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Abstract: Achillea fragrantissima, a desert plant commonly known as yarrow, is traditionally used
as an antimicrobial agent in folklore medicine in Saudi Arabia. The current study was undertaken
to determine its antibiofilm activity against methicillin-resistant Staphylococcus aureus (MRSA) and
multi-drug-resistant Pseudomonas aeruginosa (MDR-P. aeruginosa) using in vitro and in vivo studies. A
biofilm model induced through an excision wound in diabetic mice was used to evaluate its effect
in vivo. The skin irritation and cytotoxic effects of the extract were determined using mice and HaCaT
cell lines, respectively. The Achillea fragrantissima methanolic extract was analyzed with LC-MS to
detect different phytoconstituents, which revealed the presence of 47 different phytoconstituents.
The extract inhibited the growth of both tested pathogens in vitro. It also increased the healing of
biofilm-formed excision wounds, demonstrating its antibiofilm, antimicrobial, and wound-healing
action in vivo. The effect of the extract was concentration-dependent, and its activity was stronger
against MRSA than MDR-P. aeruginosa. The extract formulation was devoid of a skin irritation effect
in vivo and cytotoxic effect on HaCaT cell lines in vitro.

Keywords: HaCaT cell lines; diabetic; cytotoxicity; skin irritation; LC-MS

1. Introduction

Biofilms consist of either a single bacterium or a group of different bacteria that are
present inside an extracellular polymeric substance. Biofilms formed by pathogens are
a serious health concern as they are resistant to antibiotics, the immune defense systems
of the host, and other external influences. The extracellular polymeric substance (EPS)
plays a crucial role in the formation of biofilms and serves as a protective barrier against
diverse environmental stressors, including antibiotics. This function of EPS confers a high
level of resistance to pathogens, leading to the emergence of bacteria that are resistant
to multiple drugs, extensively drug-resistant, and completely drug-resistant [1]. Biofilm
formation affects human health in various ways, from infection of implants to wound
infections. The Center for Disease Control (USA) estimates that 65% of infectious diseases
in humans are due to biofilms formed by bacteria, while the National Institute of Health
estimates it to be around 80%. The biofilms are resistant to many antimicrobial drugs, and
the high rate of false negative results in bacterial cultures because of bacteria in the biofilm
state further complicates antimicrobial therapy, leading to a severe impact on the affected
individuals [2].
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Biofilms are usually formed on the wounds in diabetic patients [3]. The wound-healing
process normally consists of hemostasis, inflammation, proliferation, and remodeling
and these stages overlap with each other [4]. In diabetes, the wound-healing process
is impaired due to several factors. One the most important factor is biofilm formation,
which acts as a mechanical barrier to antimicrobial agents and also interferes with the
natural healing process [2]. Apart from this, increased blood glucose levels delay wound
closure by interfering with cellular functions in the skin and peripheral neuropathy [5,6].
Additionally, peripheral vascular disease decreases wound healing due to altered blood
flow and hypoxia [7,8]. There is also transepidermal water loss and less production of
antimicrobial peptides due to the impaired differentiation of adipocytes from fibroblast [4].

Herbs and spices, alone or in combination, have been reported to have antibiofilm
activities. Earlier studies suggest that clove, eucalyptus, and rosemary have varying effects
against bacterial biofilms [9]. Interesting antibiofilm and anti-quorum sensing abilities
have been reported in several desert plants, suggesting that these plants possess strong
antimicrobial effects [10]. Achillea fragrantissima (yarrow) is commonly known as ‘Quysoom-
aletri’ in Arabic and is widely found in Arab countries [11]. It is traditionally used as a
medicinal tea for the treatment of various disorders, such as respiratory infections, digestive
problems, eye infections, diabetes, and diarrhea [12]. This plant is rich in phenolic acids
and a large number of flavonoids that are known to possess good antimicrobial effects.

