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Abstract: Epithelial ovarian cancer (EOC) is one of the deadliest gynecological cancers worldwide,
mainly because of its initially asymptomatic nature and consequently late diagnosis. Long non-
coding RNAs (lncRNA) are non-coding transcripts of more than 200 nucleotides, whose deregulation
is involved in pathologies such as EOC, and are therefore envisaged as future biomarkers. We
present a meta-analysis of available gene expression profiling (microarray and RNA sequencing)
studies from EOC patients to identify lncRNA genes with diagnostic and prognostic value. In this
meta-analysis, we include 46 independent cohorts, along with available expression profiling data
from EOC cell lines. Differential expression analyses were conducted to identify those lncRNAs
that are deregulated in (i) EOC versus healthy ovary tissue, (ii) unfavorable versus more favorable
prognosis, (iii) metastatic versus primary tumors, (iv) chemoresistant versus chemosensitive EOC,
and (v) correlation to specific histological subtypes of EOC. From the results of this meta-analysis,
we established a panel of lncRNAs that are highly correlated with EOC. The panel includes several
lncRNAs that are already known and even functionally characterized in EOC, but also lncRNAs that
have not been previously correlated with this cancer, and which are discussed in relation to their
putative role in EOC and their potential use as clinically relevant tools.

Keywords: long non-coding RNAs (lncRNAs); epithelial ovarian cancer (EOC); transcriptomics;
meta-analysis

1. Introduction

Epithelial ovarian cancer (EOC) is the second most common cause of death due to
gynecological cancers, with approximately 314,000 new cases and 205,000 deaths worldwide
in 2020, and with increasing trends predicted [1]. EOC patients are usually diagnosed
at an advanced stage of the disease due to the initially asymptomatic character of the
tumor, leading to a dramatic five-year overall survival rate below 40% [2]. An early
diagnosis correlates with a better prognosis but, unfortunately, an efficient, approved, and
easy protocol based on biomarkers is not available for EOC [3]. Long non-coding RNAs
(lncRNAs) are transcripts longer than 200 nucleotides that regulate gene expression at
different levels, taking part in physiological and pathological processes, including EOC [4].
More than 150 lncRNAs have been studied and related to EOC so far [5–7]. Transcriptome-
wide approaches, such as expression microarrays and RNA deep sequencing, produce a
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large amount of information that is shared with the scientific community thanks to online
repositories, such as the Gene Expression Omnibus (GEO) or the European Nucleotide
Archive [8]. There are many gene expression profiling studies in the context of EOC, which
also provide clinical information about patients and, depending on the cohort size, are able
to capture the patient-to-patient variability, thereby allowing the validation and discovery
of biological markers and the advance of precision medicine [9]. Several transcriptomic
meta-analyses have been previously published analyzing these data in EOC; however,
they either used a small number of studies, those available at the moment [10–13], or were
focused on protein-coding genes and neglected lncRNAs [14–17]. The present work is the
first lncRNA meta-analysis in EOC comprising a high and significant number of studies—
specifically, 46 independent cohorts—and the first to integrate information from expression
microarrays and bulk RNA sequencing. The objective of this work is to reanalyze and
compare all of the EOC-patient-derived microarray and RNA sequencing studies available
to date, in order to find lncRNAs that highly correlate to clinical aspects and that might
have clinical application in the management of EOC patients.

2. Results

In this meta-analysis, we analyzed publicly available independent transcriptomic
datasets from EOC-patient-derived samples, which contain lncRNA expression data as
well as associated clinical data from patients included in the studies. They are representa-
tive of the actual clinical knowledge on EOC and integrate the wide variability between
individuals and cohorts.

In our search for gene expression profiling data in ovarian cancer, we initially found
a total of 63 studies, of which 51 and 12 accounted for microarray and bulk RNA-Seq
technologies, respectively. In terms of the type of analyzed sample, 48 studies used tissue,
2 blood, 2 blood serum, 1 urine, and 1 saliva, whereas 9 worked with cell lines (2 of
them including their derived exosomes). All of the studies were considered epithelial
ovarian cancer cases, although four of them contained additional data from stromal cells
from the tumor that were not used in this meta-analysis. Seventeen studies restrained the
cancer samples to one specific subtype, such as high-grade serous or clear cell; another
six compared several subtypes within the same study, while the remaining thirty-eight
studies did not specify the EOC subtype. Those samples named in the original studies
as “serous”, “high-grade serous”, or “low-grade serous” were jointly considered. Out
of the 51 studies with cancer patients (excluding cell line studies) who were naïve to
treatment at the time of sample extraction, 22 of them did not include samples from healthy
tissue for comparison, but 7 of these 22 studies included either cancer cells from ascites
and/or peritoneal metastatic samples matched to the primary tumor. There were 11 studies
with prognostic information, including survival and/or progression over time. Twelve
studies only considered miRNAs, due to the selected microarray platform. The full list
of initially identified studies, including the cohort size of each study, can be found in the
Supplementary Materials (Table S1).

Our objective was to identify lncRNAs (antisense, sense, intronic, intergenic, divergent,
overlapping, and non-overlapping) with clinical value related to epithelial ovarian cancer.
Thus, we discarded 17 studies from the 63 initially identified according to the criteria specified
in Section 4, thereby excluding studies with information only from miRNAs and/or carried
out only with cell lines. Due to the heterogeneity of clinical information available in each study,
we performed different rounds of analyses focusing on different studies, which included
information of relevance in diagnosis or prognosis, correlation to metastasis, chemotherapy
resistance, and histological EOC subtypes. Therefore, in the following sections, we use the
same criteria to present the results of the different analyses performed.

