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Abstract: Circulating tumor cells (CTCs) are one of the most important causes of tumor recurrence and
distant metastases. Glioblastoma (GBM) has been considered restricted to the brain for many years.
Nevertheless, in the past years, several pieces of evidence indicate that hematogenous dissemination
is a reality, and this is also in the caseof GBM. Our aim was to optimize CTCs’ detection in GBM
and define the genetic background of single CTCs compared to the primary GBM tumor and its
recurrence to demonstrate that CTCs are indeed derived from the parental tumor. We collected
blood samples from a recurrent IDH wt GBM patient. We genotyped the parental recurrent tumor
tissue and the respective primary GBM tissue. CTCs were analyzed using the DEPArray system.
CTCs Copy Number Alterations (CNAs) and sequencing analyses were performed to compare CTCs’
genetic background with the same patient’s primary and recurrent GBM tissues. We identified
210 common mutations in the primary and recurrent tumors. Among these, three somatic high-
frequency mutations (in PRKCB, TBX1, and COG5 genes) were selected to investigate their presence
in CTCs. Almost all sorted CTCs (9/13) had at least one of the mutations tested. The presence
of TERT promoter mutations was also investigated and C228T variation was found in parental
tumors and CTCs (C228T heterozygous and homozygous, respectively). We were able to isolate
and genotype CTCs from a patient with GBM. We found common mutations but also exclusive
molecular characteristics.

Keywords: glioblastoma; circulating tumor cells; DEPArray; whole exome sequencing; TERT
promoter mutations

1. Introduction

Circulating tumor cells (CTCs) are cancer cells that detach from the main tumor mass
and enter the circulatory stream [1]. In solid tumors, they are generally associated with
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the appearance of metastases [2]. Nowadays, in many tumors, the role as an independent
prognostic factor for CTCs is now widely demonstrated, but their clinical utility is still
being evaluated [3]. Several general oncology clinical trials have been conducted and are
still ongoing to translate the use of CTCs into clinical practice [4–7].

Glioblastoma (GBM) is the most aggressive and deadly primary tumor of the central
nervous system (CNS) in adults [8]. Complete surgical resection of this tumor is extremely
difficult because of the capacity of the GBM to infiltrate the CNS parenchyma. Inexorable
intracranial recurrences occur, resulting in a dramatic worsening of the prognosis; indeed,
the average survival of GBM patients is only 16 months [8]. First-line treatments, including
surgery followed by concomitant radiochemotherapy and adjuvant chemotherapy, fail to
achieve long-term disease control. Therefore, there is an urgent need for new targets for
oncological therapies and non-invasive markers for disease monitoring in GBM patients.

Until now, CTCs have not been studied much in brain tumors because GBM only rarely
gives extracranial metastases; this is partially due to the limited survival of these patients
not allowing time for micro-metastases to grow and be identified in other organs [9,10].
GBM cells have tropism for brain tissue because, unlike other organs, the poor connective
stroma tissue of the CNS represents a favorable environment for growth [11]. Further-
more, in 2014 Jimsheleishvili et al. [12] demonstrated that multiple solid organ transplant
recipients developed extracranial GBM after receiving organs from GBM patients. Despite
these theories, it is now well known that CTCs are present in the blood of patients with
GBM. CTCs have been detected in the blood of patients with GBM in some studies [13–17]
however, detection of CTCs in GBM patients is technically challenging because isolation
methods are not standardized, and universal markers specific to CTCs derived from brain
tumors are lacking [18]. In 2014, the first three published papers were on several CTCs
isolation techniques for GBM, giving heterogeneous and divergent results [14,16,19] with
generally low CTCs yields. Subsequently, other studies have demonstrated the presence of
CTCs in GBM patients [13,15,17,20].

In this study, we optimized and tested a novel approach to isolate CTCs in the blood of
a patient suffering from recurrent GBM IDH wild-type (wt), consisting of a first size-based
enrichment of cells followed by sorting with DEPArray NxT. Blood was collected at the time
of the second surgery for recurrence. Molecular investigations were performed on CTCs
collected at recurrence and in recurrent tumors of origin to assess common genetic somatic
alterations. We also analyzed the primary GBM tissue (FFPE) available from archives and
compared genetic somatic alterations. Common somatic mutations between the primary
and the respective recurrences were then sought in the CTCs (BRAF V600E, TERT C228T,
and C250T), to confirm the origin of these circulating cells from the parental GBM tumor.

