25–30 ◦C), and the solution was filtered and
washed multiple times with acetone and distilled water (DW) to remove any remaining
NaOH. Subsequently, the materials were dried for 48 h in an oven at 60 ◦C (Equation (13)).
The adsorbents are referred to as CS-ZL/ZrO/Fe3O4.

(CH3COOH)n + (C6H11NO4)m→ (CH3COO−)n(C6H11NO4H+)m (9)

(C6H11NO4H+)n + Al2O3·2SiO2 → (C6H11NO4 − Al2O3·2SiO2)n + 2H2O (10)

5FeCl3 + 15Fe2(SO4)3 + 12NaOH→ 5Fe3O4 + 15Na2SO4 + 6H2O + 36NaCl (11)

FeCl3 + 3Fe2(SO4)3 + ZrClO + 14NaOH→ 5Fe3O4 + Zr(OH)4 + 2Na2SO4 + 6NaCl + 7H2O (12)

2(CH3COO−)n(C6H11NO4H+)m + 3Al2O3·2SiO2 + 3FeCl3 + Fe2SO4 + ZrClO4 + 14NaOH→ [3Al2O3·2SiO2 −
(C6H11NO4)]2m/3·Fe3O4·xH2O + 3Fe(OH)3 + 2Zr(OH)4 + 6NaCl + (2n + 2m)CH3COONa + (2n + m)H2O

(13)

Following this reaction, the negatively charged surface of the zeolite (Al2O3.2SiO2)
may interact with the positively charged chitosan to produce chitosan–aluminosilicate
complex. Electrostatic interactions between Fe3+ and Zr4+ ions and chitosan are another
mechanism by which chitosan combines with metal ions to form chitosan–metal complexes.
Fe(OH)3 and Fe3O4 are formed when Fe2+ and Fe3+ ions react with hydroxide ions (OH−)
from NaOH.

3.3. The Design of the Experiment

Experiments were conducted using response surface methodology (RSM) in combina-
tion with Box–Behnken design (BBD), and statistical analysis was performed using Minitab
21.3.1 software. (A) The pH (2–10), (B) dosage (0.02–0.1 g), (C) temperature (30–60 ◦C),
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and (D) contact time (10–60 min) were the independent variables examined in the BBD,
with three levels and four parameters (Table 8). In total, 27 different sets of experiments
were performed to determine the optimal conditions for PO4

3− removal. The data obtained
were assessed using an equation for a quadratic polynomial response surface, which was
calculated using Equation (14), to identify the relationships between independent variables
and response.

Y = E0+E1A + E2B + E3C + E4D + E11A2+E22B2 +E33C2+E12AB + E13AC + E23BC + ε (14)

Table 8. Variables and levels.

Symbol Factor Level 1 (− 1) Level 2 (0) Level 3 (+ 1)

A pH 2 7 10
B Dosage (g) 0.02 0.06 0.10
C Temperature (◦C) 30 45 60
D Time (min) 10 35 60

The coefficients of the polynomial model are represented as follows: E0 is constant ex-
pression, E1–E3 are linear effects, E11–E33 are second-order effects, E12–E23 are interactive
effects, and ε is error term. An analysis of variance (ANOVA) was performed to calculate
the F- and p-values of the model to measure its statistical significance and appropriateness.
The statistical significance of the model is shown through the model’s F-value and p-value,
and a lack-of-fit study of the proposed model was executed using Minitab 21.3.1 software.
In addition, a 3D response surface plot and Pareto chart of standardized effects were devel-
oped to figure out the cooperative quantitative impact of the independent variables on the
response and overall value of the model [63].

3.4. Batch Adsorption Study and Response Determination (PO4
3− Removal %)

To evaluate the efficiency of PO4
3− removal, batch adsorption approach was used

in this study. In total, 100 mL of PO4
3− (20 mg/L) was placed in a 300 mL conical flask.

After the adsorption procedure was completed, external magnetite was placed in the
conical flask to separate the adsorbent and adsorbate. PO4

3− removal was calculated using
Equation (15).