This plant is widely used in Saudi Arabia as an antimicrobial and wound-healing
agent (local source). It is believed to be highly effective in the healing of chronic wounds.
Earlier reports show that the essential oil of this plant is active against several species of
bacteria and also possesses antiviral properties [13–15]. Furthermore, several constituents
present in Achillea fragrantissima are reported to have potent antimicrobial effects [16].
Hence, the current study was envisaged to assess the antibiofilm activity against MRSA
and MDR-P. aeruginosa using a biofilm model induced through an excision wound in
diabetic mice.

2. Results
2.1. LC-MS Analysis of the Achillea fragrantissima Methanolic Extract

A large number of molecules were identified in the extract through LC-MS analysis
(Figure 1). In the positive mode, 24 molecules were suspected to be present in the extract,
while in the negative mode, another 22 molecules were identified (Tables 1 and 2).

Table 1. List of suspected molecules in positive mode.

Score Compound Name Ion Formula Exact Mass Observed
Mass

Mass
Diff

0.975 N-alpha-Acetyl-L-ornithine positive C7H14N2O3 174.1 174.1502 −0.05

0.939 L(+)-Arginine positive C6H14N4O2 174.111 174.1502 −0.04

0.507 Canthaxanthin positive C40H52O2 564.396 565.2610 −0.87

0.782 (-)-Nicotine positive C10H14N2 162.115 391.2274 −229.11

0.677 L-beta-homotyrosine-HCl positive C10H13NO3 195.089 197.0278 −1.94

0.676 Vitexin positive C21H20O10 432.105 433.2415 −1.14

0.966 Pelargonidin chloride positive C15H11O5 271.06 271.1963 −0.14

0.203 3-Hydroxy-DL-kynurenine [M + H]+ C10H12N2O4 224.21 224.2586 −0.05

0.927 N-Acetyl-Phytosphingosine positive C20H41NO4 359.303 361.1600 −1.86

0.908 1-Isothiocyanato-8-(methylsulfinyl)-octane positive C10H19NOS2 233.09 233.2006 −0.11

0.757 N1-Acetylspermine Trihydrochloride positive C12H28N4O 244.226 246.2257 −2

0.805 1-O-b-D-glucopyranosyl sinapate positive C17H22O10 386.121 389.2027 −3.08

0.8 Caffeine, Anhydrous [M + H]+ C8H10N4O2 194.19 194.1934 0

0.935 Farnesol (mixture of isomers) positive C15H26O 222.198 222.2340 −0.04
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Table 1. Cont.

Score Compound Name Ion Formula Exact Mass Observed
Mass

Mass
Diff

0.926 Chalcone positive C15H12O 208.088 209.1754 −1.09

0.903 1-Isothiocyanato-8-(methylsulfinyl)-octane positive C10H19NOS2 233.09 234.2467 −1.16

0.96 Methyl Jasmonate positive C13H20O3 224.141 224.2249 −0.08

0.713 Fortunellin positive C28H32O14 592.179 593.4409 −1.26

0.69 Adenosine-5′-diphospho-glucose disodium salt [M + H]+ C16H25N5O15P2 589.32 593.4409 −4.12

0.723 L-saccharopine positive C11H20N2O6 276.132 277.3040 −1.17

0.607 2′-Deoxycytidine-5′-diphosphate sodium salt [M + H]+ C9H15N3O10P2 387.18 391.4299 −4.25

0.838 isorhamnetin-3-O-rutinoside positive C28H32O16 624.169 623.4772 0.69

0.86 Guanosine-5′-diphosphate-D-mannose sodium salt [M + H]+ C16H25N5O16P2 605.34 607.4465 −2.11

0.88 3-Hydroxy-DL-kynurenine [M + H]+ C10H12N2O4 224.21 224.2249 −0.01

Table 2. List of suspected molecules in negative mode.

