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Abstract: There is early evidence of extraocular systemic signals effecting function and morphology
in neovascular age-related macular degeneration (nAMD). The prospective, cross-sectional BIOMAC
study is an explorative investigation of peripheral blood proteome profiles and matched clinical
features to uncover systemic determinacy in nAMD under anti-vascular endothelial growth factor
intravitreal therapy (anti-VEGF IVT). It includes 46 nAMD patients stratified by the level of disease
control under ongoing anti-VEGF treatment. Proteomic profiles in peripheral blood samples of every
patient were detected with LC-MS/MS mass spectrometry. The patients underwent extensive clinical
examination with a focus on macular function and morphology. In silico analysis includes unbiased
dimensionality reduction and clustering, a subsequent annotation of clinical features, and non-linear
models for recognition of underlying patterns. The model assessment was performed using leave-
one-out cross validation. The findings provide an exploratory demonstration of the link between
systemic proteomic signals and macular disease pattern using and validating non-linear classification
models. Three main results were obtained: (1) Proteome-based clustering identifies two distinct
patient subclusters with the smaller one (n = 10) exhibiting a strong signature for oxidative stress
response. Matching the relevant meta-features on the individual patient’s level identifies pulmonary
dysfunction as an underlying health condition in these patients. (2) We identify biomarkers for
nAMD disease features with Aldolase C as a putative factor associated with superior disease control
under ongoing anti-VEGF treatment. (3) Apart from this, isolated protein markers are only weakly
correlated with nAMD disease expression. In contrast, applying a non-linear classification model
identifies complex molecular patterns hidden in a high number of proteomic dimensions determining
macular disease expression. In conclusion, so far unconsidered systemic signals in the peripheral
blood proteome contribute to the clinically observed phenotype of nAMD, which should be examined
in future translational research on AMD.
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1. Introduction

Age-related macular degeneration (AMD) remains amongst the most prevalent sight-
threatening conditions in the elderly population [1]. Intravitreal anti-vascular endothelial
growth factor treatment (anti-VEGF, IVT) proves to be an effective measure in eyes affected
by the exudative stage of the disease, neovascular AMD (nAMD), thereby halting or even
reversing the loss of central vision in most subjects [1]. At the same time, the individual
treatment response and course of disease under treatment is highly variable. At one end of
the spectrum, there are subjects in which choroidal neovascularization (CNV) activity ceases
after initial treatment with a small number of injections and the retina can be kept in this
“dry” state with no or only a smaller number of injections—an ‘effectively controlled CNV’
(ECC). The other extreme are subjects in which the CNV remains active despite frequent
injections every 4–6 weeks and a “dry” state of the retina is never achieved—‘chronically
active CNV’ (CAC) [2,3]. The reasons for these heterogenous phenotypes of CNV activ-
ity are still incompletely understood today. The reasons may lay in the multifactorial
pathogenesis of AMD.

In fact, it is generally accepted that neovascular AMD is caused by a complex interplay
of genetic susceptibility, ageing, and environmental risk factors—with smoking and some
nutritional aspects as consistent and modifiable conditions [1]. In contrast to the multifacto-
rial nature of the disease, treatment of neovascular AMD has been largely mono-factorial
over almost two decades. Substantial efforts were undertaken to identify novel targets,
which close the clinical gaps that are left by VEGF-inhibition. Blocking additional path-
ways to VEGF such as Angiopoietin-2 resulted in some gradual clinical improvements in
comparison to anti-VEGF only, mainly in terms of longer injection intervals, but have not
eliminated the CAC phenotype as described above [4,5]. This indicates that consideration
of other factors not previously considered may lead to improved therapeutic outcomes, but
a fully satisfactory therapeutic option for all patients has not yet been established.

An alternative way to decipher the disease-specific processes of AMD is to view the
eye as an integrated organ within the whole organism. It is well understood that a tight
interlocking of inflammatory processes with neurodegeneration and angiogenesis are key
processes in the onset and development of the disease [1,6–8]. None of these processes
is specific to the eye, but all of them are highly preserved in terms of physiological or
pathophysiological mechanisms occurring in all regions of the human body. Thereby, they
are spanning a variety of mutually regulating pathways and molecular interrelationships
including multiple organ systems—some of which are known to interact with the VEGF
system or pathological growth of blood vessels [8–11]. Taking this into account, it is
plausible that previously unappreciated systemic signals may influence nAMD disease
expression, e.g., in terms of morphology and treatment response.