2.1. Analysis of lncRNAs with Putative Diagnostic Value in EOC

In this first round of our analysis, we sought to identify differentially expressed
lncRNAs—either upregulated or downregulated—in EOC compared with healthy samples.
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For this category, we considered 24 studies that used both cancer and control samples; how-
ever, EGAD00001000877 data are not publicly available, and the RNA-Seq libraries from
GSE192410 were prepared from circular RNA only; therefore, these data were discarded.
We analyzed the remaining 22 studies, whose metadata and results for the differential
expression analyses are available in the Supplementary Materials (Table S2). The RNA
analyzed in these studies was derived from tissue samples, except for GSE29220, whose
RNA was derived from saliva samples. Only one study, GSE137238, presented matched
cancer and normal ovarian tissue from the same woman, whereas in the rest, the case and
control samples came from different women.

A summary from these 22 analyses is shown in Figure 1, in which the number of up-
and downregulated lncRNAs in EOC is depicted, as well as the sum of the other gene
biotypes (protein-coding genes, pseudogenes, micro-RNA genes, T-cell receptor genes,
immunoglobulin genes, small nuclear RNA genes, small nucleolar RNA genes, small
Cajal body-specific RNA genes, ribosomal RNA genes, and ribozyme genes). The study
generating the highest number of deregulated targets was GSE190688, with 6934 up- and
5325 downregulated, of which 1691 and 1497 were lncRNAs, respectively. For GSE29220,
statistically significant deregulation was not identified.
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Figure 1. The number of deregulated genes in each selected study in the “Diagnostic” analysis. The
bar graph shows the absolute frequency of upregulated (upper part) and downregulated (lower part)
genes, depicting the fraction corresponding to lncRNA genes in blue at the ends of the bars.

After obtaining the list of differentially expressed genes for each study, we carried
out multiple pairwise comparisons to determine which lncRNAs were deregulated across
the different cohorts with the same trend (up or down). A total of 271 lncRNAs with
contradictory trends among different studies (that is, upregulated in some studies but
downregulated in others) were excluded, but they are listed in the Supplementary Mate-
rials (Table S3). There were 247 upregulated and 243 downregulated lncRNAs that were
statistically significant in at least three of the analyzed studies (listed in Tables 1 and 2, re-
spectively); the majority of which (200 and 209, respectively) were not previously related to
EOC (Supplementary Materials, Table S4). The most frequently upregulated lncRNAs were
RNF157-AS1 and BBOX1-AS1, both in 12 different studies, whereas MAGI2-AS3 was the
most frequently downregulated lncRNA, in 15 different studies. The lncRNAs that showed
significant upregulation and that were more frequently found in different cohorts, but that
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had not been previously related to EOC diagnosis, were ENSG00000187951, MIR205HG,
ZNF232-AS1, ENSG00000285756, LINC01297, TFAP2A-AS1, LINC01977, and LINC01770,
as shown in Figure 2a. The lncRNAs that were more frequently downregulated in differ-
ent cohorts but that had not been previously related to EOC diagnosis were PGM5-AS1,
ENSG00000267058, EPM2A-DT, NR2F1-AS1, KLF3-AS1, GLIDR, ERVK13-3, and CLN8-AS1,
as shown in Figure 2b. There were several lncRNAs that we considered to be contradictory
from the results that we found in the meta-analyses (Supplementary Materials, Table S3)
and that were related to EOC in the literature, such as PART1 [18] or XIST [19]. This fact
does not invalidate the experimental evidence collected about their role in EOC, although it
downplays their importance as diagnostic biomarkers for the disease, since different trends
are observed in different cohorts.

Table 1. Upregulated lncRNAs in ovarian cancer tissue in at least three different transcriptomic
studies from the “Diagnostic” analysis. For genes in bold, the position of the non-cancerous cell line
OELE matches the first quartile when sorting the cell lines in ascending normalized counts.

Number of Studies Gene Count Gene Name

12 2 RNF157-AS1, BBOX1-AS1

11 1 DUXAP8

10 6 ATP2A1-AS1, ENSG00000187951, FOXP4-AS1, MIR205HG, UCA1, ZNF232-AS1

9 2 LINC00664, LINC01503

8 10 ENSG00000285756, ESRG, HAGLR, LINC00665, LINC01297, LINC01770, LINC01977,
PRKCQ-AS1, TFAP2A-AS1, TIAM1-AS1

7 8 ASH1L-AS1, HAGLROS, LINC00839, LINC01135, LINC01558, MRPL20-AS1, SPINT1-AS1,
VPS13B-DT

6 11 C10orf95-AS1, DLX6-AS1, ENSG00000286546, FZD10-AS1, KLHDC7B-DT, LINC03014,
NCK1-DT, PCAT6, PP7080, RNASEH1-AS1, TDRKH-AS1

5 25

CCDC140, CDKN2B-AS1, DLEU1, DPP3-DT, ELFN1-AS1, WDR35-DT, PPP1R3B-DT,
ENSG00000256802, KDM7A-DT, KIAA1614-AS1, KIF25-AS1, LBX2-AS1, LINC00853,
LINC00884, LINC01142, LINC01215, LINC01532, LINC02159, LINC02387, LYRM4-AS1,
MIR155HG, MYCNOS, OBSCN-AS1, TLR8-AS1, TNFRSF10A-DT

4 46

ATP11A-AS1, CLMAT3, DSP-AS1, ENSG00000231119, ENSG00000260418,
ENSG00000267665, EPHA1-AS1, EPIC1, EXOSC10-AS1, GAPLINC, ITGB2-AS1, LAMA5-AS1,
LINC00943, LINC00944, LINC00958, LINC01224, LINC01271, LINC01315, LINC01333,
LINC01342, LINC01356, LINC01362, LINC01410, LINC01545, LINC01547, LINC02041,
LINC02043, LINC02492, LINC03011, LINGO1-AS1, MINCR, MIR1915HG, MIR200CHG,
NAV2-AS5, PCAT4, PPP1R14B-AS1, PPP1R26-AS1, PRRT3-AS1, PRRX2-AS1, PSORS1C3,
RALY-AS1, SLC2A1-DT, SNHG4, ZNF503-AS1, ZNF687-AS1, ENSG00000215022

