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Abstract: A series of iridium complexes with bis(diisopropylphenyl)iminoacenaphtene (dpp-bian)
ligands, [Ir(cod)(dpp-bian)Cl] (1), [Ir(cod)(NO)(dpp-bian)](BF4)2 (2) and [Ir(cod)(dpp-bian)](BF4) (3),
were prepared and characterized by spectroscopic techniques, elemental analysis, X-ray diffraction
analysis and cyclic voltammetry (CV). The structures of 1–3 feature a square planar backbone
consisting of two C = C π-bonds of 1,5-cyclooctadiene (cod) and two nitrogen atoms of dpp-bian
supplemented with a chloride ion (for 1) or a NO group (for 2) to complete a square-pyramidal
geometry. In the nitrosyl complex 2, the Ir-N-O group has a bent geometry (the angle is 125◦). The CV
data for 1 and 3 show two reversible waves between 0 and -1.6 V (vs. Ag/AgCl). Reversible oxidation
was also found at E1/2 = 0.60 V for 1. Magnetochemical measurements for 2 in a range from 1.77 to
300 K revealed an increase in the magnetic moment with increasing temperature up to 1.2 µB (at 300 K).
Nitrosyl complex 2 is unstable in solution and loses its NO group to yield [Ir(cod)(dpp-bian)](BF4)
(3). A paramagnetic complex, [Ir(cod)(dpp-bian)](BF4)2 (4), was also detected in the solution of 2 as a
result of its decomposition. The EPR spectrum of 4 in CH2Cl2 is described by the spin Hamiltonian
Ĥ = gβHŜ with S = 1/2 and gxx = gyy = 2.393 and gzz = 1.88, which are characteristic of the low-spin
5d7-Ir(II) state. DFT calculations were carried out in order to rationalize the experimental results.

Keywords: iridium; BIAN; iridium(II); nitrosyl complexes; synthesis; cyclic voltammetry; redox-
active ligands; non-innocence; crystal structure; EPR spectroscopy; static magnetic susceptibility;
redox isomerism; DFT calculations

1. Introduction

Bis(imino)-acenaphthenes (BIANs) belong to a well-studied class of aromatic acceptor
diimines that exhibit extraordinarily rich coordination and redox chemistries [1–4]. They
contain a central 1.4-diazabutadiene fragment supplemented with a naphthalene backbone.
This combination leads to a combination of strong σ-donor and π-acceptor properties,
which ensures the stabilization of metal ions in both high and low oxidation states. In
addition, the aromatic naphthalene fragment forces the anti–anti conformation upon the
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α-diimine fragment, thereby promoting strong chelation with a metal center. BIANs form
complexes with almost all main group elements [5–10] and transition metals [11–20]. A key
feature of BIANs is their ability to accept up to four electrons and/or reversibly exchange
electrons with the coordinating metal, which can trigger various redox transformations.
Redox isomerism or valence tautomerism was found for some BIAN complexes [21,22].
Unsurprisingly, metal complexes with BIANs catalyze a large number of organic transfor-
mations. Among these are olefin polymerization reactions as well as reduction reactions:
hydrogenation [15,23–28], reduction of nitroarenes [29–31] and hydroamination [32–34].
There are also several examples of metal/BIAN-catalyzed oxidations [31,35–37].

Despite the impressive number of published results, the coordination properties of
BIANs across the periodic table have been studied extremely unevenly. Most attention has
been paid to complexes of the main group elements and transition metals of the 3d series.
At the same time, complexes of 4d and 5d elements with BIANs have been studied rather
selectively. A large number of works on palladium/BIAN complexes stands out against the
background of a small number of works on the chemistry of group 9 elements—rhodium
and iridium—for which the number of structurally characterized coordination compounds
is no more than a dozen. Only recently, we reported mono- and binuclear complexes
of rhodium(I) and rhodium(III) with 1,2-bis[(2,6-diisopropylphenyl)-imino]acenaphthene
(dpp-bian): [Rh(cod)(dpp-bian)Cl], mer-[Rh(dpp-bian)(H2O)Cl3] and [Rh2(dpp-bian)2(µ-
Cl)2] [38–40]. The mer-[Rh(dpp-bian)(H2O)Cl3] complex catalyzes the electrochemical
reduction of CO2 [39]. Several Ir(III) complexes with BIANs are known. Among them
are cyclopentadienyl complexes of the type [η5-Cp*Ir(BIAN)Cl]+ (BIAN = mes-bian [41],
Ph-bian [42] and ClPh-bian [43]), which catalyze the hydrogenation of terephthalaldehyde
and the hydroamination of 2-(2-phenylethynyl)aniline and heteroleptic [(ppy)2Ir(BIAN)]+

complexes [44,45]. Complexes of Ir(I) with BIAN ligands have not been reported. Mean-
while, the combination of a redox-active BIAN and an iridium ion as a late transition metal
can lead to non-additive electronic properties of the resulting complex due to the energy
proximity of the d-orbitals of the metal and the frontier orbitals of the redox-active ligand.
In this case, uncertainty can be expected in assigning the oxidation states both to the metal
and to the ligand, and BIANs can be considered non-innocent ligands. In particular, this
work aimed at stabilizing the low oxidation states of Ir (I and even II) with sterically bulky
dpp-bian and studying its non-innocent properties.

2. Results and Discussion

Synthesis and characterization. The general scheme for the synthesis of complexes
1–3 is shown in Figure 1. The interaction of the dinuclear complex [Ir2(cod)2(µ-Cl)2]
with dpp-bian in a 1:2 molar ratio under mild conditions leads to cleavage of the Ir-Cl
bridges with the formation of a mononuclear complex [Ir(cod)(dpp-bian)Cl] (1) and a 76%
yield. Treatment of 1 with NOBF4 (3 eq.) gave the nitrosyl complex [Ir(cod)(NO)(dpp-
bian)](BF4)2 (2) with a 66% yield. Complex 2 is unstable in CH2Cl2 and decomposes to yield
[Ir(cod)(dpp-bian)](BF4) (3). This was confirmed by UV-vis spectroscopy data (Figure S1).
Complex 3 was obtained with a 90% yield by a direct reaction between 1 and AgBF4 taken
in a 1:1 molar ratio. The analytical purity of 1–3 was confirmed by CHN microanalysis.
Complexes 1–3 were characterized by FT-IR and 1H NMR spectroscopy. The structures
of 1–3 were determined by X-ray diffraction analysis. Paramagnetic complex 4 was also
detected in a solution of 2 using EPR spectroscopy (see below). It was not isolated as an
individual compound. The instability of 2 toward the loss of the NO group hindered its
further characterization.
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methane/ether (3) solvent mixtures. The molecular structures of 1–3 are shown in Figure 
2 and Figure S7. The main geometric parameters are summarized in Table S2. 