2. Results
2.1. CTCs Description

In our sample, we identified viable CTCs using multiparametric fluorescence analysis.
Our CTC signature was based on positivity for at least one of the following markers: GFAP,
EGFR, or Ki67. The CTCs observed were: 18 CTCs (tumor astrocytes, GFAP+ and/or
EGFR-Ki67+), 86 nucleated hematopoietic (nH) cells (non-tumoral cells, CD45+), 12 double-
positive cells (dposCTCs) (GFAP+/CD45+ or EGFR-Ki67+/CD45+), and 158 unstained
cells (only Hoechst+). Cells labelled only with Hoechst were considered because their
shapes and sizes have the typical characteristics of CTCs. Therefore, as there is no universal
marker for GBM tumor cells, we also evaluated these cells and termed them “putative
CTCs” (pCTCs). Subsequently, we sorted some CTCs for further analysis. In particular:
six single CTCs, two single pCTCs, one group of pCTCs, two single dposCTCs, and two
groups of nH cells. All the sorted cells were subjected to DNA amplification and low-pass
analysis. Figure 1 shows examples of CTCs isolated from the blood of a patient.
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Figure 1. Example of DEPArray isolated CTCs from the patient’s blood (20× magnification). In
red staining with EGFR/Ki67, in yellow with GFAP, in green with CD45 and in blue with Hoechst.
BF: brightfield.

2.2. CNA Analysis on Whole Tissues and CTCs

CNA analysis was carried out on bulk primary and recurrent tumor tissues and on
CTCs as a first analysis to provide an overview of chromosomal structural abnormalities
and genomic instability typical of tumoral status. Chromosomal alterations of the bulk
tumor, both for the primary GBM and recurrent tumor, were calculated using the CNApp
tool and are shown in Figure 2 (right side). Chromosomal amplification and deletion are
shown in red and blue, respectively. The intensities of the red- and blue-colored components
correlate with the gain and loss values based on the results obtained from the CNApp tool.
CNA analysis revealed considerable aneuploidy with whole-arm and whole-chromosome
alterations (gains and losses), demonstrating chromosomal instability. Common alterations
between the primary GBM tumor and its recurrence are chromosome 9p and 10 deletions
and the gain of chromosome 7p. However, the primary tumor had exclusive alterations
compared to its recurrence, in particular the deletion of chromosomes 13q and 18 and the
gain of chromosomes 7q and 19p.

Next, we performed CNA analysis of CTCs isolated from the patient’s blood collected
at the time of recurrence and compared the results with those obtained from whole tissues.
In Figure 2, a comparison between primary, recurrent tumor, and CTCs CNAs obtained
with CNApp is shown. The results obtained are very heterogeneous; in general, there
are a higher number of alterations in CTCs than in bulk tumor tissues. In particular,
CTC#2 was the only one carrying an alteration present in the primary and recurrent
tumors, that is, the gain of chromosome 7. Otherwise, several new alterations are observed
in CTCs, some of which are shared, such as the deletion of chromosome 19, which is
present in all CTCs (CTC#1, CTC#2, CTC#5, and CTC#6). All pCTCs present deletions
on chromosome 19, except for pCTC#3, which conserves the q arm of the chromosome.
Deletion of chromosome 20p was also observed in several samples (CTC#1, CTC#2, CTC#5,
pCTC#2, and dposCTC#2), and deletion of chromosome 22q was observed in CTC#1,
CTC#2, CTC#5, pCTC#3, and dposCTC#2.
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Figure 2. Genome-wide chromosome arm can profile heatmap for isolated CTCs obtained with
CNApp tool. On the right, the CNA profiles of the primary and the recurrent tumors in bulk are
shown. The chromosomal amplifications are shown in red, and the deletions in blue.