3 136

ANKRD44-IT1, BISPR, BRWD1-AS2, C6orf99, C8orf31, CA3-AS1, CARD8-AS1, CASC9,
CSMD2-AS1, CT69, CTB-178M22.2, DHCR24-DT, DHX35-DT, EGFLAM-AS4,
ENSG00000224504, ENSG00000226527, ENSG00000259540, ENSG00000260912,
ENSG00000261095, ENSG00000261924, ENSG00000273523, ENSG00000289161,
ENSG00000290993, ENSG00000291232, FAM151B-DT, FZD4-DT, GNAS-AS1, GPRC5D-AS1,
HMMR-AS1, IQCF5-AS1, KANSL1-AS1, KCNMB2-AS1, LCAL1, LCMT1-AS2, LINC00308,
LINC00354, LINC00461, LINC00513, LINC00589, LINC00620, LINC00656, LINC00668, LINC00858,
LINC00868, LINC00896, LINC00907, LINC01049, LINC01111, LINC01123, LINC01127,
LINC01144, LINC01512, LINC01737, LINC01812, LINC01833, LINC01904, LINC02064,
LINC02152, LINC02223, LINC02240, LINC02257, LINC02517, LINC02580, LINC02712, LINC02837,
LNCOC1, LZTS1-AS1, MAP3K9-DT, MAPT-AS1, MIR3681HG, MIR3945HG, MIR4458HG,
MRPL20-DT, NDUFB2-AS1, NEBL-AS1, NINJ2-AS1, NUP50-DT, NUTM2A-AS1, OGFRP1,
PARTICL, PIK3CD-AS2, POU2F2-AS1, PSLNR, PTPRN2-AS1, RAPGEF4-AS1, RFX5-AS1,
RHPN1-AS1, RNASE11-AS1, SAMD12-AS1, SCIRT, SLC8A1-AS1, STAU2-AS1, TIPARP-AS1,
TRPM2-AS, TYMSOS, UBAC2-AS1, UBR5-DT, ENSG00000236529, ENSG00000261211,
ENSG00000268204, ENSG00000272275, AQP5-AS1, ENSG00000272763, ENSG00000261068,
ENSG00000261135, ENSG00000261061, ENSG00000272872, ENSG00000224272,
ENSG00000275216, ENSG00000225335, ENSG00000236924, ENSG00000250899,
ENSG00000269155, ENSG00000245719, ENSG00000256234, ENSG00000259163,
ENSG00000225489, ENSG00000260920, ENSG00000255114, ENSG00000270460,
ENSG00000278238, ENSG00000267698, ENSG00000233461, ENSG00000270174,
ENSG00000253174, ENSG00000269968, ENSG00000231295, ENSG00000232386,
ENSG00000269399, ENSG00000226334, ENSG00000265415, ENSG00000234694,
ENSG00000243224, ENSG00000267512, ENSG00000244184, ENSG00000261071
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Table 2. Downregulated lncRNAs in ovarian cancer tissue in at least three different transcriptomic
studies from the “Diagnostic” analysis. For genes in bold, the position of the non-cancerous cell line
OELE matches the fourth quartile when sorting the cell lines in ascending normalized counts.

Number of Studies Gene Count Gene Name

15 1 MAGI2-AS3

13 2 ADAMTS9-AS2, HAND2-AS1

12 4 CRNDE, GAS1RR, MIR22HG, PGM5-AS1

11 4 ADAMTS9-AS1, ENSG00000267058, EPM2A-DT, NR2F1-AS1

10 4 GATA6-AS1, GIHCG, KLF3-AS1, WDFY3-AS2

9 6 ATP2B1-AS1, ERVK13-1, GLIDR, HHIP-AS1, HYMAI, SNHG8

8 9 C2orf27A, CLN8-AS1, DPP10-AS1, ENSG00000272447, EPB41L4A-AS1, FGF14-AS2,
MIR100HG, RASSF8-AS1, SP2-AS1

7 6 ID2-AS1, LINC00667, LINC00842, LINC02941, LINC03013, ZFAS1

6 12 CKMT2-AS1, DUBR, EGOT, FGD5-AS1, GABPB1-AS1, LINC00924, LINC01616,
PAN3-AS1, SDCBP2-AS1, SLC25A21-AS1, SNHG18, ZEB1-AS1

5 13 CERNA1, CPVL-AS2, ENSG00000204814, FRMD6-AS2, LINC00342, LINC00526,
LINC00683, LINC02754, MEF2C-AS1, NIFK-AS1, PAXBP1-AS1, PWRN1, VLDLR-AS1

4 44

ADD3-AS1, ANXA2R-AS1, ARHGEF26-AS1, CRIM1-DT, DPH1-AS1,
ENSG00000145075, ENSG00000204666, ENSG00000230393, ENSG00000244953,
ENSG00000245025, ENSG00000248115, ENSG00000253123, ENSG00000255495,
ENSG00000258181, ENSG00000259976, ENSG00000261305, ENSG00000261671,
ENSG00000270589, FGF13-AS1, FLRT2-AS1, GASK1B-AS1, KLRK1-AS1, LETR1,
LINC00324, LINC00926, LINC00997, LINC01018, LINC01391, LINC02360,
LNCRNA-IUR, MIR3936HG, MRGPRF-AS1, NPEPPSP1, NR2F2-AS1, NR4A1AS,
OR2A1-AS1, PCAT19, PTPRD-AS1, RPH3AL-AS1, SNHG26, TMEM220-AS1,
TPT1-AS1, TRHDE-AS1, WARS2-IT1