Complex 1 has a distorted square-pyramidal structure of the coordination node. The 
coordination environment of iridium consists of two dpp-bian nitrogen atoms, midpoints 
of two cyclooctadiene π-bonds and an axial chlorine atom. Noteworthy is the somewhat 
elongated Ir-Cl bond (2.480 Å), which, however, is shorter (by 0.1 Å) than the one in the 
rhodium analogue, [Rh(cod)(dpp-bian)Cl] (Rh-Cl, 2.580 Å) [38]. In the coordinated dpp-
bian, the C-C bonds (1.458 Å) are somewhat shortened and the C = N bonds (1.314 Å) are 
elongated when compared with the bonds in [Rh(cod)(dpp-bian)Cl] (C-C, 1.486 Å and C 
= N, 1.294 Å), which might indicate a more delocalized nature of the electron density in 
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Figure 1. Synthetic routes toward complexes 1–4.

1H NMR spectra of complexes 1 and 3 (Figures S2 and S3) show characteristic signals
from the isopropyl groups of dpp-bian at 0.85, 1.32 and 3.77 ppm (for 1) and 0.97, 1.52 and
3.44 ppm (for 3). The signals of the CH3 groups of isopropyl groups are wide for 1 because
their mobility is hindered by interaction with the Cl ligand. This is not observed for a
similar Rh complex [38], which dissociates in solution with the elimination of Cl-, or for
3, for which the corresponding signals are narrow and with clear doublet structures. The
signals from dpp-bian aromatic protons were in the range of 6.5–8.5 ppm. Characteristic
signals from coordinated cyclooctadiene were found in the region of 1.92–4.24 ppm.

The FT-IR spectrum of 1 displays the characteristic stretching vibrations ν(C=N) at
1549 cm−1 and ν(C-C) at 1497 cm−1 of the dpp-bian ligand (Figure S4). The position of
these absorption bands agrees with both the neutral and the radical anion oxidation state of
dpp-bian. On the contrary, ν(C = N) and ν(C-C) stretching vibrations for 2 and 3 were found
in the ranges of 1575–1672 cm−1 and 1469–1472 cm−1, which unequivocally correspond to
the neutral state of dpp-bian (Figures S5 and S6). The band of NO stretching in 2 appeared
at 1721 cm−1, which is typical for nitrosyl complexes with bent NO groups [46,47]. In the
FT-IR spectra of 2 and 3, a broad strong absorption band in the region of 1000–1200 cm−1

was attributed to the vibrations of the BF4
- anion.

2.1. X-ray Structure Description

Single crystals of 1 suitable for X-ray diffraction analysis were obtained by slow
evaporation from a dichloromethane/toluene mixture. Single crystals of 2 and 3 suit-
able for X-ray diffraction analysis were obtained from dichloromethane/hexane (2) and
dichloromethane/ether (3) solvent mixtures. The molecular structures of 1–3 are shown in
Figure 2 and Figure S7. The main geometric parameters are summarized in Table S2.



Int. J. Mol. Sci. 2023, 24, 10457 4 of 21
Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 22 
 

 

 
 

[Ir(cod)(dpp-bian)Cl] (1) [Ir(cod)(NO)(dpp-bian)]2+ (cation of 2) 

 
[Ir(cod)(dpp-bian)]+ (cation of 3) 

Figure 2. Molecular structures of (1), cation of (2) and cation of (3) determined by X-ray diffraction 
analysis. 

Complex 2 has a similar structure; the nitrogen atom of the NO group is located at 
the top of the square pyramid instead of the chlorine atom. The outer coordination sphere 
contains two BF4- anions. The C-C and C = N bond lengths in the diimine moiety (1.50 Å 
and 1.30 Å, respectively) indicate the neutral state of dpp-bian. The Ir-N (dpp-bian) bond 
lengths are 2.12 Å, which is slightly longer than in complex 1. The Ir-N (NO) distance is 
1.95 Å, which falls within the range of the Ir-N bond lengths observed in iridium nitrosyl 
complexes [46,47]. The Ir-N-O angle is 125°, and the N-O bond length is 1.2 Å, which is 
typical for iridium nitrosyl complexes with a bent nitrosyl group [46,51,52]. 

The iridium coordination environment in complex 3 has a square geometry of two 
dpp-bian nitrogen atoms and midpoints of two cyclooctadiene π-bonds. The C-C and C = 
N bond lengths in dpp-bian (1.493 Å and 1.298 Å, respectively) correspond to the neutral 
state of the ligand. The Ir-N bond lengths are 2.095 Å, intermediate between those of 1 and 
2. 

Figure 2. Molecular structures of (1), cation of (2) and cation of (3) determined by X-ray diffraction analysis.

Complex 1 has a distorted square-pyramidal structure of the coordination node. The
coordination environment of iridium consists of two dpp-bian nitrogen atoms, midpoints
of two cyclooctadiene π-bonds and an axial chlorine atom. Noteworthy is the somewhat
elongated Ir-Cl bond (2.480 Å), which, however, is shorter (by 0.1 Å) than the one in the
rhodium analogue, [Rh(cod)(dpp-bian)Cl] (Rh-Cl, 2.580 Å) [38]. In the coordinated dpp-
bian, the C-C bonds (1.458 Å) are somewhat shortened and the C = N bonds (1.314 Å) are
elongated when compared with the bonds in [Rh(cod)(dpp-bian)Cl] (C-C, 1.486 Å and
C = N, 1.294 Å), which might indicate a more delocalized nature of the electron density in
the diimine fragment. The Ir-N bond lengths are 2.080 Å, which falls within the range of
Ir-N bond lengths for similar complexes [48–50].

Complex 2 has a similar structure; the nitrogen atom of the NO group is located at
the top of the square pyramid instead of the chlorine atom. The outer coordination sphere
contains two BF4

- anions. The C-C and C = N bond lengths in the diimine moiety (1.50 Å
and 1.30 Å, respectively) indicate the neutral state of dpp-bian. The Ir-N (dpp-bian) bond
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lengths are 2.12 Å, which is slightly longer than in complex 1. The Ir-N (NO) distance is
1.95 Å, which falls within the range of the Ir-N bond lengths observed in iridium nitrosyl
complexes [46,47]. The Ir-N-O angle is 125◦, and the N-O bond length is 1.2 Å, which is
typical for iridium nitrosyl complexes with a bent nitrosyl group [46,51,52].

The iridium coordination environment in complex 3 has a square geometry of two
dpp-bian nitrogen atoms and midpoints of two cyclooctadiene π-bonds. The C-C and C = N
bond lengths in dpp-bian (1.493 Å and 1.298 Å, respectively) correspond to the neutral state
of the ligand. The Ir-N bond lengths are 2.095 Å, intermediate between those of 1 and 2.