2.3. Whole Exome Sequencing

Whole-exome sequencing analysis was performed on DNA obtained from FFPE
tissue (primary tumor), fresh tissue (recurrence), and whole blood of the patient. The
tumor DNA was analyzed using deep whole exome analysis to obtain even rare somatic
variants with very low allele frequencies. In contrast, whole blood DNA was subjected
to regularly covered exome analysis to obtain the signature of the germline variants of
the tissue. For the primary tumor, 132 million reads were mapped to the coding regions
and 141 million were mapped for recurrence. The average coverage was 224X for the
primary tumor and 247X for recurrence. We discovered a total of 1629 and 1237 variants
in the primary tumor and recurrence, respectively. The mutational spectrum is shown in
Figure S1 (Supplementary Data). Subsequently, we queried the IntOGene framework as is
shown in Table S1 (Supplementary Data). By comparing the somatic mutations discovered
in the primary tumor and recurrence, we identified 210 common variants. In Figure S1
(Supplementary Data) the mutational spectrum of the shared mutations is shown. To
establish the clinical significance of the 210 shared mutations, we used VarSome [21], a
search engine for human genomic variations, as shown in Figure S2 (Supplementary Data).
The molecular variation detected in the BRAF gene corresponds to the well-known BRAF
V600E mutation, which is present in GBM at a frequency of 1%. In the primary tumor,
BRAF V600E was present with a tumor frequency of 12%, whereas in the recurrent tumor,
it was <1%, despite the fact that the patient had not been treated with BRAF targeted agent.

2.4. Detection of Patient-Tailored Tumor Somatic Variations in CTCs and BRAF V600E

Of the 210 shared mutations between primary and recurrent tissues, three mutations,
on the basis of their high frequency, were chosen for investigation in CTCs. The mutations
were PKRCB (c.430G > A), TBX1 (c.815C > T), and COG5 (c.1554T > G), with frequencies of
39%, 26%, and 10% in primary tumor and 25%, 19%, and 13% in recurrence, respectively. At
least one of the three mutations was present in 4/6 single CTCs and all three pCTCs (single
and grouped). Among the dposCTCs, only one had one of three mutations. The groups of
nH cells contained no mutations. All identified mutations were present in heterozygosis.
Figure 3 shows the results of the presence of the selected mutations in the CTCs together
with the CNA data derived from the low-pass analysis. Since the primary and recurrent
tumor tissues showed BRAF V600E mutation, we examined the presence of BRAF V600E in
CTCs. All CTCs were wild type for BRAF V600E.
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2.5. Detection of TERT Promoter Variations in CTCs

TERT promoter mutations are frequently observed in gliomas with wild-type IDH. We
investigated in CTCs and in the primary and recurrent tissues, two well-known mutations
of the TERT promoter gene (C228T and C250T). They map −124 and −146 bp, respectively,
upstream of the TERT ATG site, respectively. In the primary tumor and recurrence, we identi-
fied a C228T mutation in heterozygosis and confirmed its presence in two CTCs, CTC#6 and
pCTC#2, but in those cases, we observed only the mutated allele (T) (Figure 4). Therefore,
some CTCs showed “tracking” of GBM mutations, such as promoter TERT mutations.
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3. Discussion