Proteins play a fundamental role in various biological processes, and alterations in
their function and regulation can significantly impact disease onset and course [12,13].
Thus, one way to understand ocular phenotypes in a systems biology context is to explore
entire sets of proteins present in the biological system—so called proteomics [14]. This
methodology has been previously employed on diverse tissue specimens associated with
AMD, encompassing the retinal pigment epithelium (RPE), Bruch’s membrane, drusen,
as well as on fluid samples such as vitreous humor, tear fluid, aqueous humor, urine,
and peripheral blood [15–32]. Blood proteome profiles offer a comprehensive and unified
approach to assess an individual’s global molecular status, as they encompass informa-
tion from multiple tissues and directly reflect disease-related molecular pathways and
activities [12,13,24]. While the main focus of recent blood proteome approaches is on
biomarker and target discovery with a distinct focus on single proteins instead of more
holistic proteomic considerations, newer studies also employ complex modeling for dis-
ease course determination and subtype distinction and reveal altered proteomic profiles
in nAMD patients [15,20–24]. However, a decryption of the two extreme manifestations
regarding disease control under anti-VEGF IVT in nAMD has not yet been achieved on a
proteomic level.
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In this exploratory study, we hypothesize that there is a systemic molecular impact on
the ocular nAMD phenotype. We conceptually examined proteomic whole-blood profiles
of 46 nAMD patients under current anti-VEGF IVT, stratified with the effectiveness of
CNV control (ECC vs. CAC), on the exploratory search for linkage between the individual
proteomic blood profile with the retinal disease manifestation. Interestingly, we detect only
a weak impact of single protein features on disease expression but rather high-dimensional
similarity patterns of potential clinical relevance. This supports the idea of a multifactorial
systemic nAMD understanding and should encourage more whole-organism research to
better understand retinal diseases.

2. Results
2.1. Study Population and Baseline Clinical Characteristics

We recruited 46 nAMD patients stratified by the CNV activity under anti-VEGF IVT
with 54% of participants (n = 25) in the CAC division versus 46% in the ECC division
(n = 21, compare stratification strategy and criteria in methods). Supplementary Figure
S3 presents the clinical and demographic characteristics of the study population which is
well-representing the general nAMD population concerning multiple clinical features [1,33].
Expectedly, patients of the CAC cohort were more likely to have subretinal hyper-reflective
material (SHRM, p < 0.0001), a higher central retinal thickness (CRT, p = 0.0025), more
frequent anti-VEGF IVT (p < 0.0001, among stratification criteria), slightly more often sub-
retinal fluid (SRF, ns, p = 0.056) and intraretinal cysts (IRC, p = 0.29), and gradually lower
visual acuity (ns, p = 0.2724). No unexpected changes between any of the other epidemio-
logical, functional, morphological, and medical-history-related meta-features were detected
in our cohort, except for anticipated correlations between lower BCVA and intraretinal cysts
(IRC, p = 0.0013), between lower BCVA and subretinal hyperreflective material (SHRM,
p = 0.0329), between active smoking and respiratory dysfunction (p = 0.0008), and between
diabetes mellitus and arterial hypertension (p = 0.0371), respectively.

2.2. Unbiased Dimensionality Reduction and Clustering Reveal a Distinct Patient Sub-Cohort with
a Strong Proteomic Signature for Oxidative Stress Response and Respiratory Dysfunction as an
Underlying Health Condition