Crystal packing features intermolecular π–π interactions between acenaphthene frag-
ments in 2 and 3. This leads to the formation of dimers between the positively charged
complex cations (Figures S8 and S9). These dimers form a crystal packing (Figures S10
and S11), in which anions and solvent molecules fill the free space. In the crystal pack-
ing in 2 and 3, three pseudochannels oriented in the [001] direction of the crystal can
be observed. Such dimers are absent in the crystal structure of 1, probably due to the
neutral charge of the complex. To theoretically study the intermolecular π–π interactions
between acenaphthene fragments in the crystal structures 2 and 3, DFT calculations fol-
lowed by the topological analysis of the electron density distribution were carried out
at the ωB97XD/DZP-DKH level of theory for model supramolecular associates (see the
computational details and Table S13). The topological analysis of the electron density
distribution in model supramolecular associates via the QTAIM approach revealed the
presence of bond critical points for various intermolecular C···C contacts in the crystal
structures 2 and 3 (Table S14). The low magnitude of the electron density (0.003–0.006 a.u.),
the positive values of the Laplacian of electron density (0.009–0.018 a.u.) and the zero, or
very close to zero, positive energy density (0.000–0.001 a.u.) in bond critical points for these
intermolecular C···C contacts and their estimated strengths (0.3–0.6 kcal/mol) are typical
for π-π and related interactions in similar chemical systems [53–60]. The balance between
the kinetic energy density, G, and the potential energy density, V, at the bond critical points
for intermolecular C···C contacts in the crystal structures 2 and 3 (viz., –G/V>1) reveals
that these interactions are purely non-covalent [61], and negative values of λ2 confirm the
attractive nature of these contacts [62,63]. The contour line diagrams of the Laplacian of
electron density distribution, bond paths, and selected zero-flux surfaces; the visualization
of the electron localization function (ELF); and the reduced density gradient (RDG) analyses
for selected intermolecular C–C contacts in the crystal structures 2 and 3 are illustrated in
Figures S12 and S13.

2.2. Redox Properties

The redox properties of iridium complexes 1 and 3 were studied in CH2Cl2 using
cyclic voltammetry (CV). The cyclic voltammogram of solution 1 (Figure 3) showed two
quasi-reversible reduction waves at E1/2 = −0.30 V (∆E = 110 mV) and E1/2 = −1.15 V
(∆E = 110 mV), as well as one quasi-reversible oxidation process at E1/2 = 0.60 V (∆E = 96 mV).
Likewise, two characteristic reversible reduction waves were detected in the CVs of rhodium(I),
palladium(II) or platinum(II) complexes with dpp-bian [17,38]. These processes are considered
ligand-centered and correspond to the sequential two-electron reduction of the BIAN ligand
with the formation of the BIAN monoanion and the BIAN dianion. The results of the DFT
calculations for 1 (see below) confirm the main contribution of dpp-bian (64%) to the lowest
unoccupied MOs, although the contribution of Ir orbitals (23%) to LUMO is also significant.
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On the contrary, the oxidation process could involve a metal-centered IrI/IrII redox
couple. However, the HOMO for 1 consists of only 42% of the Ir orbitals, with a significant
contribution from the dpp-bian (34%). Therefore, this redox process can better be referred
to as mixed-metal/ligand-centered oxidation. It is noteworthy that the oxidation process is
reversible (quasi-reversible), which indicates a certain stability of the oxidation product.

Complex 3 has a similar reduction pattern (Figure S14) with two quasi-reversible
reduction waves at E1/2 = −0.20 V (∆E = 83 mV) and E1/2 = −1.14 V (∆E = 70 mV). In
addition, an irreversible oxidation process at Ea = 1.55 V was detected, with a significant an-
odic shift compared to 1. The corresponding re-reduction peak was centered at Ec = 1.16 V.
According to DFT calculations, the HOMO and LUMO for 3 are completely localized on the
Ir (98%) and dpp-bian (99%), respectively. Therefore, the oxidation of 3 can be considered
an exclusively metal-centered process which is irreversible, in contrast to 1. Apparently, the
involvement of the BIAN ligand in the oxidation process (as for 1) is a key factor in ensuring
its reversibility. Irreversible metal-centered oxidation was reported for the rhodium analog
[Rh(cod)(dpp-bian)]+ [38]. Strong anodic shift (complex 3 is more difficult to oxidize than 1)
is consistent with the lower energy of the HOMO for 3. The one-electron oxidation product
of 3 should thus be an Ir(II) complex, [IrII(cod)(dpp-bian)](BF4)2 (4), the formation of which
has been proven by EPR (see below).

The anodic and cathodic peak potentials of the redox processes for 1 and 3 were almost
independent of the potential scan rate (50–200 mV/s), which indicates an electrochemically
reversible process. Moreover, the ratio between the peak current and the square root of the
scan rate, I·ν–1/2 vs. scan rate, was constant, which is characteristic of a diffusion-controlled
electron transfer reaction (Figures S15–S23 and Tables S15–S17).
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2.3. Non-Innocent Properties of Dpp-Bian and NO Ligands in 1 and 2

As noted in the discussion of the structures 1–3, the C-C and C = N distances within
the dpp-bian ligand in 1 are not typical of the neutral state of dpp-bian. These values are
better suited for the radical anion state of dpp-bian rather than the neutral one, unlike
what was found for 2, 3 and [Rh(cod)(dpp-bian)Cl] [38]. The positions of the ν(C = N)
and ν(C-C) vibration bands in the FT-IR spectrum of 1 are consistent with the excess
electron density on the dpp-bian. The formation of the dpp-bian radical anion could be
explained by the electron density transfer from iridium(I) to the ligand. In this case, complex
1 should be considered as paramagnetic [IrII(cod)(dpp-bian•/-)Cl] with two unpaired
electrons, one on the iridium and one on the dpp-bian. However, magnetic susceptibility
measurements have shown diamagnetic behavior of 1 down to 20 K, below which a weak
paramagnetic contribution of iron impurities (~0.1 at. %) shows up. This absence of a
significant paramagnetic response points to the singlet state of [IrI(cod)(dpp-bian0)Cl]
(S = 0). DFT calculations performed for 1 exclude a transition from the ground singlet
state to the excited paramagnetic state (see the computational studies below) because the
diamagnetic state was found to be 81 kJ/mol more favorable than the excited paramagnetic
state. However, the calculated charge on the Ir atom was somewhat higher than that on
the Rh atom in [Rh(cod)(dpp-bian)Cl] [38], and there was a small negative charge on the
dpp-bian which could indicate a high degree of electron density delocalization between
the metal and dpp-bian ligand in 1. Based on these results, we believe that the charge
state of the dpp-bian in complex 1 is best described as neutral in formal terms, although
the outflow of the electron density on the redox-active ligand affects the C = N and C-C
distances and the corresponding vibrational frequencies.