Score Compound Name Ion Formula Exact
Mass

Observed
Mass

Mass
Diff

0.856 D-(-)-Quinic acid negative C7H12O6 192.063 191.1566 0.91

0.901 (+)-Epicatechin negative C15H14O6 290.079 279.2157 10.86

0.618 Piperacillin sodium salt negative C23H27N5O7S 517.163 515.3142 1.85

0.754 UDP-glucose Disodium Salt negative C15H24N2O17P2 566.055 563.3374 2.72

0.869 Homoorientin negative C21H20O11 448.1 447.2126 0.89

0.938 Homoorientin negative C21H20O11 448.1 447.2800 0.82

0.946 Kaempferol-3-O-alpha-L-rhamnoside negative C21H20O10 432.105 431.2841 0.82

0.413 UDP-xylose negative C14H22N2O16P2 536.044 529.4208 −97.32

0.885 Acacetin negative C16H12O5 284.068 285.2001 −1.13

0.431 UDP-xylose negative C14H22N2O16P2 536.044 529.2183 6.83

0.935 Formononetin negative C16H12O4 268.073 269.1716 −1.1

0.422 Puerarin negative C21H20O9 416.11 415.3559 0.75

0.952 Pentachlorophenol [M−H]− C6HCl5O 266.34 265.2910 1.05

0.899 6-Phosphogluconic acid Barium salt hydrate negative C6H13O10P 276.024 277.3040 −1.28

0.895 2′-Deoxycytidine negative C9H13N3O4 227.09 227.2955 −0.21

0.93 2′-Deoxyinosine negative C10H12N4O4 252.085 253.3457 −1.26

0.982 gamma-Linolenic acid [M−H]− C18H30O2 278.43 279.3624 −0.93

0.976 2′-Deoxyinosine negative C10H12N4O4 252.085 255.3703 −3.29

0.973 Xanthosine negative C10H12N4O6 284.075 281.3870 2.69

0.916 gamma-Linolenic acid [M−H]− C18H30O2 278.43 281.3533 −4.98

0.944 Acacetin negative C16H12O5 284.068 283.4117 0.66

0.115 Kaempferide negative C16H12O6 300.063 301.0263 −0.96
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2.2. Antibacterial Activity

The methanol extract of A. fragrantissima showed inhibitory effects against MRSA (MIC-
256 µg/mL) and P. aeruginosa (MIC-512 mg/mL). The MBC concentration was 512 µg/mL
for MRSA and 1024 mg/mL for P. aeruginosa. However, the effect was stronger against
MRSA when compared to P. aeruginosa.

2.3. Antibiofilm Activity In Vitro

The methanolic extract of Achillea fragrantissima showed antibiofilm activity against
both MRSA and P. aeruginosa. The antibiofilm activity was observed at a minimum concen-
tration of 50 µg/mL against MRSA, while with P. aeruginosa, there was a relatively lesser
effect and the antibiofilm effect was seen from 100 µg/mL onwards. The effect against both
pathogens was concentration-dependent (Figure 2).
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Figure 2. Antibiofilm activity of methanolic extract of A. fragrantissima in vitro against MRSA and
P. aeruginosa in crystal violet assay. Absorbance is measured for the quantification of crystal violet.
Amount of crystal violet is directly proportional to the biofilm formation. Bars represent mean ± SEM,
n = 3., * p < 0.05, ** p < 0.01, *** p < 0.001 compared to 0 µg/mL concentration.

2.4. Skin Irritation Test

No visible irritation or inflammation was seen up to 72 h after the extract application
in the form of ointment.

2.5. Physicochemical Properties of the Ointment

The extract ointment showed good stability. The diffusing ability, homogeneity, spread-
ing ability, and washability were checked and found to be satisfactory.

2.6. Wound-Healing Activity against MRSA-Induced Biofilm Formation

Local application of the methanolic extract of Achillea fragrantissima ointment for-
mulation enhanced the contraction of biofilm-formed wounds in mice compared to the
control, indicating the increased healing of wounds. The higher concentration of the extract
(100 mg/g) significantly increased wound contraction from the 8th day onwards (p < 0.05)
when compared to the control, while no such effect was observed with the lower con-
centration (50 mg/g). The lower concentration showed a significant increase in wound
contraction on the 16th and 20th day when compared to the control, suggesting a weaker
effect as compared to the higher concentration.



