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Abstract: Galectin-3 (Gal-3) is a novel pro-fibrotic biomarker that can predict both right and left
cardiac dysfunction caused by various cardiovascular conditions. Its expression seems to be pro-
gressively altered with evolving cardiac remodeling processes, even before the onset of heart failure.
Hence, Gal-3 has been found to be an individual predictor of acute and chronic heart failure or to
serve as part of an integrated biomarker panel that can foresee adverse cardiac outcomes. In congeni-
tal heart disease (CHD), Gal-3 correlates with cardiac mortality and complications in both children
and adults and is proposed as a therapeutic target in order to reverse the activation of pro-fibrosis
pathways that lead to heart failure. Positive associations between serum Gal-3 levels, post-operatory
hospitalization rates, complications and ventricular dysfunction have also been reported within
studies conducted on patients with CHD who underwent corrective surgery. Thus, this review tried
to address the potential utility of Gal-3 in patients with CHD and particularly in those who undergo
corrective surgery. The heterogeneity of the literature data and the lack of validation of the results
obtained by the current studies on larger cohorts cannot be neglected, though. Further longitudinal
research is required to establish how Gal-3 can relate to long-term outcomes in pediatric CHD.

Keywords: galectin-3; congenital heart disease; plasma biomarker; heart failure; ventricular dysfunction

1. Introduction

Galectin-3 (Gal-3) represents a β-galactosidase-binding lectin that can mediate cell-
to-extracellular matrix (ECM) communication through interactions with ligands such as
laminin, integrin and collagen [1]. Although mainly found within the cellular cytoplasmatic
compartment, Gal-3 has been identified both within the nucleus and the mitochondria
and can be easily externalized through specific exosomes by an alternative secretory path-
way [2–4]. Its proven involvement in cellular pre-messenger RNA (mRNA) splicing within
the nucleus implies a direct correlation with cellular proliferation processes, which has been
strengthened by the discovery of its antiapoptotic effects exerted through the inhibition of
cytochrome c release and mitochondrial protection [3,5]. As Gal-3 has the ability to bind
to both the cell surface and the ECM and to interact with cellular components, multiple
experimental studies have proposed this galactosidase as a mediator of the pathways in-
volved in cellular apoptosis, angiogenesis, cell adhesion, migration and inflammation [6]. A
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multifunctional protein with both intracellular and extracellular roles, Gal-3 is expressed by
several types of cells, such as epithelial cells, myeloid cells and immune cells (neutrophils,
B- and T-cell lymphocytes, macrophages and natural killer cells) [7]. Moreover, Gal-3
has been identified within the conjunctive, epithelial tissue, respiratory tract, digestive
tract, urinary tract and hepatic and heart tissue [8]. Given its complex interaction with
cytosolic proteins, as well as its ubiquitous tissular expression, Gal-3 has been proven to
play a role in the development of a variety of disorders, including renal disease, cardiovas-
cular disorders, viral infection, autoimmune diseases, neurodegenerative disorders and
malignancies [9–16].

Gal-3 has been regarded as a key effector in the promotion of fibrosis after the initial
disproportionate inflammation-driven processes, which will enhance the transformation of
fibroblasts into myofibroblasts and, therefore, the expansion of the ECM, a mandatory stage
in fibrotic tissue genesis [6]. This mechanism is mediated by transforming growth factor-
beta (TGF-β) and macrophages, which both promote myofibroblast differentiation [17,18].
It has been known for a long time that Gal-3 is overexpressed within macrophages, as
proven by early experimental studies [19]. Moreover, Gal-3 stimulates TGF-β activity
and has been proposed as a therapeutic target in the mediation of idiopathic pulmonary
fibrosis [20]. Excessive macrophage aggregation and inducement of the TGF-β1/α-smooth
muscle actin (SMA)/collagen I (Col I) profibrotic pathway represents essential physiopatho-
logical processes leading to atrial fibrosis, according to experimental studies conducted
on rats [21–23]. The involvement of Gal-3 in the pathogenesis of cardiac fibrosis is briefly
illustrated in Figure 1.

Figure 1. Gal-3 involvement in the pathogenesis of cardiac fibrosis (created with BioRender.com).
Legend: Gal-3—galectin-3; TGF-β—transforming growth factor-β.

