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Abstract: Antisense RNA was observed to elicit plant disease resistance and post-translational gene
silencing (PTGS). The universal mechanism of RNA interference (RNAi) was shown to be induced by
double-stranded RNA (dsRNA), an intermediate produced during virus replication. Plant viruses
with a single-stranded positive-sense RNA genome have been instrumental in the discovery and
characterization of systemic RNA silencing and suppression. An increasing number of applications
for RNA silencing have emerged involving the exogenous application of dsRNA through spray-
induced gene silencing (SIGS) that provides specificity and environmentally friendly options for crop
protection and improvement.
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1. Introduction

RNA silencing is a revolutionary innate immunity mechanism in eukaryotes that
has greatly expanded our knowledge of gene expression and regulation in plants. RNA
interference (RNAi) is an important regulatory mechanism that has become an invaluable
tool for plant research, especially in terms of understanding the effects of gene regulation in
response to abiotic and biotic stress. RNAi has enabled researchers to gain insight into gene
function, pest resistance, and physiological processes in plants. Although RNA is known
to play critical roles in biology, the extensive capabilities and complexity of this nucleic
acid remained elusive and not fully understood. The intrinsic nature of the relatively labile,
often single-stranded RNA molecule, and limited availability of RNA-dependent enzymes
had slowed characterization and progress. Traditional research focused on messenger
transcript (mRNA), transfer RNA (tRNA), and ribosomal RNA (rRNA), but the universality
of the molecule to life remained underestimated [1]. The occurrence of viruses with
RNA genomes (gRNA), the dominant genome type of viruses in plants, provided an
extraordinary platform for the study of RNA function and gene expression. In a relatively
brief period of time, knowledge of the dynamic RNA molecule has dramatically increased,
and our understanding of RNA capabilities and applications rapidly expanded. This
review summarizes key developments in the discovery and characterization of RNAi and
examines applications in plants to advance agricultural biotechnology, crop engineering,
pest control, and virus resistance.

Plant viruses can cause major diseases in crops worldwide. Management has relied
on a combination of strategies involving virus eradication and transmission prevention.
Early studies reported the occurrence of cross-protection in plants where infection with a
mild strain of a virus protected against infection by more pathogenic strains [2]. A major
advance based on this phenomenon, and the suggestion that introduction of the viral
coat protein may provide protection, was the resistance observed with the introduction of
the Tobacco mosaic virus (TMV) coat protein mRNA into transgenic tobacco [3]. Several
subsequent studies reported a similar resistance for other groups of plant single-stranded
RNA (ssRNA) viruses including the family Solemoviridae, one of the most devastating
group of viruses worldwide for many important crops [4,5]. Molecular characterization
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and control of Solemoviridae has been especially challenging as they are phloem-limited and
transmitted in a persistent circulative manner by specific aphids.

2. RNA Interference

Remarkably, transformation of plants with the genus Polerovirus coat protein antisense
RNA of the Potato leafroll virus produced similarly high levels of reduced virus titre and
disease resistance as the corresponding sense mRNA [4,6]. The response was rapid and
all transformed plants exhibited sequence-specific sustained high levels of immunity re-
gardless of the virus inoculum concentration (Figure 1). Vector transmission of the virus by
the green peach aphid Myzus persicae was reduced and disease symptoms in foliage and
tubers were eliminated. This showed that RNA was capable of conferring resistance as a
trigger molecule and was subsequently observed in other plant virus groups [7]. Replica-
tive intermediates of RNA viruses include double-stranded RNA (dsRNA) and dsRNA
secondary structures that are produced to regulate gene expression and are relatively stable
compared to ssRNA due to the widespread occurrence of resilient ssRNA ribonucleases [8].
The disease resistance achieved with antisense RNA demonstrated an inherent ability of
RNA to protect against pathogens.
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Figure 1. RNA interference (RNAi) against virus infection. Sense and antisense RNA protection
against the single-stranded positive-sense RNA Potato leafroll virus (PLRV). Although phloem
limited, members of the genus Polerovirus are transmitted in a persistent, non-propagative manner
and cause considerable disease-related losses worldwide. The icosahedral virus is approximately
25 nm in size (top left transmission electron photomicrograph) is transmitted in an aphid-specific
manner by the green peach aphid, Myzus persicae, approximately 2.5 mm in length (top middle
scanning electron photomicrograph). Disease symptoms include stunting and chlorosis of infected
plants (top right) that reduce yield and quality. Virus titres in plants expressing coat protein messenger
RNA (mRNA, red line) or antisense RNA (aRNA, blue line) reduced virus levels significantly as
compared to untransformed controls (green line), determined by double antibody sandwich (DAS)
enzyme-linked immunosorbent assay (ELISA).