Int. J. Mol. Sci. 2023, 24, 9774 6 of 15

The mupirocin ointment was highly effective in healing the wounds from the 4th day
onwards, and its effect was markedly stronger when compared to either concentration of
methanolic extract of Achillea fragrantissima formulation. No significant difference was seen
between the untreated group and base treatment groups, confirming the inert nature of the
base used. The epithelization period was significantly reduced in all the treatment groups
in comparison to base treatment (Figure 3).
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Figure 3. Wound contraction and epithelization period after different treatments on excision wound
in MRSA-induced biofilm. Wound contraction indicates decrease in the wound area as compared to
the initial wound area. Day of epithelization shows complete healing of wounds without any raw
wound. Bars represent mean ± SEM, n = 6, * p < 0.05, *** p < 0.001 compared to the MRSA + base
treatment. Af—Achillea fragrantissima formulation; MPN—mupirocin.

2.7. Wound-Healing Activity against P. aeruginosa-Induced Biofilm Formation

The application of the prepared formulation of A. fragrantissima improved the con-
traction of biofilm-formed wounds in mice when compared to the control. The higher
concentration of the extract (100 mg/g) significantly showed wound contraction from the
12th day onwards when compared to the control. A lesser effect was observed with the
lower concentration of the extract formulation (50 mg/g). However, the lower concen-
tration exhibited a significant improvement in wound contraction on the 16th and 20th
day when compared to the control. This shows a weaker effect of the lower concentration
(50 mg/g) as compared to the higher concentration (100 mg/g). The antibiotic gentamicin
(1 mg/g) was highly effective in healing wounds from the 4th day onwards and had a
superior effect when compared to the higher and lower concentrations of A. fragrantissima
formulation. No significant difference was observed among the untreated group and base-
treated groups showing the inert effect of the ointment base. The effect on the epithelization
period in MDR-P. aeruginosa biofilm on the excision wound was similar to that observed
after MRSA infection (Figure 4).

The bacterial load in the wounded tissue on 20th day after treatment with the extract
formulation was significantly reduced when compared to the base-treated control. How-
ever, the P. aeruginosa count was not significant in the case of lower concentration (50 mg/g),
whereas the higher concentration of the formulation significantly reduced the bacterial
count. The antibiotic treatment with mupirocin (20 mg/g) and gentamicin (1 mg/g) had a
significant effect in reducing bacterial load compared to the control (Table 3).
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Figure 4. Wound contraction and the epithelization period after different treatments on excision
wound in P. aeruginosa-induced biofilm. Wound contraction indicates a decrease in the wound area
as compared to the initial wound area. Day of epithelization shows complete healing of wounds
without any raw wound. Bars represent mean ± SEM, n = 6, *** p < 0.001 compared to the base
treatment. Af—Achillea fragrantissima formulation; GEN—gentamicin.

Table 3. Bacterial count in the wounded tissue after the treatment.

Group
Log10 CFU/g of Tissue

MRSA P. aeruginosa

Untreated control 5.20 ± 0.05 5.32 ± 0.035

Control (base) 5.38 ± 0.06 5.90 ± 0.076

A. fragrantissima ointment (50 mg/g) 4.07 ± 0.08 *** 4.36 ± 0.150

A. fragrantissima ointment (−100 mg/g) 2.84 ± 0.06 *** 3.27 ± 0.022 ***
# Antibiotic 1.30 ± 0.04 *** 1.477 ± 0.059 ***

# Antibiotic mupirocin (20 mg/g) for the MRSA-infected group, and gentamicin (1 mg/g) for P. aeruginosa-infected
group. Data are mean ± SEM, n = 6, *** p < 0.001 in comparison to the control (base).