Whole-blood samples of every patient were taken at the baseline. Samples were
analyzed with mass spectrometry (LC-MS/MS)-based proteomics, thereby providing an
individual dataset of 1182 protein values for each subject. To reveal local and global similar-
ity patterns to identify patient subclusters (‘similarity neighborhoods’) of putative clinical
relevance, we used the non-linear dimensionality reduction method UMAP (Uniform Man-
ifold Approximation and Projection). Interestingly, UMAP separates the cohort into two
distinct scatter clouds with the smaller one consisting of 10 patients (cluster 1; 21.7%) and
the larger one of 36 patients (cluster 2; 78.3%). The clear distinction into two clouds in the
UMAP visualization is reflected in 131 significantly different markers which represent more
than 11% of the total number of examined proteins (FDR-adjusted p-value < 0.05, 88 of
which with p < 0.01, Figure 1b,c). Notably, cluster 1 distinguishes itself with 115 signifi-
cantly different proteins (85 with p < 0.01, all p-values are FDR-adjusted), while the larger
cluster 2 yields 16 markers only (3 with p < 0.01; compare Figure 1b). The top ten detected
proteins of cluster 1 include arachidonate 5-lipoxygenase-activating protein (AL5AP, log2
of protein ratio lr = 4.701, p = 0.0006), a putative marker for lung disease [34]; endoplas-
mic reticulum chaperone BiP (BIP, lr = 1.144, p = 0.00025), which is important for lung
structure and function [35]; as well as multiple key components of the respiratory chain as
responding elements to oxidative stress (cytochrome b-245 heavy chain, CY24B, lr = 1.113,
p = 0.00064; mitochondrial phosphate carrier protein, MPCP, lr = 2.172, p = 0.00038; ATP
synthase subunit alpha, ATPA, lr = 1.294, p = 0.00062, cytochrome c oxidase subunit II,
COX2, lr = 5.365, p = 0.00025) and calnexin (CALX, lr = 2.796, p = 0.00025), which is another
response molecule associated with oxidative stress [36]. Value ratios between the two
clusters are extraordinarily high for the identified proteins (Figure 1d,e). The three top
markers of cluster 2 include the nuclear receptor 2C2-associated protein (NR2CA, lr = 2.428,
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p = 0.00538), tropomyosin alpha-4 chain (TPM4, lr = 0.246, p = 0.0057), and cartilage acidic
protein 1 (CRAC1, lr = 1.254, p = 0.00645; Figure 1b–e).

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW  4  of  15 
 

 

ATPA, lr = 1.294, p = 0.00062, cytochrome c oxidase subunit II, COX2, lr = 5.365, p = 0.00025) 

and calnexin (CALX, lr = 2.796, p = 0.00025), which is another response molecule associated 

with oxidative stress [36]. Value ratios between the two clusters are extraordinarily high 

for  the  identified proteins  (Figure 1d,e). The  three  top markers of cluster 2  include  the 

nuclear  receptor 2C2-associated protein  (NR2CA,  lr = 2.428, p = 0.00538),  tropomyosin 

alpha-4 chain (TPM4, lr = 0.246, p = 0.0057), and cartilage acidic protein 1 (CRAC1,  lr = 

1.254, p = 0.00645; Figure 1b–e). 

 

Figure 1. Dimensionality reduction and unbiased clustering based on proteomic profiles reveal a 

strong signature for oxidative stress response with respiratory dysfunction as an underlying clinical 

condition.  (a) UMAP plot based on 46 whole-blood proteome  samples. Each dot  represents one 

sample of one subject. Color-coding: unbiased clustering based on nearest-neighbor approach with 

two distinct subclusters. (b) Left: Volcano plot for visualization of differentially detected proteins 

between the two cohorts. Right: Highlight of the top 10 candidates. (c) Heatmap visualization. Each 

column represents one blood sample of one donor; each row represents one distinct protein. Only 