Experiments to transiently or stably increase endogenous gene expression often unex-
pectedly produced a decrease in mRNA. For example, attempts to overexpress chalcone
synthase (CHS) in pigmented petunia petals blocked anthocyanin biosynthesis [9]. De-
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velopmental timing and expression of the CHS mRNA by the endogenous gene was not
altered but the level of transcript was reduced by 50 fold. This posttranslational gene
silencing (PTGS) highlighted a regulatory mechanism of gene expression involving RNA
interference. Polygalacturonase involved in plant cell wall degradation and ripening was
inhibited in transgenic tomato expressing antisense RNA [10]. Similarities between viral
defense and gene silencing mechanisms suggested a common innate immunity in plants,
including the systemic signalling in gene silencing contributing to the sequence-specific
RNA interference [11,12].

3. Characterization of RNA Interference

RNA interference (RNAi) involves a sequence-specific suppression of gene expression
by transcriptional or translational repression. The results of the RNAi characterization
demonstrated that feeding or injecting gene-specific dsRNA into Caenorhabditis elegans
resulted in the disappearance of the targeted message [13]. Silencing effects were observed
with only a few molecules of unc-22 dsRNA per cell supporting a role as a trigger molecule.
The RNAi mechanism is a naturally occurring process in most eukaryotes, conferring an
ability of dsRNA to induce a sequence-specific systemic silencing process [6,9,10,13].

Exogenous dsRNA initiates RNAi by activating the ribonuclease Dicer enzymes that
bind and cleave dsRNA into 21–24-base-pair small interfering RNA (siRNA) fragments with
3′ overhangs of 2–3 nucleotides (Figure 2). Dicer proteins have an RNA helicase domain,
RNase III motifs, and nucleic-acid-binding PAZ domain [7]. The siRNA is converted to
ssRNA when the sense complimentary RNA strand is degraded by Argonaute (AGO)
enzymes and the antisense guide strand is incorporated into the RNA-induced silencing
complex (RISC). Members of AGO possess a PAZ domain and a PIWI domain, resembling
RNaseH, that are required for cleavage activity [7]. The RISC complex further uses this
strand to bind and degrade additional copies of sense complimentary RNA. Systemic
silencing occurs and the inherit specificity suggests that nucleic acid is the signal molecule
in plants [7,12]. Amplification of even weak silencing signals indicates that RNA-dependent
RNA-polymerase (RDRP) recognition and replication elicits effective silencing.
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Figure 2. Mechanism of RNA interference (RNAi). RNAi is initiated by the enzyme Dicer that cleaves
double-stranded RNA (dsRNA) into short fragments of approximately 21- to 24-nucleotide short
interfering RNA (siRNA). The siRNA is unwound into single-stranded RNA and the sense RNA
(green) is further cleaved and degraded by the enzyme Argonaute (AGO). The antisense RNA (red) is
recruited into the RNA-induced silencing complex (RISC) that binds to the target sense RNA through
the specificity of the complementary antisense RNA.
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The occurrence of double-stranded RNA during viral RNA replication and hairpin
RNA secondary structures regulating gene expression, indicated that ssRNA viruses have
an inherent protective mechanism from RNAi [14,15]. Silencing suppressors were subse-
quently identified within RNA virus genomes that targeted different components of RISC,
such as the DICER-LIKE (DCL) proteins, and inhibit innate RNA silencing [16]. Similar to
the systemic nature of RNAi, silencing suppressors were also capable of systemic silencing
suppression [17]. The application of RNA silencing suppressors, such as the Tomato bushy
stunt tombusvirus p19 protein, are often required in preventing PTGS in plant studies
expressing homologous or heterologous genes [14].