Cardiac fibrosis represents a hot topic for the in vitro modulation of Gal-3 expression.
Its proven involvement in the renin–angiotensin–aldosterone axis led to the proposal of its



Int. J. Mol. Sci. 2023, 24, 10511 3 of 16

inhibition as a therapeutic tool for the prevention of myocardial hypertrophy and interstitial
fibrosis [24]. For example, spironolactone administration reduces the Gal-3 concentrations
in patients with reduced ejection fractions, which shows a potential beneficial therapeutic
outcome of the inhibition of the renin–angiotensin–aldosterone axis for the prevention of
myocardial fibrosis and remodeling processes [25]. However, there is a dispute surrounding
the cardiac specificity of Gal-3 due to its persistent elevation in patients before and after
heart transplantation. There is also a lack of correlation between the circulating levels and
Gal-3 expression within myocardial tissue and in post-transplant interstitial fibrosis [26].

Starting from evidence based on the active role of Gal-3 in the modulation of cardiac
fibrosis, multiple research articles have proposed this molecule as a biomarker for various
cardiovascular diseases, including cardiac insufficiency, atrial fibrillation and congenital
cardiac malformations, or as a predictor of long-term outcomes after cardiac resynchro-
nization therapy [27–31]. As most chronic heart disease conditions will eventually lead
to the development of chronic heart failure (CHF), the role of Gal-3 as a prognostic factor
and mortality predictor in patients diagnosed with severe myocardial disfunction has been
thoroughly investigated [32–34]. Figure 2 provides a synopsis of the associations between
Gal-3 and various cardiovascular disorders.

Figure 2. Gal-3 and its associations with various cardiovascular disorders. Legend: AHF—acute
heart failure; CHF—chronic heart failure; CHD—congenital heart disease.

The present review aims to assess the role of Gal-3 in predicting myocardial dys-
function, as well as specific complications related to cardiac remodeling processes in
congenital cardiac malformation. Starting from extensive research that asserted Gal-3 as
a marker of ventricular maladaptation and its utility in the follow-up of patients with
a diagnosis of heart failure of different etiologies, this review will try to highlight the
potential utility of this pro-fibrotic marker in predicting the early onset of heart failure
signs and post-operatory complications of corrective surgery in patients with congenital
heart disease (CHD).

2. Materials and Methods

After an initial screening of the literature data for Gal-3-based physiopathological
mechanisms involved in cardiac remodeling and heart failure, which constitute the grounds
upon which Gal-3 has emerged as a biomarker in CHD, our focus was directed toward the
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role of Gal-3 in CHD and its outcome. The PubMed, Web of Science and Scopus databases
were searched for articles published in the English language that assessed the role of
Gal-3 in CHD, it complications and corrective cardiac surgery outcomes. The search terms
were “Gal-3” AND “congenital heart disease” OR “congenital cardiac malformation” OR
“congenital heart defect”. We included adult and pediatric population-based studies that
adhered to our aforementioned objectives. Experimental, animal-based studies and studies
published in a non-English language were excluded.

3. Gal-3 and Cardiac Remodeling
3.1. Gal-3 and Cardiac Fibrosis

Gal-3 was initially thought to be a marker of progressive cardiac remodeling associ-
ated with left ventricular dysfunction and positively correlated with the rate of adverse
cardiovascular events [35]. However, Gal-3 expression within the myocardium seems to be
altered before the onset of heart failure, as suggested by an experimental study conducted
on pericardial Gal-3-infused rats, which exhibited significant collagen production triggered
by cardiac fibroblasts [36]. The in vitro pharmacological inhibition of Gal-3 prevented the
development of heart failure by hampering cardiac fibrosis and left ventricular dysfunction.
Still, left ventricular hypertrophy continued to develop as a result of the intervention used
to trigger cardiac remodeling, even with Gal-3 inhibition [37]. Thus, Gal-3 seems to mainly
interfere with collagen production. An in vivo example is represented by the onset of
cardiac remodeling caused by volume overload in the setting of arterial hypertension,
which can already lead to a significant elevation in Gal-3 [38].