Figure 1. Dimensionality reduction and unbiased clustering based on proteomic profiles reveal a
strong signature for oxidative stress response with respiratory dysfunction as an underlying clinical
condition. (a) UMAP plot based on 46 whole-blood proteome samples. Each dot represents one
sample of one subject. Color-coding: unbiased clustering based on nearest-neighbor approach with
two distinct subclusters. (b) Left: Volcano plot for visualization of differentially detected proteins
between the two cohorts. Right: Highlight of the top 10 candidates. (c) Heatmap visualization. Each
column represents one blood sample of one donor; each row represents one distinct protein. Only
proteins with significant difference (FDR-adjusted p-value < 0.01) between clusters are shown. Color-
coding reflects normalized protein detection level per individual sample: red represents highest,
bright yellow lowest value. A color-coded scale is located at the bottom right. (d) Protein values
of top three detected proteins per cluster compared to average of contrary cluster. (e) Feature plot
of proteins shown in (c). Color-coding: compare (c). (f) Volcano plot of meta-data annotations
between the two clusters. (g) Contingency table of the two dichotomic features proteome cluster
and respiratory dysfunction. (h) Feature plot for respiratory dysfunction. (i) Frequency of assumed
causes for respiratory dysfunction. For all graphs in this figure (if not specified otherwise): * p < 0.05,
Mann–Whitney U test, FDR correction.
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Next, we annotate meta-features on patient level to test whether there is an epidemi-
ological or general health condition that might explain the strong proteomic patterning
between the two clusters. Notably, we detect respiratory dysfunction as a significantly
overrepresented feature in cluster 1 (log2-ratio = 0.912 and p = 0.0079, Figure 1f–h). None of
the other conditions was significantly different in one of the sub-clusters and, in particular
morphological nAMD disease features (e.g., SRF or stratification division), did not differ
between clusters 1 and 2, so nAMD did not feature on this allocation (Figure 1f). When the
15 patients suffering from respiratory dysfunction (7 of 10 in cluster 1, 70% versus 8 out
of 36 in cluster 2, 22.2%; p = 0.0197) were asked for the assumed cause of this condition,
two-thirds of them declared active or passive smoking as the probable root condition
(Figure 1i); however, there were more non-smoking patients suffering from respiratory
dysfunction in cluster 1 (compare Figure 1h,i with Supplementary Figure S4a).

2.3. Exploiting Meta-Feature Annotations on a Patient Level Yields a Limited Number of
Biomarker Discoveries

As a basic analytic screening similar to previous proteomic studies [16,18,32,37], we
performed canonical, non-parametric testing to determine whether a particular protein
is differentially detected between certain meta-conditions for the 36 patients of cluster 2
(Figures 2, S6 and S7). The focus on this cluster for further analytic steps is due to the strong
proteomic distortion of cluster 1 samples (Figure 1), but we provide the same analysis for
all 46 samples in Supplementary Figure S4.

After a rigorous FDR correction of p-values, we detected a small number of significant
protein markers, inter alia the y-chromosomal eukaryotic translation initiation factor 1A
(EIF1AY, lr = 1.61, p = 0.000069) for male patients, insulin-like growth factor binding protein
5 (IGFBP5, lr = −2.83, p = 0.0051) for non-smokers, and COP9 signalosome complex subunit
3 (COPS3, lr = 0.21, p = 0.006) for diabetics. The three identified proteins are known markers
for the given conditions and thus serve as confirmatory anchors for our proteomic approach
and data annotation [38,39]. We detect higher levels of prefoldin subunit 2 (PFDN2, lr = 0.42,
p = 0.0014) in nAMD patients with SRF (Figure 2b), a molecule that has previously been
weakly associated with permeability [40]. The significance of prefoldin subunit 2 for SRF
features on cluster 2, as well as on all 46 patients (Figure 2c, Supplementary Figure S3c)
was observed. Furthermore, we detect peroxiredoxin-6 (PRDX6) as a biomarker for SHRM
in all 46 patients (lr = 0.29, p = 0.0493), although being non-significant for cluster 2 after
FDR-correction (lr = 0.27, non-FDR-corrected p = 0.0017, p ≈ 1). The protein is involved
in redox regulation during protection against oxidative injury [41]. Files containing ratios
and p-values for all proteins between any logged conditions are provided for patients in
cluster 2 (Supplementary Tables S6 and S7).