GBM is the most aggressive malignant brain tumor in adults [22]. It has a poor
prognosis [23] and current treatment options have limited effectiveness [24]. To improve
outcomes for GBM patients, there is a pressing need for new therapeutic targets and
noninvasive markers for disease monitoring. The recent literature has highlighted that
GBM releases tumoral content that crosses the blood–brain barrier (BBB) and is detected
in patients’ blood, such as CTCs [25]. However, isolating and characterizing CTCs in
GBM is challenging. Several groups have reported the presence of CTCs in the blood
of GBM patients using different approaches to obtain a level of detection varying from
20% to 70% [13,14,16,19]. No optimal technique exists to isolate CTCs from patients with
GBM. Currently, no markers can specifically confirm GBM cell in origin. In our study,
leveraging on the combination of the Parsortix and DEPArray instrumentations, we set
up a new approach based on isolating CTCs from blood depending on cell size and then
using GFAP (glial fibrillary acidic protein) as the main tumor astrocyte cell marker [26],
with EGFR (epidermal growth factor receptor) and ki67 (proliferation marker protein), as
described by Krol et al. [17]. Here, in our study, unlike other studies, the approach that
we used allowed us to isolate and collect a larger number of CTCs derived from one GBM
patient. We analyzed a patient who underwent surgery 14 months after the first surgery
for distant recurrence and found 18 CTCs confirmed as tumor cells through CNA analysis.
Moreover, 12 dposCTCs and 158 pCTCs were identified. The presence of double-positive
cells (double staining for cytokeratins and CD45) is a well-known phenomenon [27–32].
It has also been shown that the presence of these cells is correlated with a worse survival
rate [33]. In fact, our results showed that dposCTCs are indeed cancer cells because they
carry CNAs (Figures 2 and 3). One of the most widely accepted theories that can explain
the double-positive cells occurrence suggests that these cells are the result of a fusion
between macrophages and cancer cells [33]. To better characterize the patient’s CTCs,
we also performed whole-exome sequencing of the primary tumor and the respective
recurrence and compared their genetic backgrounds. We identified 210 somatic mutations
in common between primary and recurrent tumors and selected three specific mutations
with an allelic intratumor frequency above 30% to investigate their presence in the isolated
CTCs (Figures 2 and 3). The 4/6 CTCs, all the pCTCs and one dposCTC presented at
least one of the selected mutations, so confirming the CTCs origin from the primary and
recurrent tumors. The absence of these three mutations in some CTCs is explained by
the fact that they most likely carry other somatic mutations that were not selected in our
investigation. In this study, we report that the genetic background of CTCs in GBM patients
presents at the chromosomal level several additional copy number alterations that are not
the classical conventional GBM alterations, such as the gain and loss of chromosomes 7
and 10, respectively. This could mean that CTCs originate from subclones in which these
alterations are absent, and that these are probably not correlated to cancer dissemination.
Nevertheless, by sequencing specific somatic mutations, we proved that the CTCs that
we collected belonged to the parental primary and recurrent tumors of origin. Moreover,
to further emphasize the derivation of CTCs from recurrence, we investigated known
variations in the TERT promoter, in addition to patient-specific mutations. In particular,
the two most common somatic mutations in TERT promoter, C228T and C250T, which
are present in almost 60% of glioma patients [34,35] were investigated in both CTCs and
parental tumors. The C228T mutation was detected in tumor tissues and, in confirmation
of our hypotheses, in one CTC and one pCTC. Interestingly, both CTCs showed only the T
allele in position 228. This fact indicates that both cells have completely lost the wild-type
allele. The loss of the wild-type allele is a phenomenon highlighted by the single-cell
analysis approach, but it remains unclear when analyzing the bulk tumor. In fact, the
heterozygosity of the C228T mutation that we observed at the tumor bulk level could
be explained by different tumor molecular status, such as (1) one whole of single cells
heterozygous for the mutation, (2) a mixture of cells homozygous for one allele or the
other, and (3) both of the molecular conditions proposed above. Impressively, both CTCs
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analyzed showed the same loss, thus, supporting the second condition and suggesting a
greater aggressiveness in disseminating behavior. Through extensive and targeted genomic
characterization, we showed that CTCs have common genetic alterations with the parental
tumor. However, we also showed that not all CTCs recapitulated all genetic alterations of
the parental tumor, probably because of the presence of several subclonal genetic alterations
in the tumor mass. For instance, the absence of BRAF V600E mutation in CTCs can be
explained by the low frequency in the recurrence. In conclusion, while the study’s current
limitation lies in the analysis of a single patient, it serves as a promising foundation for
future research. Expanding the case series to include a larger cohort of GBM patients will
provide a more robust understanding of CTCs’ characteristics and their clinical implications.
This could potentially lead to the development of non-invasive diagnostic and monitoring
tools, as well as guide the development of novel therapeutic strategies for GBM.