PO4
3− removal % =

Co −Ce

Co
× 100 (15)

where Co and Ce are the initial and equilibrium PO4
3− concentrations (mg/L), respectively.

The data from run 17 of the BBD were used for subsequent experiments (isotherm
and kinetic models). However, 30 min was not used because the results were far from
equilibrium. The amount of PO4

3− adsorbed was determined using Equation (16).

qe =
Co −Ce

W
× V (16)

where qe (mg/g) is the adsorption capacity, W (g) is the amount of CS-ZL/ZrO/Fe3O4, and
V (L) is the volume of adsorbate (PO4

3− solution).

3.5. Adsorption Isotherm Studies

The isotherm model was studied with PO4
3− solutions ranging from 20 mg/L to

500 mg/L with pH of 2. These examinations were performed for 60 min at 30 ◦C, and
adsorbent dosage of 0.06 g was placed in the flask. In this work, Langmuir and Freundlich
models were used to assess PO4

3− adsorption onto CS-ZL/ZrO/Fe3O4 [64].

3.6. Adsorption Kinetic Studies

Pseudo-first-order (PFO) and pseudo-second-order (PSO) models were used to in-
vestigate the model of adsorption kinetics. The following parameters were used in the
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experiment: an adsorption temperature of 30 ◦C, an initial PO4
3− concentration of 500 mg/L

at pH of 2, an adsorbent dosage of 0.06 g, and contact time ranging from 35 to 2880 min.

3.7. Influence of Coexisting Ionic Strength

The experiment was conducted under optimum conditions with a dosage of 0.06 g,
an initial PO4

3− concentration of 500 mg/L, and a contact time of 1440 min at 30 ◦C. The
coexisting ion was prepared with cationic and anionic ions at a concentration of 20 mg/L
(Mg2+, Ca2+, CO3

2−, SO4
−, and Na+).

3.8. Desorption and Reusability Studies

In most practical applications, it is essential to employ adsorbents with high level
of reusability. NaOH was chosen as desorbing agent to release PO4

3− ion from CS-
ZL/ZrO/Fe3O4. Firstly, 0.06 g of CS-ZL/ZrO/Fe3O4 was loaded with 500 mg/L of PO4

3−

ion at pH of 2.0, which was called CS-ZL/ZrO/Fe3O4-P. Then, 0.01 g of CS-ZL/ZrO/Fe3O4-
P was dispersed in 60 mL of NaOH at 30 ◦C. The desorption capacity and desorption
percentage are shown in Equations (17) and (18), respectively. Reusability was assessed
using the same treatment as described above.

qdes =
C
W
× V (17)

% Desorption =
qdes
qe
× 100 (18)

where qdes (mg/g) is the desorption capacity; C (mg/L) is the PO4
3− concentration of

desorption; % Desorption (%) is the percentage desorption; and W, V, and qe are the same
as above.

3.9. PO4
3− Measurements

PO4
3− ions were measured using the molybdate blue method. A total of 12 g of

(NH4)6Mo7O24·4H2O was mixed with 100 mL of DW. K2Sb2(C4H2O6)2 (0.277 g) was added
followed by 140 mL of 18 M H2SO4. Afterward, it was adjusted to 1 L with distilled water
(solution A). A total of 1.06 g of C6H8O6 was added to and mixed with 100 mL of solution
A, 25 mL of 4 N H2SO4 was added, and the solution was adjusted to 1 L with DW (solution
B). Note: This solution must be prepared in every experiment. The procedure for the
mixed solution was as follows: 2 mL of liquid sample/standard was mixed with 10 mL
of solution B. Afterwards, we waited for 30 min and then analyzed the solution using a
UV-Vis spectrophotometer (Jasco V-530) at a wavelength of 693 nm. A standard curve for
PO4

3− was constructed using Na2HPO4.

3.10. Mechanical Stability

The mechanical stability of the CS-ZL/ZrO/Fe3O4 composite was evaluated based
on the responses of the samples to a water bath shaker at 80 ◦C. For one hour, dried
CS-ZL/ZrO/Fe3O4 was soaked in HCl and H2SO4 concentrations ranging from 0.01 to
0.1 M. Following that, the sample was dried in an oven at 60 ◦C for twenty-four hours. The
calculation of the dry weight retention (WR) was performed using Equation (19).