3.2. Gal-3 and Left Ventricular Remodeling

The relationship between Gal-3 and left ventricular remodeling is mainly reflected
through a low LVEF. Elevated Gal-3, together with increased values of N-terminal pro-B-
type natriuretic peptide (NT-proBNP) and C-reactive protein (CRP) were predictive of a
very diminished left ventricular ejection fraction (LVEF), with values even lower than 35%,
in patients with newly diagnosed dilated cardiomyopathy, according to Rieth et al. [39].
This association between Gal-3 and diminished LVEF was further strengthened by changes
seen on cardiac magnetic resonance imaging in subjects who suffered from myocardial
infarction [40,41]. These changes often became obvious 30 days post-myocardial infarction,
in correlation with diastolic dysfunction progression [42]. It is thought worth mentioning
that impaired parietal kinetics has also been significantly associated with mid-range ejection
fraction in heart failure patients [43]. However, other studies, such as the one conducted by
de Boer et al., showed that the prognostic value of Gal-3 stands out only in those patients
with HF and preserved left ventricular ejection fraction (LVEF) [44]. One meta-analysis
claimed that Gal-3 can be used as a predictor for new-onset HF with preserved LVEF,
which also correlates with left ventricular diastolic dysfunction [45]. A recent review article
confirmed these findings and proposed Gal-3 as a marker that can guide the therapeutic
approach in HF with preserved LVEF [46]. Still, due to the paucity of studies that have
assessed the Gal-3 levels in subjects with HF and preserved LVEF, another recent meta-
analysis addressed the need for future research in this particular clinical setting [47].

3.3. Gal-3 and Atrial Remodeling

Gal-3 poses pro-fibrotic effects upon the atrial interstitium, promoting arrhythmogen-
esis through CD98 (its membrane surface receptor) signaling [48]. As fibrosis is the main
precipitant factor for the development of atrial fibrillation (AF), the biomarker role of Gal-3
in AF has been proposed [49]. Since AF usually occurs in the setting of cardiac structural
remodeling, namely atrial dilation and cardiomyocyte replacement by fibrotic tissue, re-
search testifying a correlation between its higher incidence in the general population and
elevation in Gal-3 levels was foreseeable [50,51]. Moreover, the AF severity and persistence
were related to higher Gal-3 values by Ho et al. but without taking into account additional
risk factors [51]. Thus, Gal-3 has been proposed as a therapeutic guidance adjuvant that
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can predict the need for renin–angiotensin–aldosterone system inhibitor therapy, as well
as a potential therapeutic target, with the help of β-adrenoceptor antagonists. As a result,
conversion to a sinus rhythm can be more easily achieved through the pharmacological
modulation of Gal-3 [52–54]. Gal-3 might also be useful in the prediction of post-operative
AF. An elevation in Gal-3 levels can predict AF occurring after coronary artery bypass
surgery, according to Erdem et al. In their study, patients who maintained a sinus rhythm
post-operatively had significantly lower Gal-3 levels, but these values were not compared
with the ones of healthy controls [55]. Other studies have also related the augmentation of
Gal-3 with the arousal of AF after cardiac surgery, but a recent review of available evidence
concluded that there was insufficient data available due to contradictory results reported
and the limited study samples on which the research on the matter was conducted [56–58].

3.4. Gal-3 and Cardiac Remodeling in Relation to Impaired Glucose Metabolism

The relationship between Gal-3 and cardiac remodeling in altered glucose tolerance
or diabetes mellitus patients is still being debated. Gal-3 might represent a predictor of
early cardiac remodeling in patients with diabetes mellitus but only in junction with other
cardiac-specific biomarkers [59]. Moreover, elevation of the Gal-3 levels was reported in
both pre-diabetic and diabetic patients within a case–control study without any relationship
to the cardiac function or adverse events [60]. In spite of existing proof regarding the
augmentation of Gal-3 in patients with heart failure and impaired glucose metabolism, the
reduction of the left ventricular contractile reserve among patients with heart failure and
diabetes mellitus did not independently alter the plasmatic Gal-3 levels.

4. Gal-3, Heart Failure and Its Associated Complications

Gal-3 has been established as a marker in multiple cardiovascular diseases. Its connec-
tion to heart failure has been widely investigated and reviewed in multiple publications,
which presented Gal-3 as an useful tool for risk stratification and prognosis evaluation in
both acute and chronic heart failure [32,61,62]. This section provides a brief presentation of
the role of Gal-3 in acute, incidental and chronic heart failure.