4. Applications of RNA Interference

Stably or transiently expressed genes and nucleic acids in genetically engineered
plants is often utilized in the study of gene function or the heterologous production of
commercially valuable products. The use of full-length infectious clones (FLICs) of RNA
viruses has facilitated the amplification of targeted genes, providing a convenient vector
platform that can circumvent RNAi for site-directed mutations and increase or reduce
gene expression to characterize PTGS and produce valuable heterologous commercial
products. Application of virus-induced gene silencing (VIGS) has successfully utilized
several RNA virus vectors including Tobacco rattle virus (TRV), Potato virus Y (PVY), TMV,
and PLRV [18–21]. Different virus vectors confer specific advantages such as titre and tissue
specificity. For example, field-grown plants are subjected to strict containment by regulatory
agencies to limit unexpected transmission in the environment by vectors. Phloem-specific
expression by the PLRV FLIC is not transmitted mechanically or by vector when the capsid
readthrough protein is replaced by the heterologous nucleic acid, eliminating accidental
movement of genetic materials (Figure 3).

Innate immunity is more complex than originally envisioned and the RNAi regulatory
mechanism is independent of other recognition and signalling pathways. Identification
of genes for gene receptors and avirulence proteins has advanced our understanding of
cellular resistance to a wide range of pathogens, including Pseudomonas syringae, Cladospo-
rium fulvum, and Verticillium species [22–25]. Mechanisms for signal amplification and
recognition by receptors of sessile plants has improved our understanding of an important
component of innate immunity [26,27]. Cross-protection and intracellular communication
has expanded with the discovery of RNAi and its role in innate immunity and gene regula-
tion through extracellular plant and fungal RNA [28,29]. Together the different sources of
innate immunity provide complementary strategies in controlling historically devastating
crop losses and emerging new threats to food production.

Exogenously introduced dsRNA to target plant pests began with the introduction
of dsRNAs through microinjections [30,31]. Microinjections are a favoured laboratory
technique because incredibly precise amounts of dsRNA can be introduced into the target
organism, allowing for precise delivery [32]. Although an adequate delivery method for lab-
and smaller-scale applications, microinjection unfortunately is not suitable for field-level
control of plant pests and pathogens [30,31]. Another delivery method involves the soaking
of an organism in a suspension that contains the target dsRNA or directly spraying it with
a solution containing the dsRNA [32]. This method may not be as exact as microinjection;
however, it is often used because of its ease of use and overall convenience. Many other
methods of RNA delivery have been examined and application choice is often influenced
by several factors including efficacy and economics (Table 1).
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Figure 3. RNA virus replication and applications. (a) Genomic and subgenomic RNA for the replica-
tion and translational strategies of the Potato leafroll virus, including a silencing suppressor produced
immediately following virus disassembly. Replication involves the production of antisense RNA
and subsequent sense subgenomic RNAs (sgRNAs) and expression of proteins involves several
translational strategies including leaky start and stop codons, proteolytic site-specific cleavage of
genomic RNA (gRNA), and an internal ribosomal entry site (IRES) sequence. (b) A full-length infec-
tious clone (FLIC) of the Potato leafroll virus RNA amplifies expression of heterologous sequences
for virus-induced gene silencing (VIGS) or production of commercially valuable proteins as shown
(magnification 0.25×) with green fluorescent protein (GFP).

Investigators have created transgenic plants that express desired dsRNAs to cause
RNAi-induced gene silencing in the target organism when it ingests plant material, referred
to as Host-Induced Gene Silencing (HIGS) [31,33]. One example of HIGS was transgenic
Zea mays (corn) called SmartStax Pro that was created to target corn rootworm (Diabrotica
vwirgifera virgifera) that was approved for commercial use by the U.S. Environmental
Protection Agency, the U.S. Food and Drug Administration, and the U.S. Department of
Agriculture [31,33,34]. Commercial acceptancet of transgenic plants has been challenging
due to general public concerns related to genetic engineering, especially the stable insertion
of nucleic acid from other organisms [33,35]. A similar pest control efficacy was achieved
with exogenously applied dsRNA in plants, representing a friendlier environmental and
regulatory strategy for protection and production improvements [30].