2.8. Histological Study

Macroscopic examination of the wound on the day of epithelization showed com-
plete healing of the wound without any exudates (Figure S1). Histological microscopic
examination showed increased regeneration of skin epithelium when compared to the
control in both MRSA-infected and MDR-P. aeruginosa-infected wounds (Figure 5). In
the base-treated control, infection with MRSA delayed the regeneration of skin epithelial
tissues. Application of the A. fragrantissima extract treatment (100 mg/g) increased the
thickness of epithelial tissues as compared to the base-treated group, though complete
regeneration was not visible. The epidermal thickness was not measured quantitatively,
and qualitative observation was used to indicate the difference. Treatment with mupirocin
was highly effective in causing skin epithelial regeneration, and the tissues resembled
a normal unwounded tissue. Infection with P. aeruginosa delayed the development of
epithelial tissue, confirming the macroscopic observations. In comparison to the effect of
A. fragrantissima extract treatment (100 mg/g) on MRSA-infected wounds, the effect on
P. aeruginosa-infected wound seemed to be less as the thickness of regenerated epithelial
was thinner. Gentamicin (1 mg/g) was highly effective in increasing skin thickness as
compared to other treatments. After treatment with the extract for 20 days, the sections
showed scanty presence of inflammatory cells because the wounds were almost healed in
the treatment groups as compared to the control. Treatment with the extract increased the
proliferation of fibroblasts, indicating enhanced collagen deposition in the tissue.
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Cytotoxicity Study of Extract In Vitro

The extract was safe and did not show profound toxicity on HaCaT cell lines in vitro.
The IC50 value of the extract was 647.3 µg/mL (Figure 6).
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3. Discussion

The current study was an attempt to explore the biological effects of desert plants.
As mentioned earlier, desert plants are known to possess a wide range of effects, many of
which have not yet been explored. The evaluation of antibiofilm activity was undertaken
based on local belief in Saudi Arabia that this plant is an excellent antimicrobial agent. The
results of the current study confirmed the antimicrobial effects and its antibiofilm activity,
suggesting that this plant may be a potential antimicrobial agent from a natural source.

The study involved both in vitro and in vivo evaluations to confirm its beneficial
antibiofilm effect. We selected a mouse model that has been reported earlier as a simple
method for the study of the antibiofilm effect [17]. The method involved the use of diabetic
mice with an application of preformed biofilm. Though the method used described the
use of MRSA to induce the biofilm, it worked equally well with MDR-P. aeruginosa. The
antibiofilm effect was determined using different parameters that included histological
studies to confirm the healing of excised wounds containing biofilm. The regeneration of
skin epithelial tissue after different treatments indicates increased wound healing. Infection
and biofilm formation interferes with the normal healing process due to the formation
of degenerative enzymes and toxins that causes chronic inflammation [18]. Different
parameters, such as epithelial height, density of capillaries, and collagen deposition in
the wound, are used to determine the wound-healing process. Of these, the most widely
used parameter is epithelial regeneration [19]. In the current study, Achillea fragrantissima
extract increased the regeneration of skin epithelium, suggesting its wound-healing action.
However, the regenerated skin epithelium was less prominent as compared to that observed
with the standard antibiotics mupirocin and gentamicin, which confirmed a relatively
lesser antibiofilm effect of Achillea fragrantissima extract when compared to mupirocin and
gentamicin. Since the antibiofilm effect and wound-healing effect of Achillea fragrantissima
was related, the contribution of other mechanisms to wound healing, such as the antioxidant
and proliferative effects of the extract, can be ruled out.

Achillea fragrantissima extract in the form of an ointment formulation showed good
antimicrobial and antibiofilm effects, as indicated by the increased healing of excision
wounds and a decrease in microbial load at the end of the experiment. The ointment base
was selected based on earlier studies that suggested it is suitable for the preparation of
formulations using methanolic extracts [20]. The formulation had a better effect against
MRSA in comparison to P. aeruginosa, and these results were expected as plant products
are usually more active against Gram-positive bacteria as compared to Gram-negative
bacteria. The Gram-negative bacteria are known to be resistant to antimicrobial agents
due to their cell wall structure which contains a lipopolysaccharide layer and periplasmic
space [21]. However, its effect against both of these pathogens suggests its potential as a
broad-spectrum antibacterial agent. The ointment formulation did not induce any irritation
or inflammation on mouse skin.