4.1. Gal-3 and Acute Heart Failure

Van Kimmenade et al. were the first to evaluate the utility of novel serum markers in
the diagnosis of acute heart failure (AHF). The authors concluded that plasma NT-proBNP
represents the best diagnostic marker, with a superiority over both apelin and Gal-3, but
suggested that the combination between NT-proBNP and Gal-3 might be the best mortality
predictor [63]. In a similar fashion, a review performed on pediatric studies that enrolled
patients diagnosed with heart failure concluded that none of the currently available serum
biomarkers of myocardial fibrosis perform as well as NT-proBNP in predicting ventricular
dysfunction [64]. Gal-3 was afterwards regarded by the randomized SHOCK-COOL trial
as a stable biomarker that correlates well with a 30-day mortality of different causes in
patients with AHF and which is not influenced by age, sex and body mass index [65]. It is
therefore unsurprising that Gal-3 has been proposed as a diagnostic biomarker and potential
therapeutic target in AHF [66]. Still, Gal-3 values seem to be dependent upon renal function,
with one large-scale study suggesting that the serum levels of Gal-3 need to be adjusted
according to the glomerular filtration rate [67]. As a matter of fact, recent research in the
field recommends the use of a multi-marker panel for evaluation of the AHF prognosis,
which includes Gal-3 and creatinine, as well as growth differentiation factor 15 (GDF-15),
NT-proBNP, suppression of tumorigenicity 2 (ST2) and troponin I [68,69]. Wang et al. even
sustained that a combined biomarker panel consisting of Gal-3, NT-proBNP and ST2 might
be indicative of systemic fibrotic processes evolution, not only of those localized within
myocardial tissue [69].
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4.2. Gal-3 and Incident Heart Failure

Gal-3 concentrations correlate with incident heart failure risk, as claimed by a meta-
analysis conducted on nine studies [70]. Gal-3 elevation enhances the risk of incident
heart failure and is associated with higher overall mortality rates and increases in the left
ventricular mass, according to Ho et al. [71]. The ARIC study also identified a connection
between Gal-3 elevation and incident heart failure but emphasized that Gal-3 values tend to
be higher in the obese, especially among females and Caucasian populations [72]. A study
conducted on a large population-based cohort (FINIRISK 1997 cohort) initially established
that Gal-3 counts as a predictor of three major endpoints—namely, all-cause mortality,
cardiovascular death and incident heart failure—after adjusting for the parameters of the
Framingham risk score. However, when additionally adjusting for NT-proBNP, the Gal-3
value was not related to an increase in heart failure risk anymore [73]. Still, another meta-
analysis of 18 studies concluded that high Gal-3 levels are correlated with incidental heart
failure, all-cause mortality and cardiovascular mortality in the general population [74].

4.3. Gal-3 and Chronic Heart Failure

In the case of CHF, Gal-3 also acts as an important predicting factor independent of the
severity of HF assessed through the NT-proBNP levels [75]. A cut-off level of 11.5 ng/mL
has been proven to be predictive of CHF exacerbations requiring hospitalization, according
to Baran et al., who also identified a correlation between Gal-3 and vascular stiffness
within their study group [76]. Other research proposed a cut-off value of 8 ng/mL as a
risk factor for CHF development. This case–control study also reported an increase in the
Gal-3 levels with age among the healthy subjects [77]. The symptom severity, morbidity
and hospitalization rates in patients with CHF have been associated with the elevation
of the Gal-3 levels. Furthermore, the efficacy of Valsartan treatment in preventing the
need for hospitalization seems to be dependent upon the Gal-3 values, as suggested by
Anand et al. [78]. It is yet unclear whether Gal-3 is influenced or not by other biomarkers, as
suggested by the study performed by Miller et al., in which Gal-3 proved to be a predictor
of cardiac adverse events in CHF patients only in conjunction with ST2 and not taken
individually [79]. Given the extensive evidence available, Gal-3 has been proposed by The
American College of Cardiology Foundation (ACCF) and the American Heart Association
(AHA) as an integrated part of a biomarker panel that can assess the extent of cardiac
fibrosis [80].

5. Gal-3 in Congenital Heart Disease

In healthy children, Gal-3 presents no variations in age and gender, as opposed to
other biomarkers that are also altered in the setting of myocardial fibrosis, such as ST2,
NT-proBNP and troponin [81,82]. These findings, provided by two pediatric studies that
compared different age groups, are in line with the evidence-based theory of Schindler et al.,
which sustained the stability of Gal-3 over other cardiac biomarkers [83]. As a result, Gal-3
is considered to be a promising, age-independent biomarker in pediatric cardiovascular
disorders that can identify early signs of cardiac disfunction. Table 1 overviews the role of
Gal-3 in predicting the early onset of myocardial fibrosis, heart failure and a CHD outcome.