3 138

CAVIN2-AS1, CEROX1, CNN3-DT, DHDDS-AS1, DNAJC27-AS1, ELOA-AS1,
ENSG00000226622, ENSG00000226862, ENSG00000227733, ENSG00000231609,
ENSG00000232934, ENSG00000233178, ENSG00000233760, ENSG00000233894,
ENSG00000234394, ENSG00000234699, ENSG00000235159, ENSG00000235563,
ENSG00000238018, ENSG00000243004, ENSG00000246250, ENSG00000249679,
ENSG00000249849, ENSG00000250286, ENSG00000250326, ENSG00000254141,
ENSG00000254855, ENSG00000256139, ENSG00000256973, ENSG00000257894,
ENSG00000259275, ENSG00000259359, ENSG00000259367, ENSG00000259969,
ENSG00000260269, ENSG00000260277, ENSG00000260563, ENSG00000260583,
ENSG00000260645, ENSG00000260686, ENSG00000260693, ENSG00000260859,
ENSG00000261167, ENSG00000261269, ENSG00000261292, ENSG00000266677,
ENSG00000267042, ENSG00000267082, ENSG00000267636, ENSG00000267774,
ENSG00000268047, ENSG00000268912, ENSG00000269068, ENSG00000269194,
ENSG00000269210, ENSG00000270096, ENSG00000270140, ENSG00000270640,
ENSG00000271730, ENSG00000271930, ENSG00000272158, ENSG00000272159,
ENSG00000272823, ENSG00000272831, ENSG00000273650, ENSG00000274719,
ENSG00000275120, ENSG00000277351, ENSG00000277954, ENTPD1-AS1,
FAM167A-AS1, FAM182A, FAM53B-AS1, FAM66A, FAM85B, FOXO6-AS1,
GARS1-DT, GCC2-AS1, HOXA-AS2, HSD11B1-AS1, INE2, IRS4-AS1, JAZF1-AS1,
LINC00602, LINC00844, LINC00847, LINC00886, LINC00891, LINC00921,
LINC01229, LINC01402, LINC01474, LINC01560, LINC01619, LINC01625, LINC01852,
LINC02126, LINC02145, LINC02202, LINC02308, LINC02345, LINC02613, LINC02691,
LINC02731, LINC03007, LRRC8C-DT, LRRK2-DT, MAFTRR, MAP3K4-AS1, MEG8,
MIMT1, MIOS-DT, MIR223HG, MIR497HG, MRPS30-DT, MSC-AS1, NALT1,
PACERR, PGM5P3-AS1, PGM5P4-AS1, PRR34-AS1, PRSS23-AS1, PSMG3-AS1,
RASGRF2-AS1, RBPMS-AS1, RORA-AS1, SAP30-DT, SEMA6A-AS1, SMC5-DT,
SNHG5, TICAM2-AS1, TMC3-AS1, TSPEAR-AS1, TTC3-AS1, XPC-AS1, ZEB2-AS1,
ZNF300P1, ZNF594-DT
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Figure 2. Expression levels in EOC and normal ovary tissues of the top deregulated lncRNAs that
were discovered in the EOC meta-analysis. (a,b) Panels correspond to upregulated and downreg-
ulated genes, respectively. The middle line in each boxplot represents the median value, and the
black dots are the outlier values. Comparisons from the dotted line to the left are from microar-
ray studies, and comparisons from the dotted line to the right are from RNA-Seq studies, except
for GLIDR and ENSG00000285756, for which all comparisons are from microarrays. ZNF232-AS1,
ATP2A1-AS1, LINC01977, TFAP2A-AS1, and NR2F1-AS1 are not represented in this figure, because
only fold changes and p-values are available in this study [20]. All comparisons are p ≤ 0.01.

Once we had obtained these two lists, we checked whether these lncRNAs were also
dysregulated in 57 epithelial ovarian cancer cell lines when compared with OELE—a non-
cancerous human ovarian epithelium cell line—as a criterion for further validation. We
obtained raw read counts from RNA sequencing of each of these cell lines from the Can-
cer Cell Line Encyclopedia (CCLE), rounded them to the closest integer, and normalized
them using DESeq2. After that, we sorted the 58 cell lines in ascending normalized read
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counts for each gene, annotating the position and quartile in which OELE was present. We
considered that deregulation in patients was consistent with the cell line data when OELE
occupied a position within the first quartile (lower expression) for upregulated genes or the
fourth quartile (higher expression) for downregulated genes. There were 42 upregulated and
57 downregulated lncRNAs that fulfilled these criteria (in bold in Tables 1 and 2, and reported,
together with position and quartile information, in the Supplementary Materials (Table S4)).

2.2. Analysis of lncRNAs with Putative Prognostic Value in EOC

This second analysis consisted of differentially expressed lncRNAs showing a signifi-
cant correlation with favorable or unfavorable prognosis—meaning increased or decreased,
respectively, overall survival (OS) and/or disease-free survival (DFS) periods after diagno-
sis or time without relapse after being treated or surgically debulked. In this category, we
selected 11 studies containing information about death and relapse events over time. The
metadata information of each study and the results from our meta-analysis can be found
in the Supplementary Materials (Table S5). The numbers of genes resulting from the Cox
proportional hazards model affecting OS and DFS for each study are depicted in Figure 3.
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Figure 3. The numbers of genes affecting OS (left) and DFS (right) in each selected study for the
“Prognostic” analysis. The bar graph shows the absolute frequency of genes; the portion in blue at the
ends of the bars is the fraction corresponding to lncRNA genes. NA (not applicable) means that there
is no patient information about DFS for those studies, whereas 0 means that there are no statistically
significant genes.