As singular or less-frequent biomarkers do not enable us to reliably classify patients
into the two extremes of the stratification divisions, we took an alternative approach in
which we projected meta-annotations on the generated UMAP dimensionality reduction to
visualize potential patterns based on proteomic similarity neighborhoods. For most meta-
features, we detected a seemingly random allocation without apparent patterns (Figure 2a).
However, concerning CNV activity (stratification), we yielded a bipolar division with
patients from the CAC division on the one and from the ECC division on the other pole
in cluster 2 (Figure 2a,d). We believe that this observation, as well as subsequent findings
shown in Figures 2 and 3 might also be true for the smaller cluster 1. However, the
small number of 10 patients prevents us from yielding significant results due to statistical
underpower with many proteomic dimensions. In order to represent this bipolar division
of cluster 2 with a classification boundary between the two divisions, we built an intuitive
linear support vector machine (SVM) classifier without the specification of Kernel functions
or other modifications [42]. We use this boundary line to screen for proteomic markers that
might define this ‘level of CNV control’ axis (by regarding Euclidian distance between the
UMAP coordinate and the SVM boundary). Interestingly, with Aldolase C—a key enzyme
for glycolysis [43]—we find a biomarker that is significantly overrepresented on the ECC
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pole (compare Figure 2d–f, Table S8). We rate the finding of Aldolase C supportive for this
model, as it has previously been associated with AMD [44].
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Figure 2. Proteomic biomarker discoveries for nAMD meta-features. (a) Visualization of meta-
features on UMAP dimensionality reduction of cluster 2. (b) Volcano plots for identification of
proteomic biomarkers of indicated conditions. Meta-features without graphic representation yield
no significant biomarkers. (c) Comparison of protein values of prefoldin subunit 2 for patients with
and without SRF. (d) Linear SVM classifier categorizing samples into the two CNV control divisions
(color-coded). (e) Volcano plot indicating proteomic biomarkers of SVM classifier from C based on
Euclidian distance to SVM boundary. (f) Feature plot of top three significant proteins. Color-coding
explained in Figure 1c. Color-coded scale provided at top left. For all graphs in this figure (if not
specified otherwise): * p < 0.05, Mann–Whitney U test, FDR correction. Spearman correlation in (f).
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Figure 3. k-Nearest-Neighbor approach as a robust non-parametric tool to classify patients into
divisions based on proteomic profiles. (a) UMAP dimensionality reduction and kNN approach (k = 3)
for prediction of CNV control divisions. (b) Left: Leave-one-out cross validation as validation strategy.
Center to right: Exemplary visualization for cross validation. (c) Number of correct predictions of 36
patients in cluster 2 as a function of the number of k (for kNN approach). (d,e) Contingency table for
true and predicted division for LOO-CVk=1 and LOO-CV*k=3.

2.4. Non-Linear Classification Model Detects the Level of CNV Activity Based on Similarities in a
High Number of Proteomic Dimensions

As a validation approach, we assessed how well our analysis will generalize to in-
dependent data using an adapted leave-one-out cross validation (LOO-CV) approach
(compare methods and Figure 3) [45]. With this approach, we exclude one sample from
cluster 2, perform the UMAP dimensionality reduction on the remaining 45 samples, and
rebuild the kNN predictor (Figure 3b, compare methods). We then project the unseen test
sample on the novel kNN map to classify this unseen test sample into the stratification
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divisions. In the example for patient ‘54492928’ as a test sample in Figure 3b, our classi-
fication coincides with the true division. We repeat this for all 36 patients of our cluster
2 cohort and receive for the full cross validation (with k = 3 nearest neighbors, compare
Figures S5 and S6 for different k) 22 correct and 14 incorrect predictions (ratio: 1.57, rate:
61.11%). We also created the UMAP dimensionality reduction for all samples including the
test-sample, thereby only testing the kNN classifier during the validation process and not
the UMAP algorithm in a complete cross validatory setting (LOO-CV*). Expectedly, we
yielded more correct predictions with this (compare below and in Figure 3c–e); however,
there are limitations and risk of a potential overfit to our data. Furthermore, finding the
right k for a kNN approach is a common challenge. Expectedly, due to the relatively small
training set of 35 patients only, we yielded the best performance with a small k of 1 or
3 (compare Figures 3c–e and S6).