In CHD, the experimental data showed that Gal-3 is highly expressed in the setting
of pulmonary artery hypertension (PAH), which represents one of the main causes of
right ventricular failure and subsequent death. The pathomechanism involved is repre-
sented by the T-helper 2 (Th2) cell-induced release of inflammatory cytokines, such as
interleukin(IL)-4 and IL-5 [84]. Thus, Gal-3 can prematurely identify the onset of right
ventricle remodeling in patients with PAH and is positively associated with the right
ventricular systolic and diastolic indices [85]. On the other hand, Gal-3 was not able to
differentiate between adaptive and maladaptive RV remodeling in PAH patients within the
study of Keranov et al. [86].
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Table 1. Characteristics of clinical studies that assessed the role of Gal-3 in predicting myocardial
disfunction and related complications associated with CHD.

Reference
(Author, Year) Type of Study Population and Study Group Assignment Main Outcome

Fenster et al., 2016 [85] Case-control study
25 adult patients
15 patients with PAH in study group
10 patients in control group

Gal-3 levels were significantly higher in the
study group when compared to the controls
Significant association between Gal-3 and
indices of RV systolic and diastolic function

Kowalik et al., 2020 [87] Cross-sectional study

124 adult patients
63 patients with congenitally corrected TGA
in study group I
41 patients with Eisenmenger syndrome in
study group II
20 healthy controls

Increase in gal-3 levels within the
study groups
Gal-3 levels correlated with age, NYHA
class, NT-proBNP and parameters of RV
function only in patients with congenitally
corrected TGA

Mohammed et al.,
2014 [88] Case-control study

90 pediatric patients
60 patients with left to right shunt CHD:
• 30 patients with manifestations of HF
• 30 patients without HF
30 healthy controls

Gal-3 levels were significantly higher in
children with HF when compared with the
ones of children without HF and the
control group
Significant association between Gal-3 levels
and severity of HF, assessed with the help of
Ross classification subclasses

Van den Bosch et al.,
2022 [89] Cross-sectional study 137 Fallot patients (adolescents and adults) Gal-3 does not corelates with parameters of

cardiac function and long-term outcome

Kotby et al., 2017 [90] Cross-sectional study

90 pediatric patients
45 patients with CHF (15 patients with
CHD):
• 22 patients with HFNEF (EF > 50%)
• 23 patients with HFREF (EF ≤ 50%)
45 healthy controls

Significant increase in Gal-3 levels within
the study group
No significant difference in serum Gal-3
levels between patients with HFNEF and
those with HFREF

Elhewala et al.,
2020 [91] Case-control study

60 pediatric patients
40 patients with CHD:
• 20 patients with HF
• 20 patients without HF
20 healthy controls

Significant increase in Gal-3 levels within
the study group
Significantly higher Gal-3 levels were found
in the study group in patients with HF as
opposed to those without HF

Saleh et al., 2020 [92] Case-control study

115 pediatric patients
75 patients with CHD
• 30 children with HFNEF
• 45 children with HFREF
40 healthy controls

Gal-3 might present an important predictive
value for the early diagnosis of HF at a
cut-off level of 10.4 ng/dl, with excellent
sensitivity and specificity

Cura et al., 2022 [93] Cross-sectional study

44 pediatric patients
22 infants with isolated VSD who had
received HF treatment
22 healthy control infants

Significant increase in Gal-3 levels within
the study group
Gal-3 might be able to distinguish between
individuals with the investigated pathology
and controls at a cut-off level of 3.62 ng/mL,
with good sensitivity and specificity

Frogoudaki et al.,
2020 [94] Cross-sectional study

58 adult patients with CHD:
• Group A—16 patients with no SVT

episode
• Group B—27 patients with 1–2 episode

of SVT or SV extrasystoles
• Group C—15 patients with multiple

SVT episode or atrial fibrillation
• Group A’—15 patients with no VT

episode
• Group B’—32 patients with ventricular

extrasystoles or couplets
• Group C’—11 patients with triplets or

non-sustained VT or more than
1000 extrasystoles

Gal-3 differed significantly between patient
subgroups divided according to the
presence and severity of SVT/VT
Gal-3 did not correlate with major adverse
cardiovascular events
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Table 1. Cont.