Microorganisms transformed to contain target dsRNA have also been evaluated as a
method for exogenous application. One notable example showed that bacteria transformed
to contain the target dsRNA could be fed to insects to induce RNAi [36]. These genetically
modified bacteria in some cases were even able to colonize the gut of the host and continue
to deliver dsRNA directly to it through the gut. Another example of the ingestion of a
transformed microorganism is the study of transformed Saccharomyces cerevisiae (yeast)
containing dsRNA targeting spotted wing fruit fly Drosophila suzukii [37]. This type of yeast
naturally occurs on the surface of rotting fruit that D. suzukii consumes, and therefore was
seen as a viable vector to induce oral ingestion of the dsRNA. They had success and found
that locomotor activity, survivorship, and reproductive fitness were all negatively impacted
by the complimentary dsRNA [37]. Acceptance of products derived from transgenic
platforms are subjected to elevated regulatory and consumer acceptance concerns.
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Table 1. Examples of spray-induced gene silencing of different targets and organisms.

Viral/Viroid Target Host dsRNA Target Application Method Reference

Sugarcane Mosaic Virus (SCMV) Corn Coat protein Escherichia coli HT115 co-inoculation spray with
dsRNA-producing bacteria [38]

Pea Seed-borne Mosaic Virus
(PSbMV) Pea Coat protein dsRNA spray [39]

Pepper Mild Mottle Virus (PMMoV)

Tobacco PMMoV replicase Spray containing dsRNA coated in Layered Double
Hydroxide (LDH) bioclay [40]

Tobacco, pepper RP gene (multiple lengths) Tobacco leaves treated with carborundum, dsRNA
mixed with inoculum rubbed on leaves [41]

Tobacco RP gene Mechanical inoculation of dsRNA with
co-inoculation using an atomizer [42]

Cucumber Mosaic Virus (CMV) Cowpea CMV 2b Spray containing dsRNA coated in Layered Double
Hydroxide (LDH) clay nanosheets [40]

Bean Common Mosaic Virus
(BCMV) Tobacco Nuclear inclusion b protein (Nib) and coat protein dsRNA mechanical inoculation with carborundum

sprayed with an atomizer [43]

Tomato Yellow Leaf Curl Virus
(TYLCV) Tobacco, tomato Coat protein LDH clay nanosheets sprayed using an atomizer [44]

Tobacco Mosaic Virus (TMV)

Tobacco Coat protein and TMV p126 dsRNA (virus co-inoculated rubbed on
carborundum-dusted tobacco leaves [45]

Tobacco TMV replicase, movement protein Tobacco leaves were dusted with celite, and
dsRNA solution was rubbed on [46]

Tobacco Coat protein dsRNA and purified TMV solution inoculation [47]

Tobacco Etch Virus (TEV) Tobacco RP gene (multiple lengths) Tobacco leaves treated with carborundum, dsRNA
mixed with inoculum rubbed on leaves [41]

Alfalfa Mosaic Virus (AMV) Tobacco RP gene (multiple lengths) Tobacco leaves treated with carborundum, dsRNA
mixed with inoculum rubbed on leaves [41]

Papaya Ringspot Virus (PRSV) Papaya Coat protein dsRNA in PRSV-infected papaya sap that was
mechanically inoculated [48]

Isolates Tirupati and Delhi Papaya Coat protein and HC-Pro dsRNA in PSRV-infected papaya sap rubbed on to
leaves dusted with carborundum [49]
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Table 1. Cont.