Reversible oxidation of 1 at moderate potential (see CV data) encouraged us to attempt
the preparation of a paramagnetic Ir(II) complex [IrII(cod)(dpp-bian)Cl]+ by one-electron
oxidation of 1 with a suitable oxidizing agent—NOBF4, in this case. However, the reaction
of 1 with NOBF4 resulted in the formation of a nitrosyl complex, 2. At first glance, this
reaction can be described as a non-isocharged substitution of NO+ for Cl- with the preser-
vation of the oxidation state of Ir(I) and the formation of [IrI(cod)(NO+)(dpp-bian)](BF4)2.
Most of the known iridium nitrosyl complexes are described as containing an NO+ group.
On the other hand, we can also assume the oxidative addition of NO+ to Ir(I) with the
formation of [IrIII(cod)(NO-)(dpp-bian)](BF4)2. There is an assumption that a bent NO
configuration (the Ir-N-O angle is 125◦ in 2) indicates a negative charge on NO [46,47,51,64].
For example, a square-pyramidal complex of iridium(III) [Ir(NO)(SH)2(PPh3)2] with a bent
nitrosyl ligand was reported [51]. However, one must be aware of the limitations of such an
approach. The M-NO bond is mainly covalent, and, depending on the total electronic count
of the {M-NO} unit, the spin localization and the number of π-bonds in frontier orbitals, the
formal charges of the metal and NO can vary significantly without change in the M-N-O
angle [65–67]. The calculated Ir-N-O angle and other geometric parameters for 2 are in
good agreement with the X-ray diffraction data. Thus, the ground state of complex 2 can
be formally interpreted either as diamagnetic (singlet) [IrI(cod)(NO+)(dpp-bian)](BF4)2 or
[IrIII(cod)(NO-)(dpp-bian)](BF4)2.

Magnetochemical measurements in the static regime performed for 2 (see the magnetic
details below) showed an increase in the magnetic moment with increasing temperature up
to 1.2 µB (at 300 K), indicating the existence of a paramagnetic state. Thus, in addition to
the ground singlet state for 2, one might expect an excited triplet state. This could be an
intramolecular charge-transfer transition (redox isomeric transition), given the presence
of three centers in 2 that can change their valence state (Ir, NO and dpp-bian), or simply
a singlet–triplet transition within one structural fragment of 2 without significant charge
redistribution. One of the possible options for redox isomeric transition is the electron
transfer from the NO group to Ir(III) with the formation of [IrII(cod)(NO0)(dpp-bian)](BF4)2
with two paramagnetic centers: a d7-Ir(II) ion and a NO0 group. On the other hand, the
singlet–triplet intraligand transition option looks more realistic, since the dpp-bian makes
the main contribution to the frontier molecular orbitals of [Ir(cod)(NO)(dpp-bian)]2+ (the
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cation of 2), although the calculated energy difference between the singlet and triplet states
(113.0 kJ/mol) is even higher than in 1 (see below).

A paramagnetic species was also detected in the solution of 2 at 77 K by EPR spec-
troscopy (see the EPR spectroscopy details below). However, this ESR active species was a
completely different complex from S = 1

2 and must be a decomposition product. Consider-
ing the instability of the nitrosyl complex 2 toward the loss of the NO group, we suggest
two possible ways in which 2 might decompose (Figure 1). The first way involves the
elimination of NO+ (as NOBF4) from 2 and the formation of a diamagnetic complex of Ir(I),
[IrI(cod)(dpp-bian)](BF4) (3), which was isolated and structurally characterized. Another
possibility is the elimination of NO gas to form a paramagnetic complex [IrII(cod)(dpp-
bian)](BF4)2 (4) with S = 1

2 , which is the ESR active species in the solution. In fact, the
cracking of single crystals of 2 accompanied by the release of a gas (which must have
been NO) was visually observed. The calculated Ir-NO bond dissociation energy was
173–179 kJ/mol, being due either to the elimination of the NO+ or the release of NO. This is
much less than the calculated Ir-Cl bond dissociation energy (447 kJ/mol), which confirms
the easiness of the elimination of the NO group. In addition, the calculated ESR parameters
for 4 are in satisfactory agreement with the experimental data (see below). Thus, the EPR
spectroscopy data can be associated with the decomposition of 2 in solution with the
formation of the Ir(II) complex [IrII(cod)(dpp-bian)](BF4)2 (4). Our attempts to isolate this
paramagnetic complex as an individual phase were, however, unsuccessful, apparently
because of its low stability. This indirectly agrees with the CV data, which indicated the
irreversible oxidation of 3 and, consequently, the instability of 4 as a product of one-electron
oxidation of 3.

2.4. EPR Spectroscopy

To detect the paramagnetic state of Ir(II) in [IrII(cod)(dpp-bian)](BF4)2 (4), an EPR
spectrum was recorded for a solution of 2 (the precursor of 4) in CH2Cl2 at 77 K (Figure 4).
The observed spectrum was well described by the spin Hamiltonian Ĥ = gβHŜ with
S = 1/2 and the parameters gxx = gyy = 2.393 and gzz = 1.88, which are characteristic of
Ir(II) ion with the 5d7 electronic configuration. Close g-factor values were observed for the
similar mononuclear Ir(II) complexes described by Fuchigami [68]. These are mixed-ligand
complexes of Ir(II) with polypyridine and cod ligands, which have the following constants:
gx = 2.456, gy = 2.346 and gz = 1.933 for [(MeN4)IrII(cod)]2+ and gx = 2.604, gy = 2.429
and gz = 1.911 for [(t-BuN4)IrII(cod)]2+. In contrast to these and other mononuclear Ir(II)
complexes [69,70], no hyperfine structure from nitrogen atoms was observed in the EPR
spectrum of 4. This is consistent with the DFT data, which showed almost zero spin charge
on the nitrogen atoms (see below).
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2.5. Magnetic Measurements

In contrast to the diamagnetic behavior of 1, complex 2 turned out to be paramagnetic
in the temperature range of 1.77–300 K (Figure 5a). Thermal cycles performed under both
zero-field-cooling (ZFC) and field-cooling (FC) conditions demonstrated the magnetization
of 2 to be perfectly reversible and reproducible, indicating the absence of any static magnetic
order as well as the lack of detectable chemical degradation under experimental conditions.
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magnetic moments (θ = 0). The estimated additive contribution of paramagnetic impurities to χpT is
indicated by the blue dashed line.