4. Materials and Methods
4.1. Patient and Samples

A 55-year-old man was diagnosed with a suspected brain tumor of the right temporal
lobe after the occurrence of seizures. He underwent gross total resection in Livorno Hospital,
and histomolecular diagnosis showed IDH wild-type GBM and MGMT unmethylated. He
underwent standard radiochemotherapy and subsequent adjuvant chemotherapy with
temozolomide (TMZ). Subsequently, he was treated with consecutive cycles of adjuvant
TMZ. After 10 cycles, 11 months after the end of concomitant radio-chemotherapy, he
developed left motor impairment and drowsiness. Progression disease was diagnosed with
distant recurrence from the original site in the right frontal lobe (Figure 5). He underwent
a second surgery with gross total tumor excision and blood collection for CTCs (8 mL
of blood was collected in tubes containing EDTA). The blood collection was performed
before tumor excision. At the time of the second surgery, our protocol for fresh GBM tumor
collection was established. Surgically resected recurrent tumor was collected directly from
the surgical room. The primary FFPE tumor was recovered from the archives of the Livorno
Hospital, since, at that time, our fresh tissue collection protocol was not yet active.
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Figure 5. Description of the study. FFPE primary tumor collected after the first surgery, and analyzed
for a deep WES (whole exome sequencing). After 14 months of follow up, after standard radio-
chemotherapy and adjuvant chemotherapy, recurrence was diagnosed in the right frontal lobe. At the
second surgery, blood and recurrent tumor (fresh tissue) were collected. Blood was used for CTCs
isolation and WES, while the recurrence was analyzed with for a deep WES. T1 gad axial imaging
from MRI before first and second surgery are shown.
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The study was performed in accordance with the Declaration of Helsinki and the sam-
ple collection protocol was approved by the Ethics Committee of the University Hospital of
Pisa (787/2015). The patient signed a written informed consent to participate in the study.
Patient’s data and samples have been completely anonymized.

4.2. Study Design

We collected blood from the patient for CTCs enrichment and whole exome analysis
(to eliminate the germinal signature). We also performed deep whole-exome analysis of the
DNA extracted from the recurrent fresh tumor tissue. We performed a deep whole-exome
analysis of DNA extracted from the FFPE primary tumor. The study design is illustrated in
Figure 5.

4.3. CTCs Enrichment and Isolation
4.3.1. CTCs Enrichment from Peripheral Whole Blood

CTCs were enriched using Parsortix Technology (Angle plc, Guildford, Surrey, UK)
with a 6.5 µm separation cassette following the manufacturer’s instructions from blood
(8 mL in EDTA tubes).

4.3.2. Immunofluorescence of Single-Cell Suspensions

The cell suspensions were fixed by adding 400 µL of Paraformaldehyde 4% for 20 min.
The antibodies chosen for staining were anti-GFAP APC (130-118-489, Miltenyi Biotec,
Bergisch Gladbach, Germany), anti-EGFR PE (130-110-586, Miltenyi Biotec), and anti-Ki67
PE (130-120-417, Miltenyi Biotec) for CTCs; anti-CD45 FITC (130-110-631, Miltenyi Biotec)
as a negative control; and Hoechst 33342 (62249, Thermo Fisher Scientific, Waltham, MA,
USA) for nuclei. CD45, which was used as a negative control, is a marker for nucleated
hematopoietic cells (non-tumoral cells).

4.3.3. Single Cell Isolation by DEPArrayTM NxT

Single cells were isolated and sorted using a DEPArray NxT (Menarini, Silicon Biosys-
tems, Bologna, Italy). Single cells were selected manually based on fluorescence labeling
and morphology. The CTCs were sorted in 0.2 mL tubes: single cells or groups of single
cells per tube, according to our interest.

4.3.4. Ampli1™ Whole Genome Amplification and Low-Pass Analysis on CTCs

Whole-genome amplification of all recovered single cells was performed using the Am-
pli1™ WGA Kit version 02 (Menarini, Silicon Biosystems, Bologna, Italy), following the manu-
facturer’s instructions. Sequencing-ready libraries were prepared with the Ampli™ LowPass
Kit (Menarini, Silicon Biosystems) to detect chromosomal aneuploidies and copy number
alterations (CNAs) with a low sequencing depth. To sequence our libraries, we used the
Ion 520/530-OT2 kit (Ion Torrent, Life Technologies, Grand Island, NY, USA) with the Ion
530 Chip (Ion Torrent). The runs were performed on an Ion S5 system (Ion Torrent).