Reference
(Author, Year) Type of Study Population and Study Group Assignment Main Outcome

Geenen et al., 2019 [95] Prospective cohort
study

86 adult patients with TGA and sRV:
• 65 patients with M-TGA
• 21 patients with ccTGA

Gal-3 level is a better predictor for death
arrythmia than NT-proBNP and
echocardiographic strain parameters

Xiao et al., 2020 [96] Observational study

30 adult patients:
• 10 patients with CHD and normal

sinus rhythm
• 10 patients with RHD and normal

sinus rhythm
• 10 patients with RHD and AF

Expression levels of Gal-3 were increased in
the human right atrial appendage tissue
within the AF study group when compared
to the other two study groups

Legend: AF—atrial fibrillation; ccTGA—congenitally corrected transposition of the great arteries;
CHD—congenital heart disease; CHF—chronic heart failure; Gal-3—galectin 3; HF—heart failure;
HFNEF—heart failure with normal ejection fraction; HFREF—heart failure with reduce ejection frac-
tion; M-TGA—Mustard/Senning procedure applied for correction of transposition of the great arteries;
NT-proBNP—N-terminal pro-brain natriuretic peptide; NYHA—New York Heart Association; PAH—pulmonary
arterial hypertension; RCT—randomized control trials; RHD—rheumatic heart disease; RV—right ventricle;
sRV—systemic right ventricle; SV—supraventricular; SVT—supraventricular tachycardia; TGA—transposition of
the great arteries; VSD—ventricular septal defect; VT—ventricular tachycardia.

An association between Gal-3 and an right ventricle pressure overload was also
revealed by a study performed on adult patients with CHD [87]. However, the prediction
of the alteration of the cardiac function parameters and associated complications in children
diagnosed with CHD, the main cause of CHF at pediatric ages, still remains a challenge.
Gal-3 has emerged as a marker of progressive ventricular remodeling in children with
CHD, which positively correlates with pulmonary artery pressure and the left atrial and
ventricular diameters, according to Mohammed et al. [88]. Therefore, Gal-3 has also been
analyzed in survivors of CHDs such as Tetralogy of Fallot (ToF) and has not been asserted
as a potential biomarker candidate for long-term outcomes, as opposed to several other
plasmatic biomarkers [89]. Kotby et al. identified an increase in the Gal-3 serum levels
with chronic heart failure progression, quantified through Ross classification, regardless
of ejection fraction preservation. Approximately one-third of their pediatric study group
included patients with a CHD diagnosis, and the echocardiographic assessment yielded a
negative correlation between Gal-3 and the systolic and diastolic function parameters [90].
The importance of Gal-3 in heart failure staging was also confirmed in a study conducted
on children with CHD through a positive correlation between its serum levels and Ross
classification [91]. However, while some authors (Saleh et al.) have claimed that Gal-3
might perform even better than Ross classification in the precocious identification of heart
failure among children with CHD, exhibiting excellent sensitivity and specificity with a
cut-off value of 10.4 ng/dL, some others (Cura et al.) proved in a case–control study that
enrolled infants with ventricular septal defects (VSD) that Gal-3 increases independently
from left ventricular dilation [92,93]. On the other hand, a study conducted on adults
with CHD revealed that Gal-3 correlates with the global longitudinal strain (GLS) and
NT-proBNP values but does not constitute a marker of major adverse cardiac events [94].
Another study (Geenen et al.) claimed that Gal-3 performs better than NT-proBNP or an
echocardiographic strain analysis in predicting adverse outcome in adults with a systemic
right ventricle and transposition of the great arteries (TGA) [95]. Therefore, given the
conflicting results, the previously reported positive correlations between Gal-3 and the
systolic and diastolic diameters, as well as end diastolic volumes, still require validation in
larger cohorts [90,92].

A Gal-3 level increase is suggestive of the development of supraventricular and
ventricular tachycardia in adults with CHD [94]. The presence of an arrhythmia brings
about an additional enhancement of Gal-3 expression to the one normally found with a
pre-existing disorder, as suggested by a study that comparatively assessed patients with
CHD, rheumatic heart disease and rheumatic disease complicated by atrial fibrillation [96].
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The correlation between Gal-3 and arrhythmia seems to be independent of a pre-existing
underlying condition. A small-scale study discovered an increase in Gal-3 in adolescents
with ventricular arrhythmias, as opposed to healthy counterparts. Moreover, the highest
Gal-3 serum values were reported in patients with complex ventricular arrythmias. This
finding was based on one study that revealed that this marker is dependent upon the
severity of left ventricular dysfunction, as expressed through a moderate linear correlation
between Gal-3 and the left ventricular diastolic diameter [97].