Achillea fragrantissima contains a large number of chemical constituents. An LC-MS
analysis revealed the presence of 47 constituents, and many of these have been reported for
antimicrobial activity against many different pathogens. Among these, nicotine is reported
to possess antibacterial and antifungal activities [5]. Vitexin, a polyphenolic compound in
the plant, is reported for antibiofilm activity against P. aeruginosa [22]. Fornesol, which is a
sesquiterpene alcohol present in Achillea fragrantissima, has also been reported for antibacte-
rial and antifungal effects [23]. Chalcone, naturally present in the plant, and many of its
derivatives have been reported to possess excellent antibacterial activity against a variety
of bacteria, including P. aeruginosa [24]. Plants containing fortunelin, which is also found
in Achillea fragrantissima, are reported for antibacterial and antiviral effects [25]. Similarly,
quinic acid has been previously reported for excellent antibacterial effects [26]. Achillea
fragrantissima contains catechins such as epicatechin, and catechins are known antibacterial
compounds [27]. Acacetin, a simple flavone [28], formononetin [29], pentachlorophe-
nol [30], and linolenic acid [31] are the other constituents reported for antimicrobial effects.
It should also be noted that Achillea fragrantissima and many of the identified constituents
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present in it have been reported for antioxidant activities. It is well known that antioxi-
dants increase the healing of wounds through free radical scavenging effects [32,33]. As
mentioned above, the antibiofilm effect of Achillea fragrantissima was closely related to the
wound-healing effect, and the results suggest that there may be a negligible contribution of
antioxidant action to the wound-healing effect.

The following are the limitations of the study that can be addressed with further
investigations. The present study identified different chemicals present in the extract.
However, a detailed study with isolated compounds from the extract is required that may
lead to the identification of the exact number(s) of chemical constituents that are involved
in the antibiofilm and the wound-healing actions of the plant. The results of the current
study rule out the contribution of other mechanisms such as antioxidant, anti-inflammatory,
and proliferative effects of the plant extract because the wound-healing and antibiofilm
effects were related. However, no study was performed to determine these effects of the
prepared extract. The histological examination of the tissue was performed to support the
macroscopic, and antimicrobial findings. Histology was not studied in detail with respect to
the effect on different processes involved in wound healing. Further studies on the effect of
plant extract on proliferative genes, such as the vascular endothelial growth factor (VEGF)
and transforming growth factor β-1 (TGF-β-1), and detailed histological examination
using different stains, such as Masson’s trichrome stain to study collagen deposition, may
provide information about the proliferative effects of the extract [34]. Further studies on the
contribution of antioxidant effects through increased levels of antioxidant enzymes such as
catalase and superoxide dismutase should also be carried out for the determination of free
radical scavenging activity of the plant extract [35].

4. Materials and Methods
4.1. Chemicals and Micro-Organisms

The chemicals were purchased from local suppliers. The chemicals were of analytical
grade. The pathogens MRSA (ATCC43300) and MDR-P. aeruginosa (ATCC 27853), cultured
in the laboratory, were employed.

4.2. Animals

Adult albino Swiss mice weighing between 25 and 28 g and maintained under standard
conditions were used. The experimental protocol was approved by the Ethical Research
Committee of Shaqra University (No. ERC SU_20220066). All procedures used were in
accordance with the ARRIVE guidelines [36].

4.3. Plant Extraction and LC-MS Analysis

The whole plant was collected in October 2022 and was identified by a botanist in the
college. A voucher specimen (No. SU/CAMS/08/2022), the plant was dried under the
shade and extracted using 90% v/v methanol in a Soxhlet extractor [37]. The extract was
dried using a rotavapor and the yield was 16.24% w/w.