These analyses yielded 123 and 32 lncRNAs positively correlated with longer or shorter
OS periods, respectively, as listed in Table 3. We also found 125 lncRNAs that were positively
correlated with longer DFS periods and 34 lncRNAs with shorter DFS periods, as presented
in Table 4. The references from the genes that were previously associated with EOC in the
literature can be found in the Supplementary Materials (Table S6). When comparing the
resulting gene lists from each analysis pairwise, only six lncRNAs (in bold in Tables 3 and 4)
were confirmed in two different studies: RNF157-AS1, AQP5-AS1, CRNDE, and ZFAS1 in
OS studies, and MALAT1 and SNHG8 in disease-free survival studies. However, SNHG8
showed opposed trends in the two studies; therefore, we excluded it from the final lists of
this category (but it is included in the Supplementary Materials (Table S3)). Figure 4 shows
the survival periods of three selected lncRNAs.
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Table 3. LncRNA genes positively correlated with longer (left) or shorter (right) OS periods in EOC
patients identified in the studies from the “Prognosis” analysis. LncRNAs in bold are present in two
different studies.

LncRNAs Correlating with Longer OS LncRNAs Correlating with Shorter OS

RNF157-AS1, AQP5-AS1, AKAP1-DT, ANKRD44-AS1, ARHGAP28-AS1,
BMPR1B-DT, CD2AP-DT, CEACAM16-AS1, DCTN6-DT, DNAJC9-AS1, DNM1P35,
DTD1-AS1, EBLN3P, FAM27C, FOXP4-AS1, FZD4-DT, GPRC5D-AS1, HAGLROS,
HCG14, HCP5, HLA-L, IFNG-AS1, IL6R-AS1, JARID2-DT, LINC00467, LINC00488,

LINC00592, LINC00664, LINC01431, LINC01635, LINC01695, LINC01829,
LINC01970, LINC02006, LINC02073, LINC02091, LINC02167, LINC02321,

LINC02346, LINC02629, LINC02754, LINC02777, LUNAR1, MIR762HG, MYCNOS,
MYL12-AS1, NUTM2A-AS1, PCAT18, POLH-AS1, RAB11B-AS1, RFX5-AS1,

RGMB-AS1, RMST, RNASEH1-AS1, SCIRT, SNHG10, SRD5A3-AS1, TRBV11-2,
TWSG1-DT, USP30-AS1, ENSG00000228863, ENSG00000259834,

ENSG00000235021, ENSG00000273221, ENSG00000232739, ENSG00000270087,
ENSG00000255135, ENSG00000256101, ENSG00000256948, SLC38A4-AS1,

ENSG00000275769, ENSG00000276727, ENSG00000277863, ENSG00000258521,
ENSG00000278022, ENSG00000259772, ENSG00000276408, ENSG00000263063,
ENSG00000263427, ENSG00000265840, ENSG00000274213, ENSG00000277597,
ENSG00000266149, ENSG00000267627, ENSG00000273368, ENSG00000268555,
ENSG00000268650, ENSG00000230432, ENSG00000235319, ENSG00000273063,
ENSG00000276517, ENSG00000281920, ENSG00000277901, ENSG00000273210,
ENSG00000272858, ENSG00000250039, ENSG00000272626, ENSG00000272986,
ENSG00000272203, ENSG00000272417, ENSG00000261071, ENSG00000272209,
ENSG00000228506, ENSG00000261189, ENSG00000272009, ENSG00000272243,
ENSG00000272379, ENSG00000231794, ENSG00000214870, ENSG00000237773,

ENSG00000260997, ENSG00000273391, ENSG00000253982, PPP1R3B-DT,
ENSG00000253369, ENSG00000254812, ENSG00000260484, ENSG00000253400,
ENSG00000232412, ENSG00000290574, ENSG00000290689, ENSG00000290796

CRNDE, ZFAS1, C2orf27A, DUXAP8, FLG-AS1, GUSBP11,
LINC00484, LINC01127, LINC02881, MAGI2-AS3, MIR600HG,
MIR924HG, NRSN2-AS1, PAXBP1-AS1, PCAT4, PIK3R5-DT,

RP9P, ENSG00000260917, ENSG00000257545,
ENSG00000259341, ENSG00000261069, ENSG00000271725,
ENSG00000270020, ENSG00000275438, ENSG00000266709,

LINC02958, ENSG00000213963, ENSG00000229839,
ENSG00000270696, ENSG00000240057, ENSG00000230074,

ENSG00000290659

Table 4. LncRNA genes positively correlated with longer (left) or shorter (right) DFS periods in EOC
patients identified in the studies from the “Prognosis” analysis. LncRNAs in bold are present in two
different studies.

LncRNAs Correlating with Longer DFS LncRNAs Correlating with Shorter DFS

ADCY10P1, ANO1-AS1, ATXN2-AS, B4GALT1-AS1, C1orf21-DT, C6orf223,
CRTC3-AS1, CT62, CXXC5-AS1, DIAPH2-AS1, DLGAP1-AS1, DNM1P35,
EIF1B-AS1, EML2-AS1, FAM111A-DT, FAM27C, FOXP4-AS1, FZD4-DT,

HCG15, IFNG-AS1, JARID2-DT, LINC00221, LINC00243, LINC00582,
LINC00592, LINC00927, LINC01003, LINC01144, LINC01825, LINC02298,

LINC02397, LINC02541, LINC02601, LINC02875, LL22NC03-63E9.3, LUNAR1,
MAN2A1-DT, MIAT, MIR3142HG, NCKAP5-AS2, NDUFV2-AS1, NIFK-AS1,

NR2F2-AS1, NSMCE1-DT, OLMALINC, PKP4-AS1, POLG-DT, PP2672,
PPP1R21-DT, PPP1R26-AS1, RNF157-AS1, RORA-AS1, RPH3AL-AS1,

SBF2-AS1, SLC25A5-AS1, SUGCT-AS1, TAX1BP1-AS1, THOC7-AS1, TRBV11-2,
XIAP-AS1, ZSCAN5A-AS1, ENSG00000224152, ENSG00000226334,