WR (%) =
wi

wa
× 100 (19)

where wi and wa are the dry weights of CS-ZL/ZrO/Fe3O4 before and after treatment,
respectively.

3.11. Characterization of CS-ZL/ZrO/Fe3O4

The crystalline structure of CS-ZL/ZrO/Fe3O4 was analyzed using a powder X-ray
diffractometer (XRD) equipped with Cu/Kα radiation (Hypix-3000). Fourier transform
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infrared spectra (FTIR) of CS-ZL/ZrO/Fe3O4 were measured before and after PO4
3−

adsorption using a Thermo Scientific Nicolet iS10 instrument (Thermo Fisher Scientific
Inc., Waltham, MA, USA). The ATR-FTIR approach was used to analyze samples with a
resolution of 4 cm−1 throughout the wavenumber spectrum spanning 400–4000 cm−1. To
determine the specific surface area (SSA), the BET approach was combined with a surface
area analyzer (MicroActive AutoPore V 9600 2.03.00, Micromeritics, Norcross, GA, USA).
SEM-EDS (JIED-2300, Shimadzu, Kyoto, Japan) was used to examine the SEM images and
the elemental distributions of CS-ZL/ZrO/Fe3O4. The initial (pHi) and final (pHf) pH
values of the solutions were measured to determine the surface charge over a range of pH
values (pHzpc). The pHi was adjusted from 2.0 to 10.0 in 0.01 M NaCl solution. Following
that, 0.1 g of CS-ZL/ZrO/Fe3O4 was added and stirred for 24 h at 30 ◦C, and pHf was
measured. A plot of ∆pH = pHf − pHi vs. pHi was used to determine pHpzc, which
corresponds to the neutral surface charge.

3.12. Data Analysis

All results were noted and edited using Microsoft Excel. The effects of coexisting ions
on PO4

3− removal were examined using a completely randomized design (CRD). Data
were analyzed using ANOVA with Tukey’s test (p ≤ 0.05) using Minitab 21.3.1.

4. Conclusions

In this study, a novel adsorbent, CS-ZL/ZrO/Fe3O4, was prepared from chitosan (CS),
zeolite (ZL), ZrO, and magnetite (Fe3O4) via a crosslinking approach. The Box–Behnken
design (BBD) and the response surface methodology (RSM), with their corresponding
four separate factors (pH, dosage, temperature, and time), were used to develop the best
experimental conditions for PO4

3− removal. Weight retention (WR) was measured in a
batch reactor under acidic conditions (HCl and H2SO4) at 80 ◦C for 1 h to determine the
mechanical stability. The results indicate that CS-ZL/ZrO/Fe3O4 was stable and did not
change in the functional group peak area after treatment. The best conditions were at a pH
of 2.0, with an adsorption capacity and percentage removal of 732.56 mg/g and 87.91%,
respectively. The Freundlich isotherm and pseudo-second-order (PSO) kinetic models were
fitted to PO4

3− removal, indicating heterogeneous and chemical sorption. In addition, the
results suggest that PO4

3− adsorption occurred via the electrostatic interactions between
the positive charge of CS-ZL/ZrO/Fe3O4 and the negative charge of H2PO4− as well as
ion exchange and hydrogen bonding. The presence of coexisting ions (Mg2+, Ca2+, CO3

2−,
SO4

2−, and Na+) had no effect on the removal of PO4
3− (p ≤ 0.05). The desorption studies

revealed that 1 M NaOH was better at releasing PO4
3−, reaching 95.77% after 30 min of

treatment at 30 ◦C. The reusability of CS-ZL/ZrO/Fe3O4 showed good performance over
three cycles. These findings imply that CS-ZL/ZrO/Fe3O4 is the best way to improve the
stability of chitosan under acidic conditions, and it is a good adsorbent for removing PO4

3−

and other potential water pollutants from water.
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