The LC-MS analysis was conducted using a Waters (Milford, MA, USA) LC instrument
(XEVO-TQD#QCA1232) with a C18 column (SUNFIRE C18, 250 mm × 2.1 mm, 2.6 µm)
with a flow rate of 0.2 mL/min and 280 nm detection. The solvent system consists of
solvent A (acetonitrile) and solvent B (ammonium formate buffer). The HPLC conditions
and gradient table used are given (Tables 4 and 5). Spectra were recorded in negative and
positive ionization modes between m/z 150 and 2000.
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Table 4. HPLC conditions.

A% 0.0 H2O

B% 5.0 ACN

C% 0.0 MeOH

D% 95.0 0.1% Formic Acid in water

Flow (mL/min) 1.500

Stop Time (min) 5.0

Column Temperature (◦C) 30.0

Min Pressure (Bar) 0.0

Max Pressure (Bar) 300.0

Table 5. The gradient table.

Time A% B% C% D% Flow

0.00 0.0 5.0 0.0 95.0 1.500

1.00 0.0 5.0 0.0 95.0 1.500

6.00 0.0 30.0 0.0 70.0 1.500

12.00 0.0 60.0 0.0 40.0 1.500

16.00 0.0 60.0 0.0 40.0 1.500

20.00 0.0 80.0 0.0 20.0 1.500

26.00 0.0 5.0 0.0 95.0 1.500

30.00 0.0 5.0 0.0 95.0 1.500

4.4. Antibacterial Activity

The extract was evaluated to determine its minimum inhibitory concentration (MIC)
and minimum bactericidal concentration (MBC) using standard methods described else-
where [38].

4.5. In Vitro Antibiofilm Activity

Bacterial cultures of MRSA or MDR-P. aeruginosa (106 CFU/mL) in Luria Bertani
(LB) broth grown in microtiter were used. The antibiofilm activity was determined with
the crystal violet assay [39]. Different concentrations of plant extracts were added to the
wells, ranging from 6.25 µg/mL to 400 µg/mL. The microtiter plates were incubated at
37 ◦C for 24 h. The planktonic cells were discarded, and the wells were rinsed three times
with distilled water. Crystal violet (20 µL) was added to the wells for staining, followed
by rinsing with potassium phosphate buffer (10 mM) and drying. Crystal violet was
solubilized using 96% v/v ethanol, and the absorbance was measured at 570 nm.

4.6. Preparation of the Extract Ointment

The Achillea fragrantissima extract was formulated into an ointment of 2 different
concentrations (50 mg/g of the base and 100 mg/g of the base). A fusion method using
a base made from liquid paraffin, emulsifying wax, and soft paraffin was employed to
prepare the extract ointment [20]. The physicochemical properties such as spreadability,
washability, diffusion, and stability were evaluated [40].

4.7. Skin Irritation Test in Mice

The ointment formulation was applied to the depilated area on the mouse skin. The
ointment was allowed to remain in place for 72 h and signs of irritation or inflammation,
such as redness and edema, were recorded.
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4.8. Induction of Diabetes in Mice

Diabetes (type II) was induced using streptozocin and nicotinamide [41]. Animals
fasted for 12 h and were injected intraperitoneally with nicotinamide (240 mg/kg), followed
15 min later by intraperitoneal injection of streptozocin (100 mg/kg). The nicotinamide
and streptozocin were prepared using normal saline as a vehicle [42]. The volume of
the injection was adjusted to 1 mL/100 g. After 72 h of streptozocin injection, animals
were fasted for 12 h, followed by the determination of their blood glucose levels. Mice
with a blood sugar level of 150 mg/dL or more were selected for the determination of
antibiofilm activity. The animals were allowed free access to water and feed throughout the
experimental period. Precautions were exercised to avoid transmission of infection, and
animals were monitored carefully for mortality.

4.9. Antibiofilm Activity In Vivo

For the determination of the antibiofilm activity of the formulation, a method described
earlier was used [17]. The pathogens were grown on a coverslip immersed in LB broth in a
culture bottle inoculated with either MRSA or P. aeruginosa. The biofilm formation on the
coverslip was established through coverslip assay using crystal violet [43].