Despite the simple appearance of χ(T), its interpretation is challenging. The para-
magnetic component of the magnetic susceptibility, χp(T), obtained by subtracting the
diamagnetic contribution strongly deviates from the simple Curie–Weiss dependence,
χp(T) = NAµ2

eff/3kB(T − θ) (NA and kB are the Avogadro number and the Boltzmann
constant), implying that the effective magnetic moment µeff is temperature-dependent. The
calculated µeff decreases from ≈1.2 µB at T = 300 to ≈0.3 µB at T = 1.77 K (Figure 5b); the
product χpT behaves accordingly. Taking into account the high likelihood of paramagnetic
iron impurities (from initial reagents, similar to the case of 1) which provide an additive
contribution to χpT (the dashed line in Figure 5b), the low-temperature ground state of
2 can be considered nearly non-magnetic. Since the crystal structure of 2 cannot provide
a considerable antiferromagnetic (AF) exchange interaction between the complex ions,
these ions themselves should possess a non-magnetic, low-temperature ground state. The
latter, however, is hard to reconcile with the high-temperature χp(T) behavior. Indeed, the
complexes of Ir(I) and Ir(III) with even numbers of electrons in the 5d shell (d8 and d6) have
long been known to be exclusively diamagnetic owing to the strong crystal-field splitting
that causes the spin-paired (S = 0) state of the respective Ir ions [71–74]. What one would
expect for Ir(I) and Ir(III) complexes, in addition to the core diamagnetism, is just a weak
Van Vleck paramagnetic contribution that should be strictly temperature-independent due
to a large gap ∆>>kBT separating triplet levels from the occupied ground singlet one. In
Ir(I) and Ir(III) complexes, the diamagnetic contribution usually overcomes the weak Van
Vleck one, ensuring overall diamagnetic response; the complex 1 described above serves
as such an example. The magnetic susceptibility of 2, however, behaves differently: it
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is rather high at high temperatures and changes with T (Figure 5a), despite the fact that
both the diamagnetic and Van Vleck terms should be T-independent. The observed χp(T)
behavior of 2 does not fit that of the Ir(II) and Ir(IV) complexes either. From the magnetic
point of view, Ir(II) and Ir(IV) resemble ions with one unpaired electron (S = 1

2 ) [75]; their
effective magnetic moment, µeff, is known to exceed the spin-only value of 1.73 µB due to
the spin–orbit coupling and to remain large even at low temperatures if the crystal structure
ensures their magnetically dilute state [75,76].

The apparent controversy regarding the low-T and high-T magnetic behavior could be
resolved by assuming either (i) a thermally assisted charge redistribution between the differ-
ent structural fragments (Ir, NO and dpp-bian) of 2 or (ii) a thermally assisted singlet–triplet
transition within one structural fragment of 2 without significant charge redistribution,
which provides uncompensated magnetic moments at high temperatures. The former
phenomenon is well known as redox isomerism or valence tautomerism and often occurs
when a metal of variable valence is bound to a redox-active (non-innocent) ligand [77].
Cobalt complexes with o-dioxolene ligands and other redox-active ligands often display
thermally or photo-induced valence tautomeric transitions [78–81]. In contrast, regarding
their rhodium [82–84] and iridium [85] analogs, valence tautomerism is limited to a few
examples. A recent paper [82] reported thermally induced electron transfer in a rhodium(I)
dioxolene complex resulting in a mixed-valence Rh(I,II)-semiquinonato/catecholato state.
A valence tautomeric equilibrium of [RhIII(LSPhISQ•/-)]/[RhII(LSPhIQ)] was found in a
cis-[RhIII(LSPhISQ•/-)(PPh3)Cl2] (LSPhISQ•/- = 2,4-di-tert-butyl-N-[2-(phenylthio)]phenyl-
o-imino-benzosemiquinonate anion radical; LSPhIQ = ando-iminobenzo-quinone) [83].
Regarding iridium, the only publication mentions the existence of two redox isomers for
Ir(I) complexes of the type [(cod)Ir(AsEt3)(o-semiquinone)] [85].

Given that the magnetic moment observed at room temperature is much lower than
expected for two unpaired electrons, only partial charge redistribution or population of
the triplet state is achieved at that temperature. To confirm or refute the assumption
of a thermally induced redox isomeric process, variable-temperature FT-IR and diffuse
reflectance spectroscopic studies were applied. No significant changes in temperature were
detected for either spectrum (Figures S24 and S25), which indicates the absence of charge
redistribution and redox isomeric transition. In addition, DFT calculations (see below)
predicted too large an energy gap between the singlet and triplet levels for the cation of 2,
which excludes the singlet–triplet transition. Thus, the nature of the magnetic behavior of 2
remains a mystery for now.

2.6. Computational Studies

To adequately describe the electronic structure of new iridium complexes and inter-
pret their non-innocent behavior and spectral properties, DFT calculations were carried
out. Atomic coordinates taken from experimental X-ray diffraction data were used as a
starting point for geometry optimization of complexes 1–3. All optimized structures had
no imaginary vibrational frequencies, which indicates that they correspond to local minima
on potential energy surfaces. The resulting optimized geometric parameters were in good
agreement with the experimental structural data (Tables S3, S5 and S6). Selected data are
shown in Table 1.

The HOMO and LUMO of 1 are delocalized (Figure 6). However, the HOMO is more
concentrated on Ir (42%), while the LUMO is mainly centered on the dpp-bian ligand (64%;
Table 2). The HOMO-LUMO gap is 0.763 eV. A hypothetical excited paramagnetic state for
1 was also optimized, which turned out to be 80.8 kJ/mol less favorable than the singlet
state. The calculated charges of the Ir atom were +0.85 (NBO) and +0.89 (AIM) (Table S4).
These values are higher than for the Rh atom in the analogous [Rh(cod)(dpp-bian)Cl]
complex (+ 0.71 and + 0.77). The NBO and AIM charge values for the dpp-bian ligand
were −0.25 and −0.19, respectively. These values, as well as the delocalized nature of the
frontier orbitals, indicate a partial transfer of electron density from Ir(I) to dpp-bian. This is
consistent with the non-innocent behavior of the redox-active BIAN ligand.
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Table 1. Comparison of selected experimental and calculated geometric parameters (Å) for 1–3.