Cymbidium Mosaic Virus (CymMV) Brassolaeliocattleya hybrida Coat protein
Celite-treated orchid leaves were inoculated with
dsRNA in the form of crude bacterial lysate, and

gently rubbed onto said leaves
[50]

Zucchini Yellow Mosaic Virus
(ZYMV) Watermelon, cucumber, squash Helper component proteinase (Hc-Pro) and coat

protein
dsRNA in ZYMV-infected summer squash sap

gently rubbed on to carborundum-dusted leaves [51]

Potato Spindle Tuber Viroid
(PSTVd) Tomato Viroid-specific gene dsRNA rubbed on to leaves that were dusted with

carborundum [52]

Chrysanthemum Chlorotic Mottle
Viroid (CChMVd) Tomato and chrysanthemum Viroid-specific gene dsRNA rubbed on to leaves that were dusted with

carborundum [52]

Citrus Exocortis Viroid (CEVd) Tomato and Gynura Viroid-specific gene dsRNA rubbed on to leaves that were dusted with
carborundum [52]

Fungal Target Host dsRNA Target Application Method Reference

Fusarium graminearum

Barley Cytochrome P450 lanosterol, C-14α-demethylases
CYP51A, CYP51B, CYP51C dsRNA sprayed on detached barley leaves [53]

Arabidopsis and Barley FgCYP51A, FgCYP51B, and FgCYP51C in various
combinations Detached leaves sprayed with naked dsRNA [54]

Barley
DCL1 and DCL2, AGO1 and AGO2,

AGO-interacting protein, FgQIP, RecQ helicase,
several Fg RNA-dependent RNA polymerases

dsRNA sprayed on detached leaves [55]

Barley AGO1 and AGO2, DCL1 and DCL2 in
combinations dsRNA sprayed on detached leaves [56]

Barley CYP51A, CYP51B, CYP51C Detached barley leaves drop-inoculated with
dsRNA [57]

Fusarium asiaticum
Wheat Myosin5 dsRNA sprayed on plant surface [58]

Wheat Faβ2Tub-3 Naked, sprayed dsRNA [59]

Fusarium oxysporum Tomato CYP51, chitin synthase 1,
elongation factor 2 LDH nanosheet-coated dsRNA spray on leaf [60]
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Table 1. Cont.

Fusarium oxysporum f. sp. cubense Banana

Nuclear condensin, coatomers alpha and zeta,
DNA-directed RNA polymerase, ARP 2/3, cap
methyltransferase, proteasome Pre4, ribosomal

RNA, DNA polymerase alpha and delta subunits,
adenyl cyclase, protein kinase C, FRQ RNA

helicase

dsRNA aliquoted into spore suspension [61]

Magnaporthe oryzae Barley Faβ2Tub-3 Naked, sprayed dsRNA [59]

Colletotrichum truncatum Soybean Faβ2Tub-3 Naked, sprayed dsRNA [59]

Botrytis cinerea

Arabidopsis, tomato, grape, rose,
lettuce, onion, strawberry Dicer-like DCL1 and DCL2 dsRNA co-inoculated on fruits, vegetables, and

rose petals [62]

Cucumber Faβ2Tub-3 dsRNA sprayed on plant surface [59]

Grapevine BcCYP51, BcCHS1, BcEF2 dsRNA sprayed on plant surface [63]

Tomato, lettuce, rose, and grape DCTN1, SAC1, DCL1, and DCL2
Drop inoculation of dsRNA for lettuce, rose,

tomato fruit, and grape, dsRNA spray for tomato
leaves

[64]

Rapeseed
Peroxidase activity, TIM44, thioredoxin reductase,

pre-40s ribosomal particle, necrosis-inducing
peptide 1

Detached leaves sprayed with dsRNA [65]

Tomato and chickpea DCL1 and DCL2, VPS51, bik1, and SAC1 dsRNA spray [66]

Hyaloperonospora arabidopsis Arabidopsis Hpa-CesA dsRNA and sRNA added to spore inoculation [67]

Phakopsora pachyrhizi Soybean
Acetyl-CoA acyltransferase

40S ribosomal protein S16, glycine cleavage system
H protein

Diethyl-pyrocarbonate detached leaves sprayed
with dsRNA [68]

Plasmopara viticola Grapevine PvDCL1 and pvDCL2 dsRNA sprayed post-inoculation [69]
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Table 1. Cont.