4.3.5. CNA Calling

The data obtained from the low-pass whole-genome sequencing were processed using
the IchorCNA tool. This was optimized for low-coverage (~0.1X) sequencing. The CNA-
segmented number profiles obtained from IchorCNA were processed using the CNApp
tool [36] with default cutoffs.

4.3.6. DNA Extraction and Whole Exome Sequencing

For bulk sequencing, genomic DNA was extracted directly from up to 50 mg of fresh
recurrence tissue using the Maxwell® 16 Instrument with the Maxwell® 16 Tissue DNA
Purification Kit (Promega, Madison, WI, USA) and from 4 × 10 µm FFPE tissue sections of
GBM primary tumor. Libraries for deep whole exome sequencing were prepared using the
Illumina DNA Prep with Enrichment kit (Illumina, San Diego, CA, USA) and they were
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run on a NextSeq 550 High Output Cartridge (300 cycles) with an average coverage of 200X.
Paired-end sequencing was performed on a NextSeq 500 system (Illumina, San Diego, CA,
USA) with 151 bp sequencing. DNA was also extracted from whole blood (200 µL), and
whole-exome analysis was performed following the same procedure described above to
obtain the germline signature.

4.3.7. NGS Analysis

Raw data in fastq format were first analyzed for quality using FastQC v0.11.9 soft-
ware (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (Accessed 26 March
2021). Exome analysis was performed using the SeqMule pipeline [37] that enables the
performance of all steps required for variant calling (alignment, re-alignment, quality
score recalibration, and variant calling). To obtain somatic mutations, Mutect2 (https:
//gatk.broadinstitute.org/hc/en-us/articles/360037593851-Mutect2) (Accessed 8 April
2021) was used to pair the tumor tissue DNA with its corresponding control blood ger-
minal DNA. Somatic variant annotation was performed using Illumina Variant Inter-
preter (https://variantinterpreter.informatics.illumina.com/home) (Accessed 31 March
2021). Summary tables and graphs were created using the R package, Maftools (https://
bioconductor.org/packages/release/bioc/html/maftools.html) (Accessed 22 April 2021).

The Integrative Onco Genomics (IntOGEn) framework (https://intogen.org) (Ac-
cessed 8 April 2021) was used to identify the presence of driver genes in the mutated genes.
Moreover, we questioned the VarSome (https://varsome.com/) (Accessed 15 April 2021)
engine, which consists of a set of tools and platforms to analyze human genetic variations.

4.3.8. Molecular Characterization of CTCs

To detect TERT promoter variations (C228T and C250T), PKRCB (c.430G > A), TBX1
(c.815C > T), and COG5 (c.1554T > G) SNPs, primers were designed using the Primer3
software. The primers used were as follows:

PKRCB, forward 5′-CAGCCTAAGCCACATCCCCTC-3′

PKRCB, reverse 5′-GTCGATGTGGGCCTGGATGTA-3′

TBX1, forward 5′-CCCACGCAAAGATAGCGAGA-3′

TBX1, reverse 5′-AGAGGCGTTGAATCCGCTC-3′

COG5, forward 5′-GTTTTTCCCCCGGGTGGTC-3′

COG5, reverse 5′-ATATGGCACTCATCTTATGGCAA-3′

TERT, forward 5′-GTCCTGCCCCTTCACCTTC-3′

TERT, reverse 5′-AGCACCTCGCGGTAGTGGC-3′.
For the detection of the V600E BRAF mutation, the ddPCR Mutation Detection assay

specific (Bio-Rad Laboratories, Hercules, CA, USA) was used. PCR amplification for TERT
C228T and C250T and for PKRCB (c.430G > A), TBX1 (c.815C > T), and COG5 (c.1554T > G)
was performed in a volume of 25 µL according to DreamTaq DNA Polymerase (Thermo
Fisher Scientific, Waltham, MA, USA) protocol and sequenced using the BigDye Terminator
v3.1 Sequencing Kit (Thermo Fisher Scientific, Waltham, MA, USA) using an ABI PRISM
3130XL Genetic Analyzer (Thermo Fisher Scientific, Waltham, MA, USA). For BRAF V600E,
we performed digital droplet PCR (ddPCR) using the conventional method on Bio-Rad
QX200TM (Bio-Rad Laboratories).
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