1 2 3

Experimental Structure

Ir—N (dpp-bian) 2.095 (3) Ir—N (NO) 2.02 (3) Ir—N (dpp-bian) 2.095 (3)

N—C (dpp-bian) 1.324 (5);
1.448 (5) Ir—N (dpp-bian) 2.115 (11) N—C (dpp-bian) 1.298 (5);

1.452 (5)

Ir— Cl 2.4751 (15) N—C (dpp-bian) 1.296 (16);
1.449 (17); Ir—C (cod) 2.127 (5)

Ir—C (cod) 2.147 (5);
2.121 (4) Ir—C (cod) 2.181 (16);

2.241 (16);

Calculations for Ground State

Ir—N (dpp-bian) 2.103;
2.126 Ir—N (NO) 1.987 Ir—N (dpp-bian) 2.113;

2.109

N—C (dpp-bian) 1.322 Ir—N (dpp-bian) 2.164;
2.131 N—C (dpp-bian) 1.302

Ir— Cl 2.497 N—C (dpp-bian) 1.303;
1.309

Ir—C (cod)

2.127;
2.143;
2.126;
2.132

Ir—C (cod)

2.330;
2.250;
2.169;
2.221

Ir—C (cod)

2.172;
2.158;
2.176;
2.157

Table 2. Fragment contributions to frontier molecular orbitals of [Ir(cod)(dpp-bian)Cl] (1),
[Ir(cod)(NO)(dpp-bian)]2+ (cation of 2) and [Ir(cod)(dpp-bian)]+ (cation of 3).

[Ir(cod)(dpp-bian)Cl] (1)

Orbital E, eV Ir dpp-bian cod Cl

HOMO-2 −5.460 14.6% 2.9% 3.9% 78.6%

HOMO-1 −5.275 23.0% 15.2% 8.2% 53.6%

HOMO −4.364 41.7% 34.3% 10.5% 13.5%

LUMO −3.601 22.7% 64.2% 0.0% 13.1%

LUMO+1 −3.032 0.0% 100.0% 0.0% 0.0%

LUMO+2 −1.700 0.0% 100.0% 0.0% 0.0%

[Ir(cod)(NO)(dpp-bian)]2+ (Cation of 2)

Orbital E, eV Ir dpp-bian cod NO

HOMO-2 −11.314 1.2% 95.9% 2.9% 0.0%

HOMO-1 −11.201 0.0% 100.0% 0.0% 0.0%

HOMO −11.157 0.0% 100.0% 0.0% 0.0%

LUMO −10.001 5.7% 58.7% 4.2% 31.4%

LUMO+1 −9.883 10.5% 9.3% 6.3% 73.9%

LUMO+2 −8.975 24.9% 36.3% 6.0% 32.8%

[Ir(cod)(dpp-bian)]+ (Cation of 3)

Orbital E, eV Ir dpp-bian cod

HOMO-2 −8.483 28.8% 58.3% 12.9%

HOMO-1 −8.318 80.8% 14.4% 4.8%

HOMO −7.651 86.5% 10.7% 2.8%

LUMO −6.804 0.0% 97.6% 2.4%

LUMO + 1 −5.911 0.0% 99.3% 0.7%

LUMO + 2 −4.493 5.2% 86.7% 8.1%
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The data of the X-ray diffraction analysis showed that the NO ligand in 2 was disor-
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[Ir(cod)(NO)(dpp-bian)]2+ of 2, (c) HOMO-1 and HOMO for triplet state of cation [Ir(cod)(NO)(dpp-
bian)]2+ of 2, and (d) HOMO and LUMO for cation [Ir(cod)(dpp-bian)]+ of 3.

Based on topological electron density analysis (Table S7), all Ir-ligand bonds in 1 are
of an intermediate type (neither ionic nor covalent). The Ir-cod bonds are more covalent
(higher potential-energy-density-to-kinetic-energy ratios for bond critical points) than both
Ir-bian and Ir-Cl bonds. The anti-bonding nature of the HOMO with respect to the Ir-Cl
interaction is responsible for the elongation of the Ir-Cl bond. However, this bond is still
stronger than the Rh-Cl bond in [Rh(cod)(dpp-bian)Cl] [38] (Table S8).

The data of the X-ray diffraction analysis showed that the NO ligand in 2 was disor-
dered; therefore, two possible isomers of [Ir(cod)(NO)(dpp-bian)]2+ (v1 and v2 in Figure 7)
were optimized. They differed in the location of the NO group relative to the cod ligand.
The v1 isomer was only 3 kJ/mol more stable than the v2 isomer. The ground state of both
isomers is singlet. The corresponding excited paramagnetic states were also optimized.
Since the difference between v1 and v2 was negligible, only the v1 isomer was chosen for
further consideration. The energy difference between the singlet and triplet states was
113.0 kJ/mol. The optimized Ir-N-O angle was 127.3◦.
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Figure 7. Two isomers of [Ir(cod)(NO)(dpp-bian)]2+ (cation of 2).

The LUMO of [Ir(cod)(NO)(dpp-bian)]2+ (the cation of 2) is delocalized (Figure 6) but
more concentrated on dpp-bian, as in 1, while the HOMO is completely localized on the
aryl rings of the dpp-bian ligand. Thus, the HOMO can be considered as non-bonding Ir-L
orbital. LUMO, LUMO+1 and LUMO+2 have significant NO ligand contributions (Table 2),
especially LUMO+1. The HOMO–LUMO gap is 1.156 eV.

Comparison of the NBO and AIM charges on the atoms (Table S9) for the ground and
excited states of the cation of 2 showed that there was no significant charge transfer. The
AIM charge on Ir became slightly more positive for v1, changing from 0.91 to 0.93, while the
AIM charge on the NO group turned slightly more negative, changing from −0.06 to −0.09.
The NBO charges showed the same trend. The charge on Ir was also only slightly greater
than that of 1 (0.89; Table S4). Such small changes may not be interpreted as a change in the
formal charges of the fragments. Notably, the spin density for the paramagnetic state of the
cation of 2 is focused mainly on the dpp-bian π-system and the NO ligand (Figure 8). Based
on these data, it is impossible to assign any reasonable formal charges to each fragment
of the ground and excited states of the cation of 2. However, it is well known that DFT
calculations often do not allow the unambiguous determination of the formal oxidation
states of metal atoms and NO ligands [71].
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Since the instability of complex 2 due to the loss of the NO group was found ex-
perimentally, the Ir-NO bond dissociation energy was calculated. Two decomposition
pathways for the cation of 2 were taken into account: the elimination of NO+ and the
formation of [Ir(cod)(dpp-bian)]+ (the cation of 3) and the elimination of NO0 and the
formation of [Ir(cod)(dpp-bian)]2+ (the cation of 4). The calculated difference between the
formation energy of [Ir(cod)(NO)(dpp-bian)]2+ and the sum of the formation energies for
NO+ and [Ir(cod)(dpp-bian)]+ was 178.93 kJ/mol. The difference between the formation
energy of [Ir(cod)(NO)(dpp-bian)]2+ and the sum of the formation energies of NO0 and
[Ir(cod)(dpp-bian)]2+ was 174.31 kJ/mol. The calculated Gibbs free energy difference was
140.45 kJ/mol for the first process, while it was 121.72 kJ/mol for the second one. These
values are much lower than the energy required for the heterolytic breaking of the Ir-Cl
bond (447 kJ/mol). Additionally, note that the transformation of 1 into 2 proceeds with the
breaking of the Ir-Cl bond.