While taking into consideration the potential modulation of Gal-3 for the prevention
of myocardial fibrosis, one study and two randomized controlled trials (RCTs) assessed
the effect of an aldosterone antagonist agent, eplerenone, and a prostacyclin analogue, ilo-
prost, on its circulating levels [98–100], while, in one RCT, eplerenone did not significantly
influence the Gal-3 levels in adults with a childhood diagnosis of ToF or complete TGA. In
another one, which enrolled adults with a history of TGA correction, a decrease in Gal-3
was found after one year of treatment [98,100]. In another study, iloprost inhalation did sig-
nificantly lower the Gal-3 levels in patients with CHD and pulmonary artery hypertension.
Thus, iloprost might influence myocardial fibrotic processes through Gal-3 modulation [99].

Gal-3 has also been proposed as a marker of unfavorable outcome in heritable car-
diomyopathies. In the study of Hu et al., conducted on non-ischemic cardiomyopathy
patients, Gal-3 correlated with major adverse cardiovascular events [101]. However, an-
other study revealed a lack of correlation between Gal-3 and adverse outcomes in subjects
with stable, dilated cardiomyopathy [102]. In vitro studies support the implications of Gal-3
in the ventricular remodeling implied by inherited cardiomyopathies. Thus, in a mouse
model with dilated cardiomyopathy, deletion of the Gal-3 gene resulted in the attenuation
of cardiac remodeling and dysfunction [103].

6. Gal-3 as a Predictor of Complications Associated with CHD Corrective Surgery

An integrated biomarker panel, consisting of ST2, Gal-3, glial fibrillary acidic protein
(GFAP) and NT-proBNP, can constitute a relevant addition to clinical data in predicting the
30-day and one-year rehospitalization and mortality rates in children undergoing surgery
for CHD [104–106]. Similar results were reported by Opotowsky et al., who found a positive
relationship between the Gal-3 levels and the presence of Fontan circulation in adults, as
well as a positive correlation with cardiovascular hospitalization and death [107]. Gal-3
has also been investigated as a potential predictor of post-operative ventricle remodeling
in patients with CHD. DiLorenzo et al., who assessed multiple biomarkers of myocardial
fibrosis for the detection of right ventricle remodeling after ToF surgical repair, amongst
which was also Gal-3, concluded that only matrix metalloproteinase-1 (MMP-1), a marker
of several common congenital cardiac and vascular anomalies, can really be taken into
consideration [108,109]. In children undergoing surgery for isolated aortic coarctation
with/without aortic hypoplasia, there was no significant linear relationship between the
pre-operatory Gal-3 levels and post-operatory left ventricular mass index nor relative wall
thickness, which were perceived as markers of left ventricular remodeling [110]. The prog-
nostic role of Gal-3 in patients with functional univentricular hearts and Fontan circulation
was also put into question by a study that did not include this biomarker amongst the ones
related to major adverse events [111]. Table 2 provides details regarding the main outcomes
of studies that investigated the role of Gal-3 in predicting myocardial fibrosis, as well as
cardiovascular complications, in subjects who underwent CHD corrective surgery.
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Table 2. Characteristics of clinical studies that assessed the role of Gal-3 in predicting myocardial
disfunction and related complications in patients with CHD who underwent corrective surgery.

Reference
(Author, Year) Type of Study Population and Study Group

Assignment Main Outcome

Parker et al., 2020 [98] Longitudinal cohort study
145 pediatric patients with CHD and
corrective surgery involving
cardiopulmonary by-pass

An integrated biomarker panel, consisting of
GFAP, NT-proBNP, ST2 and Gal-3
significantly correlated with an increased
risk of readmission and mortality within the
study cohort

Brown et al., 2019 [99] Longitudinal cohort study 162 pediatric patients with CHD and
corrective surgery

An integrated biomarker panel, consisting of
GFAP, NT-proBNP, ST2 and Gal-3
significantly correlated with an increased
risk of readmission and mortality 30 days
after discharge within the study cohort

Parker et al.,
2019 [104–106] Longitudinal cohort study 162 pediatric patients with CHD and

corrective surgery

An integrated biomarker panel, consisting of
GFAP, NT-proBNP, ST2 and Gal-3
significantly correlated with an increased
risk of readmission and mortality 30 days
after discharge within the study cohort

Opotowsky et al.,
2016 [101] Longitudinal cohort study 70 adult patients who underwent

Fontan procedure
High Gal-3 levels correlated with on elective
cardiovascular hospitalization ad death

DiLorenzo et al.,
2022 [102] Longitudinal cohort study 60 pediatric patients who underwent

corrective surgery for ToF

Gal-3 did not correlate with parameters of
ventricular remodeling, depicted with the
help of CMR

Frank et al., 2019 [110] Longitudinal cohort study 27 pediatric patients who underwent
aortic coarctation repair