ENSG00000226889, ENSG00000228021, ENSG00000228084, ENSG00000228863,
ENSG00000229311, ENSG00000230912, ENSG00000231081, ENSG00000231098,
ENSG00000231519, ENSG00000231794, ENSG00000232533, ENSG00000233230,
ENSG00000233242, ENSG00000234134, ENSG00000235586, ENSG00000236140,
ENSG00000254290, ENSG00000254343, ENSG00000255440, ENSG00000257042,

ENSG00000257327, AQP5-AS1, ENSG00000258534, ENSG00000258572,
ENSG00000258904, ENSG00000259802, ENSG00000259834, ENSG00000260038,
ENSG00000260352, ENSG00000260369, ENSG00000261071, ENSG00000261204,
ENSG00000261320, ENSG00000261655, ENSG00000262115, ENSG00000263063,
ENSG00000266830, ENSG00000267255, ENSG00000267666, ENSG00000269951,
ENSG00000270115, ENSG00000270265, ENSG00000271367, ENSG00000272172,
ENSG00000272209, ENSG00000272456, ENSG00000272672, ENSG00000272831,
ENSG00000273004, ENSG00000273104, ENSG00000273162, ENSG00000273210,
ENSG00000273456, ENSG00000273989, ENSG00000275155, ENSG00000275202,
ENSG00000275297, ENSG00000275484, ENSG00000276408, ENSG00000277901,

ENSG00000278022, ENSG00000291006, ENSG00000291136

GUSBP11, MALAT1, AQP4-AS1, DSG2-AS1, HLA-F-AS1,
HOTAIRM1, LINC00452, LINC00472, LINC00565, LINC01140,

LINC02328, LINC02432, LINC-PINT, LNCOC1, MIR924HG,
PHACTR2-AS1, RRP7BP, TMEM161B-AS1, ZNF295-AS1,

ZNF503-AS2, ENSG00000233834, ENSG00000243004,
ENSG00000248268, ENSG00000249476, ENSG00000258603,
ENSG00000259065, ENSG00000260412, ENSG00000261292,
ENSG00000265975, ENSG00000266283, ENSG00000270074,
ENSG00000272632, ENSG00000278668, ENSG00000280604
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Figure 4. Kaplan–Meier curves for three lncRNAs affecting survival periods in EOC patients:
(a) GUSBP11, (b), MIR924HG, (c), and AQP5-AS1. Graph titles indicate each corresponding study.

2.3. Analysis of lncRNAs Deregulated in EOC Metastasis

The third analysis comprised seven different studies (summarized in the Supplementary
Materials (Table S7)) containing transcriptomic information derived from the primary
tumor, cancer cells from the ascitic fluid, and/or peritoneal solid metastasis samples,
matched for each patient.

We analyzed the seven studies individually to look for differentially expressed lncRNA
genes related to the metastatic process by comparing (i) peritoneal solid metastasis versus
cancer cells from the ascitic fluid, (ii) peritoneal solid metastasis versus primary tumor, and
(iii) cancer cells from the ascitic fluid versus primary tumor, using the variable “patient” as
a blocking factor. A summary of the differentially expressed genes for each comparison
and study is shown in Figure 5. The two studies that yielded the highest numbers of
differentially expressed genes were GSE133296 and GSE137237.
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Figure 5. The number of deregulated genes in each comparison within the selected studies for the
“Metastatic” analysis. The bar graph shows the absolute frequency of upregulated (upper part) and
downregulated (lower part) genes, depicting the fraction corresponding to lncRNA genes in blue at
the ends of the bars.

After carrying out the individual analyses, we found 287 upregulated and 287 down-
regulated lncRNAs, of which 30 and 8, respectively, were found in two or three different
studies carried out with patients, or in one study carried out with patients and differentially
expressed in EOC cell lines from a metastatic origin when comparing them with those
originating from primary tumors (Tables 5 and 6). Additionally, we identified 26 lncRNAs
that were upregulated or downregulated in cancer cells from ascites but did not change
their levels between primary tumor and solid peritoneal metastasis, which we named
“switch” (Table 7). The full lists, including references from genes previously associated
with EOC, can be found in the Supplementary Materials (Table S8). Those lncRNAs whose
expression was contradictory between different analyzed studies were excluded from Table
S8 but included in Table S3.

Table 5. Upregulated lncRNAs in metastasis in two or three patient transcriptomic studies, or in one
patient transcriptomic study and also in metastatic versus primary tumor cell line groups from CCLE.
Genes in bold coincide with significant differentially expressed (DE) lncRNAs between the primary
and metastatic cell line groups using DESeq2, and underlined genes coincide with those that were
significant in the receiver operating curve analyses.

Number of Studies Number of
Comparisons Gene Count Gene Name

3 4 2 LINC02544, LINC01235

2 3 2 HECW2-AS1, MIR31HG

2 2 20

ENSG00000282057, UNC5C-AS1, ENSG00000261327,
ENSG00000259807, MEG9, LINC01561, SNHG18,
HOTAIRM1, LINC00922, LINC01619, FAM225A,
HOXA-AS3, LINC00968, ENSG00000271811,
ENSG00000272755, ENSG00000233682, ENSG00000248540,
ENSG00000259663, LINC02593, HOXA-AS2

1 + cell line 1 6 TENM3-AS1, LINC01678, ENSG00000250410,
ENSG00000261604, ENSG0000022749, LNCOG
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Table 6. Downregulated lncRNAs in one patient transcriptomic study and also in metastatic versus
primary tumor cell line groups from CCLE. Genes in bold coincide with significant DE lncRNAs
between the primary and metastatic cell line groups using DESeq2, and underlined genes coincide
with those that were significant in the receiver operating curve analyses.