To confirm that the experimental EPR spectrum was indeed related to [IrII(cod)(dpp-
bian)]2+ (the cation of 4) with S = 1

2 , we performed calculations using the gauge-including
atomic orbitals (GIAO) method [86], including both the scalar relativistic approach with
perturbative spin–orbital effects and the two-component spin–orbit relativistic approach.
The latter gave results closer to the experimental values (Table 3). The spin density resides
almost entirely on Ir (Figure 8), which is consistent with the absence of a hyperfine structure
due to splitting at the nitrogen atoms in the experimental EPR spectrum. The fragment
analysis and the molecular orbital scheme for the cation of 4 (Figure S26) shows that the 10
highest occupied MOs were paired (five pairs) and were referred to the dpp-bian ligand.
The unpaired levels were much lower and were referred to molecular orbitals with high Ir
contributions.

Table 3. Calculated diagonal components of g-factor tensor and isotropic g-factor values for
[Ir(cod)(dpp-bian)]2+ (cation of 4) compared with experimental values.

gxx gyy gzz giso

Perturbational SO treatment 2.917 2.757 2.029 2.568

Two-component ZORA SO 2.691 2.598 1.893 2.394

Experiment 2.393 2.393 1.88 2.222

3. Materials and Methods

Materials. All commercially available reagents—[Ir2(cod)2(µ-Cl)2] (Sigma Aldrich,
Munich, Germany; 97%) and NOBF4 (Sigma Aldrich, Munich, Germany; 97%)—were used
as purchased. 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene (dpp-bian) was prepared
according to the published procedure [87]. All organic solvents (CH2Cl2, hexane, diethyl
ether and toluene) were dried by standard methods before use.

3.1. Physical Measurements

Elemental C, H and N analysis was performed with a EuroEA3000 Eurovector analyzer.
IR spectra were recorded in the 4000–300 cm–1 range with a Perkin-Elmer System 2000 FTIR
spectrometer (KBr pellets). 1H NMR spectra (500 MHz) were acquired on a Bruker Avance-
500 spectrometer with a 5 mm PABBO-PLUS probe at room temperature. The chemical shifts
were given in parts per million (ppm) from tetramethylsilane. The cyclic voltammograms
(CVs) were recorded with a 797 VA Computrace system (Metrohm, Switzerland). All
measurements were performed with a conventional three-electrode configuration consisting
of glassy carbon working and platinum auxiliary electrodes and an Ag/AgCl/KCl reference
electrode. The solvent used in all experiments was CH2Cl2, which was deoxygenated
before use. Tetra-n-butylammonium hexafluorophosphate (0.1 M solution) was used
as a supporting electrolyte. The concentration of the complexes was approx. 1 mM.
Ferrocene was used as an internal standard, and the Fc/Fc+ potential was 0.49 V. The EPR
spectra were recorded on a Varian E-109 spectrometer in the X-band at 77 K. The object
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of the study was the attainment of a solution of an iridium complex in CH2Cl2, and the
DPPH radical with g = 2.0036 was used as a reference for calculating g factors. The EPR
spectrum was modeled using the WINEPR SimFonia program. The magnetic properties
of polycrystalline samples were studied using a Quantum Design MPMS-XL SQUID
magnetometer in the temperature range of 1.77–300 K at magnetic fields H = 0–10 kOe. To
determine the paramagnetic component of the molar magnetic susceptibility χp(T), the
temperature-independent diamagnetic contribution, χd, and the possible contribution of
ferromagnetic microimpurities, χF, were subtracted from the measured values of the total
molar susceptibility, χ = M/H: χp(T,H) = χ(T,H)–χd–χF(T,H). The value of χd was calculated
according to the additive Pascal scheme, while the ferromagnetic contribution, χF, if any,
was evaluated from the field dependences, M(H).

3.2. X-ray Crystallography

The crystallographic data and refinement details for 1–3 are given in Table S1. The
diffraction data were collected for 1 on a Bruker Apex Duo diffractometer with CuKα

radiation (λ = 1.54178) by performing ϕ and ω scans of narrow (0.5◦) frames at 150 K.
Absorption correction was carried out empirically using SADABS (SADABS-2008/1) [88].

The diffraction data were collected for 2 and 3 on a Bruker D8 Venture diffractometer
with a CMOS PHOTON III detector and an IµS 3.0 source (Mo Kα radiation, λ = 0.71073 Å)
at 150 K. The ϕ- and ω-scan techniques were employed. Absorption correction was
applied by SADABS (Bruker Apex3 software suite: Apex3, SADABS-2016/2 and SAINT,
version 2018.7–2; Bruker AXS Inc.: Madison, WI, USA 2017.). Structures were solved by
SHELXT [89] and refined by full-matrix least-squares treatment against |F|2 in anisotropic
approximation with SHELX 2014/7 [90] in the ShelXle program [91]. H-atoms were refined
in the geometrically calculated positions. The main geometrical parameters are summarized
in Table S2. In the case of 2, only one position of CH2Cl2 and one position of BF4

- was
refined clearly. Other electronic densities were removed using the SQUEEZE procedure [92]
of the PLATON program set [93]. This gave 125e in 286 Å3 per formula unit, which can be
proposed as 1BF4 and 2CH2Cl2 per formula. The composition of 2 was established based
on elemental analysis.

The crystallographic data were deposited in the Cambridge Crystallographic Data
Centre under the deposition codes CCDC 1030978, 2189440 and 2189441.

3.3. Computational Details

The DFT calculations with the geometry optimization procedure for model systems
were performed in ADF2021 [94] with GGA S12g functional [95], which includes dispersion
corrections [96], with the all-electron triple-ζ basis set of Slater type functions with a set
of polarization functions (TZP/ADF) [97]. Scalar relativistic effects (and, in some cases,
spin–orbit effects) were included via the ZORA approach [98,99]. Closed-shell systems
were treated with the restricted DFT approach, while open-shell systems were treated with
the unrestricted DFT approach. Natural population analysis and bonding analysis were per-
formed with NBO 6.0 [100]. The topology of electron density was studied in terms of AIM
theory [101]. EPR parameters were calculated using the gauge-including atomic orbitals
(GIAO) approach [86]. The results of the DFT calculations performed with the geometry
optimization procedure are shown in Tables S3–S12. The DFT calculations based on the
experimental X-ray geometries of 2 and 3 were carried out using the dispersion-corrected
hybrid functionalωB97XD [102] with the help of the Gaussian-09 [103] program package.
The Douglas–Kroll–Hess 2nd-order scalar relativistic calculations requested relativistic core
Hamiltonian were carried out using the DZP-DKH basis sets [104–107] for all atoms. The
topological analysis of the electron density distribution for studies of intermolecular π-π
interactions in the crystal structures of 2 and 3 was performed using the Multiwfn program
(version 3.7) [108]. The Cartesian atomic coordinates for model supramolecular associates
are presented in Table S13.
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3.4. Synthesis of [Ir(cod)(dpp-bian)Cl] (1)