Finally, we can demonstrate a superiority of both LOO-CV cross validated models
for any reasonably chosen k in comparison to a random (“coin flip”) or even a selective
classifier for expected value, e.g., CAC classification for all samples (Figure 3c). We yielded
best outcome parameters of the fully cross validated model (LOO-CV) for k = 1 (the nearest
neighbors) and for k = 3, respectively, with a ratio of 22 correct versus 14 false classifica-
tions and a Rand index (RI) of 0·51 for k = 1 (best outcome for LOO-CV* for k = 3 with
26 vs. 10, and a RI of 0.59). The provided classifier (LOO-CVk=1) is superior for common
test statistics, e.g., sensitivity of 75% (LOO-CV*k=3: 75%), positive predictive value 62.5%
(PPV; LOO-CV*k=3: 75%), negative predictive value 58·33% (NPV; LOO-CV*k=3: 68.75%),
but yields a limited specificity of 43.75% (LOO-CV*k=3: 68.75%). With an increasing k for
the kNN classification algorithm, we detected even higher values for sensitivity at the
expense of a lower specificity (Figure 3 and Figure S6).

3. Discussion

The main finding of this study is the detection of systemic signals in the peripheral
blood of nAMD patients, which reflect the macular disease phenotype—in our example
the level of CNV control. With this, we provide renewed conceptual support of a tangible
influence of systemic factors on the nAMD manifestation and the course of disease. This
observation may open new avenues to the mechanistic understanding of nAMD.

Epidemiologically, our study cohort is representative for a real-world nAMD pop-
ulation (compare Supplementary Figure S2 and patient meta-features with the relevant
literature) [1,33]. For spectral library generation, a shotgun LC-MS/MS approach was
applied, which is simple to perform, and a standard reproducible method of current mass
spectrometry, thus feasible for mass diagnostics [46]. However, although the applied UMAP
approach stands out as an efficient method with superior runtime performance [47], in silico
analysis turned out to be more challenging: We demonstrate in Figure 1 that, for sensitive
detection of hidden proteomic patterns of clinical relevance for nAMD, a simultaneous
suppression of superior, confounding factors of paramount health conditions is necessary
(e.g., systemic diseases, Figure 1). We believe this to be particularly important in an aged
nAMD cohort suffering from a multitude of comorbidities with potentially strong systemic
representation (compare Supplementary Table S5). In this context, we were able to identify
oxidative stress response as molecular and respiratory dysfunctions as correlating clinical
signals in a very distinct nAMD subcohort (10 patients in cluster 1, p = 0.0197 for respiratory
dysfunction, and 131 significantly different proteins with p < 0.05, >11% of all proteins,
Figure 1). With cytochrome c oxidase subunit II, we found a key component of the mito-
chondrial respiratory chain, and, with the membrane-bound chaperone calnexin, a protein
that is known for its function for protein folding, quality control, glycoprotein maturation,
and interaction with other proteins. Both of them are response molecules to oxidative stress,
and early reports suggest retinal defects upon deficiency [48,49]. The molecular functions
of cluster 1 markers (NR2CA, TPM4, CRAC1) are diverse and nonspecific: inhibition of
cell proliferation, migration, epithelial–mesenchymal transition (EMT), cell–cell adhesion,
and others [50,51]. Their role as clinical biomarkers remains unclear at this point. Notably,
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oxidative stress and respiratory diseases are mutually dependant [52], with us providing
the potential molecular link. With this, we identify the only two consistent modifiable
risk conditions for nAMD in this subcohort: lung disease (smoking) and oxidative stress
response (nutrition, Figure 1, and AREDS2 study results) [1,33,53]. Although not being
able to provide a causal proof, our study suggests that, for some nAMD patients, the
ophthalmological disease is substantially promoted by or even might represent a secondary
complication of a stronger underlying molecular condition, e.g., oxidative stress or a state
of systemic hypoxia due to lung disease. However, nAMD manifestation in these patients
(cluster 1) did not differ from non-affected nAMD cases (cluster 2) in terms of morphology
or functional or epidemiological features (compare Figure 1f). Furthermore, according
to the literature, an epidemiological association between pulmonary (dys-)function and
AMD is at least unclear; in our study as well, we cannot present a robust causal relation-
ship [54,55]. Further research on this topic is needed to explore potential causalities and to
understand how to integrate these findings in terms of clinical considerations.