Number of Studies Number of Comparisons Gene Count Gene Name

1 + cell line 1 8

ENSG00000260604, ENSG00000267284,
LINC01508, LINC01138, FAM160A1-DT,
ENSG00000255118, ENSG00000249049,
ENSG00000225649

Table 7. “Switch” lncRNAs in metastasis patient transcriptomic studies.

Status in Ascites Gene Count Gene Name

Up 13

TP53TG1, ENSG00000253982, MIR210HG, LINC00667,
ATP2B1-AS1, ENSG00000275210, LINC00847,
ENSG00000259153, ENSG00000243655, FCGR1BP, LINC00888,
ENSG00000291107, ENSG00000291230

Down 13
MEG3, PCBP1-AS1, ENSG00000223774, FLJ16779,
ENSG00000263065, SNHG12, IGFBP7-AS1, IDI2-AS1,
PSMA3-AS1, NUTM2B-AS1, SNHG3, MALAT1, SMG1P5

After obtaining these lists, we tested again whether we could correlate these results with
cell lines using CCLE expression data, since there are 32 and 25 epithelial ovarian cancer cell
lines that are derived from primary tumors and metastases, respectively. We first looked
for differentially expressed genes between the primary and metastatic cell line groups using
DESeq2 and obtained three upregulated and one downregulated (p-value < 0.05 and |log2
fold-change| > 0.585) lncRNAs that were present in the upregulated and downregulated
lists obtained from the analyses of the patient studies. The second approach was to carry
out receiver operating characteristic (ROC) curve analyses to see if the genes outlined from
the patient analyses also showed differences in the comparison between the metastatic and
primary tumor cell line groups. We obtained five upregulated and seven downregulated
lncRNAs (area under the curve > 0.5 and p-value < 0.05) contained in the lists obtained from
the analyses of the metastatic patient studies. The results for both DESeq2 and ROC for the
metastasis category can be found in the Supplementary Materials (Table S8). In terms of the
influence of lncRNAs in EOC metastasis, upregulation of LINC02544, LINC01235, HECW2-AS1,
and MIR31HG in relation to this process was derived from this meta-analysis (Figure 6), and
since it has not been previously found in EOC, this deserves special mention.

2.4. Looking for Outstanding lncRNAs Related in Common to Diagnosis, Prognosis, and
Metastasis in EOC

At this point of the analysis, we decided to overlap the final lists for the first three
categories to highlight the most interesting lncRNAs in terms of clinical value. We generated
two different intersections, as represented in Figure 7: one comparing the upregulated
lncRNAs, which represent the ones that would be putative oncogenes, and another one
comparing the downregulated lncRNAs, which represent the ones that could be considered
tumor suppressors.
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(c) HECW2-AS1, and (d) MIR31HG. Dots represent tissue samples, and lines join the samples from
each patient; * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001, ns p > 0.05.
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prognostic, and metastasis analyses—specifically, potential oncogenes (left) and potential tumor
suppressors (right). Diagrams were generated using interactivenn.net.
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We only obtained results in the intersection of the three lists for the potential tumor
suppressor comparison, whereas in the other comparison the intersections found were only
pairwise. The lncRNAs considered to be probable tumor suppressors in EOC were NR2F2-
AS1 and RPH3AL-AS1, and their data from the diagnostic, metastasis, and prognostic
analyses are represented in Figure 8 (see also Figure S1).
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Figure 8. “Diagnostic” and “Metastasis” differential expression results, and survival plots of the potential
tumor suppressors NR2F2-AS1 (a) and RPH3AL-AS1 (b). In the left panels, all of the comparisons are
p ≤ 0.01. In the middle panels, dots represent tissue samples and lines join the three samples from each
patient. In the case of RPH3AL-AS1, one study from the diagnostic category is not represented because
raw information from [20] is not available, only fold changes and p-values; **** p ≤ 0.0001.

NR2F2-AS1 and RPH3AL-AS1 were both downregulated in EOC in comparison with
healthy tissues in four independent studies (NR2F2-AS1 was also downregulated in EOC
cell lines) and in one study of metastatic tumors, correlating with a favorable prognosis
(specifically, with improved disease-free survival), as shown in Figure 8.

2.5. Analysis of lncRNAs with Putative Influence in Resistance to Chemotherapy

Next, we aimed to identify lncRNAs related to standard chemotherapy resistance
(jointly considering cisplatin or carboplatin and/or a taxane or cyclophosphamide) by
comparing expression levels from partial or non-responder and responder patients. In
this case, only three studies (all microarrays) had information regarding the response to
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treatment, and they are listed together with the results from the individual analyses in
the Supplementary Materials (Table S9). We could only find six upregulated and nine
downregulated lncRNAs, as shown in Figure 9. As expected, due to the low number of
deregulated genes in this category, multiple pairwise comparisons did not produce any
overlap between studies. The references from previous associations between these genes
and EOC can be found in the Supplementary Materials (Table S10).
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Although there have been few transcriptomic studies considering the influence of
lncRNAs in resistance to chemotherapy in EOC, our meta-analysis confirmed the influence
of two lncRNAs previously associated with resistance to chemotherapy in EOC—WDFY3-
AS2 [21], and MALAT1 [22]—as well as revealing the influence of other lncRNAs that have
been associated with EOC but not with chemoresistance until now, i.e., LINC00667 [12],
NRSN2-AS1 [23], and RAD51-AS1 [24]. Others had not been associated with EOC but had
been associated with other cancers, i.e., DLEU2 with endometrial [25] and prostate can-
cers [26], LINC00667 with breast cancer [27], and PRKCQ-AS1 with multiple myeloma [28].