Complex 1 was prepared under argon using the Schlenk technique. Dpp-bian (149 mg,
0.298 mmol) was added to a suspension of [Ir2(cod)2(µ-Cl)2] (100 mg, 0.149 mmol) in
20 mL of toluene. The mixture was stirred under reflux conditions for 24 h. The resulting
emerald solution was evaporated in vacuum; the residue was dissolved in 10 mL of a
dichloromethane/toluene 3:1 v/v mixture. An emerald crystalline product was obtained
by allowing the solution to evaporate freely in air to 2 mL. Yield: 190 mg (76%). Anal. Calc.
for C44H52ClN2Ir: C, 63.17; H, 6.27; N, 3.35%. Found: C, 63.0; H, 6.22; N, 3.2%. 1H NMR
(500 MHz, 298 K, CD2Cl2): δ 0.85 (m, 12H) 1.32 (d, 12H), 1.92 (m, 4H), 2.32 (m, 4H), 3.77
(sep, 4H), 4.04 (m, 4H), 6.54 (d, 2H), 7.22 (m, 2H), 7.34 (m, 4H), 7.46 (m, 2H), 7.96 (d, 2H)
ppm. IR (KBr, ν, cm−1): 3443 (m), 3059 (w), 3009 (w), 2959 (s), 2886 (s), 2877 (s), 2833 (w),
1549 (s), 1495 (s), 1464 (m), 1437 (m), 1416 (s), 1385 (w), 1362 (w), 1323 (w), 1305 (s), 1244
(w), 1206 (w), 1186 (w), 1161 (w), 1086 (w), 1066 (w), 1044 (w), 1026 (w), 1010 (w), 953 (w),
937 (w), 908 (w), 854 (w), 827 (s), 802 (m), 775 (s), 763 (m), 700 (w), 642 (w), 548 (w), 492 (m).

3.5. Synthesis of [Ir(cod)(NO)(dpp-bian)](BF4)2 (2)

Complex 2 was synthesized in the dark under argon using the Schlenk technique.
NOBF4 (20 mg, 0.172 mmol) was added to a solution of 1 (50 mg, 0.060 mmol) in 10 mL
of dichloromethane. The solution was stirred at room temperature for 24 h. The resulting
brown solution was evaporated to 5 mL, and hexane was layered on top of the solution.
The resulting brown crystalline product was washed with hexane and dried in vacuum.
Yield: 40 mg (66%). Anal. Calc. for C44H52N3OB2F8Ir: C, 52.60; H, 5.21; N, 4.18%. Found:
C, 52.3; H, 5.05; N, 4.3%. IR (KBr, ν, cm−1): 3224 (s), 2964 (s), 2926 (s), 2868 (m), 1721 (m),
1672 (m), 1622 (m), 1597 (m), 1575 (m), 1463 (s), 1436 (s), 1419 (s), 1389 (m), 1366 (w), 1300
(w), 1000–1200 (vs, br), 804 (m), 646 (w), 519 (w), 474 (m).

3.6. Synthesis of [Ir(cod)(dpp-bian)](BF4) (3)

AgBF4 (23.4 mg, 0.120 mmol) was added to a solution of complex 1 (100 mg, 0.120 mmol)
in 20 mL of dichloromethane. The reaction mixture was stirred at room temperature for
24 h. The solution was evaporated and recrystallized from a dichloromethane/diethyl
ether mixture to give a brown crystalline product. Yield: 95 mg (90%). Anal. Calc. for
C44H52N2BF4Ir: C, 59.51; H, 5.90; N, 3.15%. Found: C, 59.7; H, 5.98; N, 3.2%. 1H NMR
(500 MHz, 298 K, CDCl3): δ 0.97 (d, 12H) 1.52 (d, 12H), 1.95 (m, 4H), 2.32 (m, 4H), 3.44 (sep,
4H), 4.12 (m, 4H), 6.54 (d, 2H), 7.32 (m, 2H), 7.38 (m, 2H), 7.49 (m, 4H), 8.57 (d, 2H) ppm.IR
(KBr, ν, cm−1): 3435 (br), 3060 (s), 2962 (m), 2926 (m), 2874 (w), 1626 (w), 1600 (m), 1578 (w),
1489 (w), 1466 (m), 1437 (m), 1420 (w), 1366 (w), 1327 (w), 1304 (m), 1252 (w), 1223 (w), 1184
(w), 1161 (w), 1000–1100 (vs), 895 (m), 833 (m), 802 (m), 781 (m), 761 (m), 646 (w), 621 (w),
546 (w), 519(w), 476 (w).

4. Conclusions

In this work, a series of novel iridium complexes, [Ir(cod)(dpp-bian)Cl] (1), [Ir(cod)(NO
)(dpp-bian)](BF4)2 (2) and [Ir(cod)(dpp-bian)](BF4) (3), with bulky redox-active dpp-bian
ligands were obtained and structurally characterized. Complex 2 is a rare example of an
IrNO complex with a bent nitrosyl ligand. Regarding complexes 1 and 2, an ambiguity
in the determination of the charge states of both the iridium and the ligands (dpp-bian,
NO) was found, which was the result of the non-innocent behavior of the dpp-bian and
NO ligands. Complexes 1 and 3 demonstrate a reversible two-step, two-electron reduction
typical of metal/BIAN complexes. In addition, a reversible mixed-metal/ligand-centered
oxidation was detected for 1. The magnetic properties of 2 in a range from 1.77 to 300 K
were studied by the method of static magnetic susceptibility. An increase in the magnetic
moment with increasing temperature up to 1.2 µB (at 300 K) was found. The magnetic
behavior could be explained by an entropy-driven, thermally induced redox isomeric
process, but variable temperature spectroscopic studies and DFT calculations did not
confirm this assumption, leaving the nature of the magnetic behavior of 2 unresolved.
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Complex 2 is not immune to the loss of the NO group and easily decomposes into the
diamagnetic complex 3 or the paramagnetic complex [Ir(cod)(dpp-bian)](BF4)2 (4). The
formation of a rare Ir(II) complex 4 was proven by EPR spectroscopy.

The interesting and unusual findings obtained in this work give us confidence that
apparently simple systems in which Ir is coordinated to a redox-active ligand are fraught
with surprises. This inspires us to continue research in this area.
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