The excision wounds were induced by depilating skin at the back of the animals under
anesthesia [44]. A coverslip containing the biofilm was placed over the wounded surface
along with 100 µL of broth culture (106 CFU/mL) of either MRSA or MDR-P. aeruginosa.
After 72 h, the biofilm formation on the wound was confirmed in at least 10% of the initial
number of animals by excising the thin layer on the wound, followed by modified Gram
staining. The animals were then grouped into two major groups, one for MRSA and the
other for MDR-P. aeruginosa. Each of these groups had five subgroups containing twelve
animals at the end of the experiment. These five groups were treated as follows: group I
was untreated, group II was treated with the ointment base, group III and group IV received
an application of the extract ointment at 50 mg/g and 100 mg/g, respectively, while the
fifth group received the standard antibiotic (mupirocin 20 mg/g or gentamicin 1 mg/g).
The wound area was measured at 4-day intervals for 20 days in 6 animals.

The wound contraction (%) was calculated using the formula [45]

Wound contraction (%) = (Total wound area − present wound area/Total wound area) × 100

The total wound area is the area on Day 0 (1 cm2) and the present wound area
refers to the day on which the wound area was measured (4th, 8th, 12th, 16th, and 20th
day). The wound area was measured by tracing the wound using a transparent sheet and
superimposing it on a graph sheet [46].

At the end of the 20th day, these animals were sacrificed, the bacterial count (CFU/g)
was determined, and the tissues were also subjected to histological studies using H and E
stain [47]. The thickness of the regenerated skin epithelium was qualitatively observed and
the thickness of the epithelium in the base-treated animals were compared with the treated
animals. The sections were observed for the presence of inflammatory cells and fibroblasts.

The remaining six animals were given treatment until the wound scar disappeared
to indicate the day of complete epithelization. The epithelization period refers to the day
on which there was a falling of the scar, leaving no raw wound [48]. The re-epithelization
was indicated by absence of any exudates, and growth of hair on the edges of the wound.
Histological examinations on the wound on the day of epithelization were not carried out
due to ethical issues involved in sacrificing a large number of animals. Furthermore, the
regenerated epithelium would appear the same in the all the treatment groups as the tissue
has to be taken from the healed wounds.

4.10. Cytotoxic Assay In Vitro on HaCaT Cell Lines

Cytotoxicity of the extract on the HaCaT cell line was evaluated with the SRB Assay.
The cells cultured in a DMEM medium supplemented with 10% FBS and 1% antibiotic
solution were used. The extract was tested at different concentrations (1–1000 µg/mL).
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After incubation for 24 h, 100 µL of tricolor acetic acid (10% w/v) was added to each
well and incubated for 1 h, followed by washing with distilled water and air drying.
Sulforhodamine (SRB) solution (0.04% w/v) was added to each well and left for 1 h. After
incubation, the plate was washed with acetic acid (1% v/v) to remove the unbound dye
and air-dried. Tris base solution (pH = 10. 5) was added to the wells and shaken for 10 min
on an orbital shaker to solubilize the protein-bound dye and read at 510 nm.

4.11. Statistical Analysis

The results are shown as mean ± SEM. The number of recordings and level of signifi-
cance is mentioned in the footnotes. Analysis was performed using SPSS software (version
20 for Windows). One-way analysis of variance (ANOVA) with Tukey’s post-test was used
to determine statistical differences between the different treatments. A probability value of
0.05 or less was indicative of a statistically significant difference.

5. Conclusions

The Achillea fragrantissima methanolic extract showed antibacterial and antibiofilm
effects against both MRSA and MDR-P. aeruginosa. The effect was relatively lesser against
MDR-P. aeruginosa as compared to MRSA. The LC-MS analysis of the extract showed
the presence of 47 different phytoconstituents, and many of these are known to have
antimicrobial activities. A detailed investigation of the effect of these phytoconstituents is
required to determine their contribution to the antibiofilm and wound-healing effects of
the plant extract. Furthermore, study of the effect of extract on polymicrobial biofilms on
wounds may provide more insight into the activity of the plant extract.
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