Phytophthora infestans

Potato

Sorbitol dehydrogenase,
translation elongation factor 1-a, phospholipase-D

like 3,
glycosylphosphatidylinositol-anchored acidic

serine-threonine rich
HAM34-like protein, and heat shock protein-90

E. coli HT115 sprayed dsRNA coated with nanoclay
formation [70]

Potato

Guanine-nucleotide-binding protein B subunit,
haustorial

membrane protein, cutinase,
endo-1,3(4)-B-glucanase

dsRNA sprayed on detached leaves [71]

Sclerotinia sclerotiorum

Barley SsThioR, SsTlm44, SsCHC, SsAp2, SsArf72A,
SsFCHO1, SsAmph, SsVATPase, and SseGFP dsRNA clathrin-mediated endocytosis spray [72]

Lettuce and collard greens DCTN1, SAC1, DCL1, and DCL2 Drop inoculation of dsRNA [64]

Rapeseed and Arabidopsis

Various genes involved in reactive oxygen species
responses, transcription, host colonization,

ribosomal biogenesis, mitochondrial protein
import, and cell regulation

dsRNA sprayed on detached leaves [65]

Botryotinia fuckeliana Strawberry Chitin synthase class Ill, DCL1, and DCL2 E. coli-derived minicell topical spray [73]

Rhizoctonia solani Rice DCTN1, SAC1, and PG Drop inoculation of dsRNA [64]

Aspergillus niger Tomato, apple, and grape pgxB, VPS51, DCTN1, SAC1 Drop inoculation of dsRNA [64]

Verticillium dahliae Arabidopsis DCL1, DCL2, SAC1, and DCTN1 Root dip co-inoculation of V. dalhiae spores and
dsRNA [64]

Verticillium spp. Arabidopsis Dicer-like DCL1 and DCL2 dsRNA co-inoculated [62]

Mycosphaerella fijiensis Banana

Nuclear condensin, coatomers alpha and zeta,
DNA-directed RNA polymerase, ARP 2/3, cap
methyltransferase, proteasome Pre4, ribosomal

RNA, DNA polymerase alpha and delta subunits,
adenylase cyclase, protein kinase C,

FRQ-interacting helicase

dsRNA spore suspension [61]
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Table 1. Cont.

Insect Target Host dsRNA Target Application Method Reference

Diabrotica virgifera virgifera Corn V-ATPase A, α-tubulin, COPI coatomer Plant dsRNA artificial diet [74]

Corn Smooth septate junction (SSJ) Artificial diet containing dsRNA [75]

Sitobeon avenae Barley Salivary sheath protein Naked dsRNA foliar spray of leaves [76]

Leptinotarsa decemlineata
Potato Inhibitor of apoptosis, actin, HSP70, dynamin Escherichia coli HT115 dsRNA [77]

Potato Actin Naked dsRNA sprayed leaves [78]

Potato Mesh gene Naked dsRNA sprayed plants [79]

Phaedon cochleariae Cabbage Cactus, srp54k, rop, α-SNAP shibire, PP-α, hsc70-3,
rpt3 Naked dsRNA sprayed leaves [78]

Helicoverpa armigera

Cotton CYP6AE14, GST1 Plant dsRNA in artificial diet [80]

Chickpea
Juvenile hormone
methyltransferase,

acetylcholine esterase

Chitosan nanoparticles
sprayed onto plants [81]

Cotton CYP enzyme system Injection of dsRNA into abdomen of fourth-instar
larvae [82]

Cotton HMG-CoA reductase Injection of dsRNA into abdomen of 2-day-old
female pupa [83]

Henosepilachna
vigintioctopunctata Potato Ecdysone receptor Escherichia coli HT115 immersed in dsRNA and

sprayed on foliage [84]

Ostrinia furnaclis Corn CYP18A1, carboxylesterase Plant dsRNA in artificial diet (dsRNA in leaves) [85]

Plutella xylostella Cabbage Acetylcholine esterase genes AChE1 and AChE2 Plants sprayed with siRNA, taken in through insect
diet [86]

Diaphorina citri

Citrus CYP4C67, CYP4DA1, CYPC68, CYPG70, CYPDB1 Insects anaesthetized and a drop of dsRNA was
topically applied to the ventral side of the thorax [87]