In Figure 2, we can provide some significant marker correlations of morphological
and functional nAMD features (Prefoldin Subunit 2 for SRF; Peroxiredoxin-6 for SHRM,
both features determined on OCT scan) with Aldolase C being associated with effective
control of CNV activity (Figure 2, compare CAC and ECC criteria in methods). The identi-
fied molecules have already been weakly associated with the given conditions but need
to undergo further confirmation [40,41,43,44]. Interestingly, anti-retinal auto-antibodies
against Aldolase C have been identified as potential disease drivers in nAMD [44]. Thus,
higher blood levels of the enzyme as putative decoy molecules might have a protective po-
tential, as we observe in our SVM approach (Figure 2d–f). However, although the provided
singular markers have a certain value for target discovery research, they are insufficient to
robustly assign patients into the clinically stratified divisions or to draw clinical conclusions
regarding therapy or prognosis.

In contrast, in Figure 3 we provide a kNN classifier that works based on proteomic
similarities (neighborhoods), thereby consulting complex high-dimensional data patterns
concealed in numerous proteome features, not in singular biomarkers. With this, we
support an nAMD understanding of multifactorial, personalized genesis—in which a high
number of molecular factors define disease course and treatment response. At this point,
the provided prediction model for the level of CNV controls is statistically inferior to
clinical diagnostics. However, it proves that ulterior signals can be detected even in a
‘small’ dataset of only 46 patients and 1182 proteomic features measured at one baseline
timepoint. This represents a cursory glance into the manifold molecular manifestation of
nAMD pathogenesis.

Limitations of this study should be acknowledged. Firstly, the inclusion of real-world
patients with coexisting diseases from a wide range of backgrounds certainly affects our
results. This has upsides in terms of the translatability into clinical practice. On the other
hand, the diverse comorbidities present in our patient cohort (Supplementary Table S5)
introduce additional variables that may influence the observed proteomic profiles and
disease phenotypes. Although our approach can partially but significantly factor out
these comorbidities and detect hidden signals of the investigated disease (Figure 1), the
presence of other concurrent medical conditions may also introduce some bias. The findings
of the present study help to inform follow-up studies with additional strata of subjects
including healthy controls and nAMD subjects before treatment. Furthermore, it will be
important to expand the number of included molecular dimensions, such as incorporating
more detected proteomic variants, genome, metabolome, and immunome parameters.
Longitudinal test strategies, coupled with an increase in the number of donors, are crucial
to ensure sufficient data density for robust inference. The relatively small sample size of
46 blood samples, divided by CNV activity, is a further limitation. However, BIOMAC
should be seen as a pilot investigation showing that the blood proteome in larger AMD
cohorts deserves attention. Moreover, the presented classifier model is expected to perform
even better when trained on a larger cohort and with additional dimensions, as machine
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learning models generally improve with more data. Additionally, the applied machine
learning techniques have inherent complexity, making them challenging to understand
for patients, clinicians, and scientists alike [56–58]. The specific proteome features that
contribute to the classification and how they exert their effects remain largely elusive,
limiting conventional target discovery research. However, the outcome of our study sheds
light on the heterogeneity of individual courses of nAMD. Considering this individual
heterogeneity is crucial in the pursuit of identifying new therapeutic targets beyond VEGF
and closely related pathways.

In conclusion, we show that there are so far not considered signals in the blood
proteome of patients that correlate with the ocular phenotype of nAMD. The study also
indicates that singular biomarkers are insufficient to explain clinical response when con-
sidered in isolation. Rather, we assume that decisive molecular processes are controlled
by a multitude of proteomic factors in a complex interplay. The presented observations
constitute an interesting starting point for future translational research on systemic factors
in pathogenesis and the course of AMD.

4. Materials and Methods
4.1. Study Design

This study was part of the BIOMAC study, a cross-sectional observational study on
nAMD biomarkers at Charité University Hospital, Berlin, Germany. The research protocol
was conducted in accordance with the valid versions of the study protocol, ICH Good Clin-
ical Practice Guidelines (ICH-GCP), and the tenets of the Declaration of Helsinki and was
approved by the competent ethics committee of the Charité University Hospital, Berlin. All
included participants provided written informed consent and were recruited prospectively.