Post-operatory Gal-3 levels did not vary
significantly from the pre-operatory ones

van den Bosch et al.,
2021 [111] Longitudinal cohort study 133 pediatric patients who underwent

the Fontan procedure
Gal-3 levels did not correlate with major
adverse cardiovascular events

Geenen et al., 2020 [112] Longitudinal cohort
observational study

50 adult patients who underwent
percutaneous ASD closure

Gal-3 returned to baseline levels three
months after surgery

Dudnyk et al.,
2019 [113] Case-control study

224 pediatric patients:
• 184 patients with CHD and

corrective surgery
• 40 healthy controls

Gal-3 values were significantly higher in the
CHD cohort

Karali et al., 2021 [114] Observational cohort study 35 adult patients with repaired ToF

No correlation found between Gal-3 and
right ventricular myocardial fibrosis,
quantified with the help of CMR
Gal-3 levels correlated with
moderate/severe pulmonary regurgitation

Zegelbone et al.,
2020 [115] Observational cohort study

16 adolescent and adult patients who
underwent transcatheter pulmonary
valve replacement

Gal-3 did not correlate with any atrial and
ventricular function parameters, assessed
through CMR, unlike NT-proBNP and ST2

Parsons et al.,
2020 [116] Observational cohort study 162 pediatric patients with CHD

undergoing cardiopulmonary by-pass

Gal-3 levels did not differ significantly
between children with post-operatory AKI
and those without renal complications

Greenberg et al.,
2021 [117] Observational cohort study

395 pediatric patients with CHD
undergoing cardiopulmonary by-pass:
• 194 children < 2 years of age
• 201 children ≥ 2 years of age

Gal-3 levels were independently associated
with post-operative AKI but only in children
≥2 years of age

Legend: ASD—atrial septal defect; AKI—acute kidney injury; CHD—congenital heart disease; CMR—cardiac
magnetic resonance; Gal-3—galectin 3; GFAP—glial fibrillary acidic protein; NT-proBNP—N-terminal pro-brain
natriuretic peptide.

A decrease in the Gal-3 levels was reported immediately after the percutaneous clo-
sure of atrial septal defects in an adult cohort. However, the parameter returned to its
baseline levels three months after the aforementioned procedure, irrespective of the cardiac
remodeling processes [112]. On the other hand, Dudnyk et al. claimed that, even if children
are completely asymptomatic in post-corrective surgery for CHD, their Gal-3 levels are still
elevated and are associated with myocardial disfunction, depicted through modified tissue
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Doppler imaging measurements [113]. Another study conducted on adult patients con-
firmed that Gal-3 failed to reflect both left and right ventricle dysfunction in adult patients
who had undergone surgical procedures for ToF repair at pediatric ages [114]. Furthermore,
Gal-3 did not correlate with the hemodynamic parameters such as right atrial pressure
or right ventricular end diastolic pressure in children undergoing transcatheter valve re-
placement for congenital pulmonary valve stenosis or insufficiency, unlike NT-proBNP and
ST2 [115].

In children undergoing cardiopulmonary bypass during CHD corrective surgery,
Gal-3 has also been studied in relation to acute kidney injury, occurring as a post-operative
complication. Parsons et al. concluded that Gal-3 cannot be considered a reliable marker
for acute kidney injury (AKI) in this clinical setting [116]. Contradictorily, Greenberg et al.
described an independent association between the pre-operatory and first post-operatory
Gal-3 levels and AKI in children undergoing cardiac surgical procedures [117].

7. Conclusions

From what is known so far, Gal-3 is a next-generation biomarker with predictive
potential for cardiac dysfunction in right and left heart pathology in children and adults.
This review provides comprehensive information regarding the potential utility of Gal-3
in predicting the early onset of heart failure signs and post-operatory complications of
corrective surgery in patients with CHD. Its focus on the role of Gal-3 in CHD makes it
peculiar among the previous literature reviews that have analyzed the same biomarker in
cardiovascular diseases. The limitation of the present work is the heterogeneity and the lack
of validation of data on large cohorts. A larger number of patients were enrolled in studies
that assessed the role of Gal-3 in CHD post-corrective surgery scenarios. Further longi-
tudinal research is required to establish how Gal-3 can relate to long-term outcomes and
complications in both pediatric and adult CHD. The robustness of its predictor role depends
on its placement in a clinical context and the integration of other parameters derived from
an advanced cardiac imaging analysis (echocardiography and cardiac magnetic resonance).
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