Citrus Abnormal wing disc-like protein On 5th-instar nymphs, a drop of dsRNA was
topically applied to the ventral side of the thorax [88]

Citrus Arginine kinase

Foliar spray, soil/root drench, tree trunk injection,
and clay soaked in dsRNA added as a soil

amendment to potted citrus trees, dsRNA was
ingested by insects through plant material

[89]
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Leptinotarsa decemlineata Potato Actin gene dsRNA-coated leaf surface, larvae fed for 7 days [90]

Halyomorpha halys Common bean Juvenile hormone acid O-methyltransferase,
vitellogenin Green beans soaked in dsRNA [89]

Acyrthosiphon pisum

Fava bean Coo2 siRNA injected into insects [91]

Broadbean Calreticulin Injection [92]

Broadbean Cathespin-L, vATPase Injection and ingestion (respectively) [93]

Broadbean Aquaporin Ingestion [94]

Drosophila melanogaster Broad range vATPase Artificial diet containing dsRNA [91]

Manduca sexa Tobacco vATPase Artificial diet containing dsRNA [93]

Brassicogethes aeneus Oilseed rape Alpha COP Dietary exposure to buds treated with dsRNA [95]

Lygus lineolaris
Cotton Inhibitor of apoptosis gene, polygalacturonase Injection [96]

Alfalfa Polygalacturonase Injection [97]

Nilaparvata lugens

Rice Calreticulin, cathepsin-B, NIβ2 Injection [98]

Rice Trehalose phosphate synthase Ingestion [99]

Rice vATPase subunit E Ingestion [100]

Rice AGO1 and Dicer Plant dsRNA in artificial diet (leaves soaked in
dsRNA) [85]

Rice NADPH–cytochrome P450 reductase (CPR) dsRNA injection into 3rd-instar nymphs [101]

Rice Calmodulins NlCaM1 andNlCaM2 dsRNA injected into nymphs [102]

Choristoneura fumiferana Spruce Chitin deacetylase Injection of dsRNA into larvae and pre-pupae [103]

Spodoptera exigua

Beet Chitinase7, PGCP, chitinase1, ATPase, tubulin1,
arf2, tubulin2, arf1, and helicase

Injection of dsRNA into 4th-instar larvae in the
abdomen [104]

Beet SeCHSA Fed dsRNA through artificial diet [105]

Chinese cabbage Chitin synthase
Chinese cabbage leaf discs were soaked in

guanidine coated polymer that coated dsRNA and
were fed to larvae

[106]

Spodoptera litura Castor Bt toxin receptor dsRNA injected into early 5th-instar larvae [107]

Spodoptera frugiperda Corn sfVATPase, sfKIF, sfCDC27 Larvae fed dsRNA suspension [108]
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Sesamia nonagrioides Corn Juvenile hormone esterase-related gene Inject dsRNA into 5th-instar larvae [109]

Laodelphax striatellus Rice Cytochrome P450 monooxygenase Shadow (Sad) dsRNA fed to 4th-instar larvae through artificial
diet [110]

Aphis gossypii Cotton Juvenile hormone-binding protein (JHBP) and
vacuolar ATPase subunit H (V-ATPase-H)

dsRNA fed through artificial diet to first instar
larvae [111]

Aphis glycines Soybean TREH, ATPD, ATPE, and CHS1 Insect orally fed on dsRNA with a nanocarrier that
was sprayed on soybean plants [112]

Sitobion avenae Winter wheat Laccase 1 Insects fed dsRNA through artificial diet [113]

Tetranychus urticae Red kidney bean
Juvenile hormone (JH), methoprene-tolerant (Met),

retinoid X receptor β, farnesoic acid
O-methyltransferase, CREB-binding protein

Bean leaf discs soaked in dsRNA and fed to insects [114]

Plant Target Host dsRNA Target Application Method Reference

Nicotiana benthamiana Tobacco CaMV 35S promotor Naked dsRNA sprayed with carborundum [115]

Mikana micrantha Weeds Chlorophyll a/b proteins dsRNA, RNAi nanomicrosphere shRNA [116]