4.2. Study Protocol and Subject Recruitment

From November 2018 through June 2020, eligible participants meeting all inclusion
criteria and none of the exclusion criteria were enrolled at the time of their regular ap-
pointments at the department of ophthalmology at Campus Benjamin Franklin (CBF) of
Charité University Hospital, Berlin. Charts including imaging results of patients that
recently (within preceding 6 month of this study) received anti-VEGF IVT were reviewed
retrospectively. Inclusion criteria included both genders ≥ 51 years of age, active subfoveal
choroidal neovascularization (CNV) secondary to nAMD (all lesion types) in the study eye,
BCVALogMAR ≥ +0.1 and ≤+1.3 in the study eye (in the case that both eyes of an individual
patient met the inclusion criteria, the eye with the lower visual acuity was included; in the
case of both eyes having equal VA, the eye with the clearest lens and ocular media and the
least amount of subfoveal scar or geographic atrophy was selected), and informed written
consent. Exclusion criteria included any causes of CNV other than neovascular AMD in the
study eye; subretinal hemorrhage in the study eye, which warrants surgical intervention
except for intravitreal therapy with anti-VEGF IVT; any contraindication for continuous
intravitreal therapy; and any kind of dependency on the investigator or employment by
the sponsor or investigator.

As a stratification strategy during the recruiting process, we assigned patients to two
distinct divisions based on their CNV activity under anti-VEGF IVT: chronically active
CNV (CAC) versus effectively controlled CNV (ECC). Criteria for assignment to the CAC
divisions included the following: IVT intervals between the current and the last as well
as between the last and penultimate intravitreal injection in the study eye were ≤42 days
(6 weeks), and CNV was regarded as active in the study eye as evidenced by residual fluid
present on OCT at current and the last two visits before the injections. Assignment criteria
for the ECC divisions were as follows: The intervals between the current and the last as well
as between the last and penultimate intravitreal injection in the study eye were ≥70 days
(10 weeks), and CNV activity was regarded as controlled in the study eye as evidenced by
absent or stable fluid on OCT at current and the last two visits before injections.
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4.3. Clinical Examination and Meta-Feature Logging

Visual function of the study eye and the fellow eye were assessed using the ETDRS
protocol (The Early Treatment Diabetic Retinopathy Study Group, 1985). All participants
received complete bilateral ophthalmologic examination, including a dilated fundus exam.
Recruited subjects were bilaterally imaged with Fundus Autofluorescence Imaging (FAF),
Optical Coherence Tomography (OCT), Fluorescein Angiography (FA, all: Spectralis, Hei-
delberg Engineering, Heidelberg, Germany), and Optical Coherence Tomography Angiogra-
phy (OCT-Angiography, ZEISS Angioplex). Imaging was performed by highly experienced
technicians following standard procedures to ensure consistency and high quality in image
acquisition. For meta-feature annotation in terms of epidemiological (age, sex) and general
health features (smoking status, pulmonary dysfunction, history of smoking, diabetes
mellitus, arterial hypertension, profession, medication plans), information was extracted
from the electronic patient record. All data relevant to the study were documented soon
after measurement by the investigatory team in the clinical software database. Match of
meta and proteomic features on individual-patient level occurred at later analysis steps
(compare below).

4.4. Sample Collection and Mass Spectrometry Analysis

Due to the length of the paragraph describing this methodological approach in detail,
we have summarized it in separate files (File S1, Figures S1 and S2, and Tables S1–S5).

4.5. Statistical Approach and Data Analysis

Due to the length of the paragraph describing this methodological approach in detail,
we have summarized it in separate files (File S1, Figures S1 and S2, and Tables S1–S5).
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Abbreviations

anti-VEGF anti-vascular endothelial growth factor
BCVA best-corrected visual acuity
CAC chronically active CNV
CNV choroidal neovascularization
CRT central retinal thickness
ECC effectively controlled CNV
ETDRS The Early Treatment Diabetic Retinopathy Study Group
FAF fundus autofluorescence
FA fluorescein angiography
IRC intraretinal cysts
IVT intravitreal treatment
kNN k-nearest neighbors
LC-MS liquid chromatography with tandem mass spectrometry
LOO-CV leave-one-out cross validation
ML machine learning
nAMD neovascular age-related macular degeneration
OCT optical coherence tomography
SHRM subretinal hyperreflective material
SRF subretinal fluid
UMAP Uniform Manifold Approximation and Projection
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