Arabidopsis thaliana

Arabidopsis STM and WER Root soaking in naked dsRNA and a fluorescent
nanocarrier [117]

Arabidopsis EGFP and NPTII Naked dsRNA, suspension brushed onto leaves [118]

Arabidopsis Mob1A, WRKY23, actin Root soaking in dsRNA suspension [85]

Arabidopsis CHS Leaf infiltration of dsRNA with a carrier peptide
using a syringe with no needle onto plant leaf [119]

Dendrobium hybrida Dendrobium orchid DhMYB1 Rubbing plant with bacterial extract containing the
dsRNA [120]
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5. Spray-Induced Gene Silencing

Application of RNAi as a foliar spray has become of particular interest, specifically
because it has promise in being turned into a viable and specific biopesticide that would
be available for commercial use. This technology is referred to as Spray-Induced Gene
Silencing (SIGS), and it is a method that allows non-transformative control of plant pests and
pathogens [31,35]. This mechanism involves the application of long siRNAs and dsRNAs
through a foliar spray to the affected host, which will induce RNAi when consumed by
the target pest or pathogen. This mechanism can allow for specific control of harmful
pathogens, without some of the downstream effects that a chemical-based pesticide may
have on the surrounding ecosystem [35]. To date, SIGS has been successful in treating a
wide range of pathogens and pests (Table 1). One major drawback of this technique is
that ssRNAs and even dsRNAs are relatively unstable, especially when exposed to the
elements [31,35]. Considerable effort surrounding the SIGS strategy is going into testing
various coatings and methods to stabilize the RNAs to allow for higher efficiency [35].

Published exogenously applied RNA studies report efficacies of up to 100% with over
30 days of activity and were influenced by many parameters including the genetic target,
RNA size, and environment (Table 1). With all of these successes, however, there are always
places for improvement and many roadblocks that continue to pose challenges with SIGS.
To begin with, dsRNA has relatively short environmental survival, as mentioned previously,
but may be an advantage from a regulatory perspective as the molecule does not persist
and contaminate the environment. Some ways of increasing this efficiency include the use
of liposomes or nanoparticles as transfection agents, or even the chemical modification of
one or both strands of the dsRNA [30]. Polymeric nanoparticles have been synthesized and
used because of their overall stability, ease of surface modification, their biodegradability,
and environmental safety. A popular polymer to use is one called chitosan, which is often
used because of its relatively cheap cost, non-toxicity, and general biodegradability [30].
Taning et al. [121] reported that the use of a cationic liposome branded Lipofectamine to
coat the dsRNA resulted in a 40–50% efficiency of gene-silencing. Without the use of the
transfection agent, they were unsuccessful in their goal to induce gene silencing through
RNAi. Chemical modifications are not often used due to their high cost and general safety
concerns, but they can be used to improve molecule stability, increase double-stranded
siRNA half-life in vivo, target siRNA to specific cells, and many other functions [30].

6. Conclusions

RNA silencing is an essential component of innate immunity and gene regulation in
plants and a rapidly growing number of tools are available for applications. Efficacy and
survivability of the dsRNA is being actively explored to meet specific environmental and
industry requirements. Exogenous RNA survivability and uptake may be improved using
polymeric, lipid-based, and inorganic nanoparticles (Table 1). Advances made in synthetic
biology have opened new possibilities for optimizing traits by modulating metabolic and
immunity pathways via siRNA delivery. Systemic cellular and plant movement of triggers
and signals observed with the RISC response in a plant facilitates protection in tissues not
exposed to the dsRNA [12,17]. As research continues on this fascinating technology, new
possibilities for applications in agricultural improvements continue to emerge, such as
creating improved crops that have higher yields and greater nutritional value, resistant
to pests and disease, resilient to environment and climate changes, and higher yields
and quality. Future developments are expected in the application of RNAi technology in
plants and subsequently other biological organisms. For instance, research into controlling
epigenetic elements in gene silencing will have important implications for both agricultural
biotechnology and fundamental evolutionary studies [122]. There are still many exciting
possibilities for future development and applications of RNA interference in the areas of
crop improvement, pest management, and human health care therapies.
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