2.6. Analysis of lncRNAs with a Putative Specific Value Associated with Histological EOC Subtypes

Epithelial ovarian cancer can be further classified into five subtypes according to his-
tological structure, mutations in certain tumor suppressors or proto-oncogenes, chemosen-
sitivity, spreading behavior, and patient prognosis [29]. These five subtypes and their
relative frequencies are high-grade serous (HGSOC, 70%), low-grade serous (LGSOC, >5%),
endometrioid (ENOC, 10%), clear cell (CCOC, 10%), and mucinous (MOC, 3%) [29]. As
there were six studies with the subtype information available (Supplementary Materials,
Table S11), in the last analysis, we looked for lncRNAs whose expression was specific for
each EOC subtype.

The results of each analysis for the subtype category are contained in the Supple-
mentary Materials (Table S11) and summarized in Figure 10. Regarding HGSOC and
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LGSOC, we did not consider LGSOC independently, because there was only information
about this subtype in two studies (GSE14001 and GSE26751), in which there were HGSOC
and healthy individuals and no other subtypes to compare with. We did not find any
ambiguous lncRNAs within any of the subtypes across different studies. Those lncRNAs
that were present in two or three studies of HGSOC or CCOC are listed in Tables 8 and 9,
respectively. The full list of deregulated lncRNAs according to each subtype can be found
in the Supplementary Materials (Table S12).
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Table 8. Differentially expressed lncRNAs in high-grade serous ovarian cancer patients identified in
two or three (*) studies.

HGSOC

Upregulated lncRNA Genes Downregulated lncRNA Genes

WT1-AS *, PART1, ENSG00000255135 FAM155A-IT1, DLX6-AS1

We performed two different multiple pairwise comparisons (up- and downregulated
lncRNAs, separately) between the lists drawn for each subtype to identify true subtype-
specific lncRNAs and exclude those present in more than one subtype. The results of these
overlaps are shown in Figure 11. We found an a priori unexpected specificity between
lncRNAs and histological subtypes of EOC. Surprisingly, only 1 out of the 418 upregulated
and 3 out of the 467 downregulated lncRNAs in any subtype were deregulated in the
same way in two different subtypes (included in the Supplementary Materials (Table S3)),
meaning that the remaining lncRNAs are potentially subtype-specific.
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Table 9. Differentially expressed lncRNAs in clear cell serous ovarian cancer patients identified in
two, three (*) or four (in bold) studies.

CCOC

Upregulated lncRNA Genes Downregulated lncRNA Genes

SNHG12, LINC00472, C8orf31 *, RBPMS-AS1,
CPNE8-AS1, FAM155A-IT1, LINC01137,
LINC02765, LINC01637, PPP1R3B-DT,
PCCA-DT, LINC00598, LINC02435,
ENSG00000271992, ENSG00000259052,
ENSG00000218416, ENSG00000253307,
ENSG00000223786, ENSG00000224583,
ENSG00000264596, ENSG00000274718,
ENSG00000187185, ENSG00000253666,
ENSG00000257681, ENSG00000257831,
ENSG00000236283, ENSG00000260317,
ENSG00000265625, ENSG00000286546,
ENSG00000249125

PART1, ZNF667-AS1, WT1-AS, HCP5,
LINC01139, TARID, PAXIP1-DT PRKCQ-AS1,
EMX2OS, ENSG00000227733,
ENSG00000235560, ENSG00000255135
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Figure 11. Venn diagrams representing the intersections between the final lists of the upregulated
(left) and downregulated (right) subtype-specific lncRNAs. HGSOC, high-grade serous ovarian carci-
noma; CCOC, clear cell ovarian carcinoma; MOC, mucinous ovarian carcinoma; ENOC, endometrioid
ovarian carcinoma. Diagrams were generated using interactivenn.net.

3. Discussion

The lack of early detection methods for EOC and its consequent late diagnosis result
in dramatic high mortality. We aimed to update the significance of putative lncRNA-based
biomarkers in EOC in light of available studies combining gene expression and clinical data.

As the first objective of our analysis, we sought to identify differentially expressed lncR-
NAs (either upregulated or downregulated) in EOC compared with healthy samples that could
be identified as significant candidates for future experimental analysis and translation to clini-
cal practice as diagnostic biomarkers. Data from 22 different cohorts of patients were included
in this analysis. Indeed, lncRNA expression in these cohorts had been previously analyzed
in some cases, but not all. The reanalysis of all of these available data revealed worthwhile
information because it allowed us to bring to light available, but not evident, information. We
found 247 upregulated and 243 downregulated lncRNAs (listed in Tables 1 and 2, respectively),
200 and 209 of which were not previously related to EOC, respectively. The most frequently up-
regulated lncRNAs were RNF157-AS1 and BBOX1-AS1, both in 12 different studies, whereas
MAGI2-AS3 was the most frequently downregulated lncRNA, in 15 different studies. Vali-
dation of these novel EOC-related lncRNAs is supported by three pieces of evidence: First,
the meta-analysis, applied to protein-coding genes across the same studies, rendered a group
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of genes that are well-known EOC markers as significantly deregulated, including CP [30],
CD24 [31], and INAVA [14]—upregulated in 18, 17, and 16 studies, respectively—as well as
AOX1 [14] and PDGFD [32], downregulated in 16 and 13 studies, respectively. Second, our
analysis also found other lncRNAs previously related to EOC (cited in the Supplementary
Materials (Table S4)). These include, among others, RNF157-AS1 [33] and UCA1 [34], which in-
teract with proteins to regulate transcription; BBOX1-AS1 [35], DUXAP8 [36], LINC01503 [37],
HAGLR (as HOXD-AS1) [38], LINC00665 [39], and HAGLROS [40], which act as competing en-
dogenous RNAs (ceRNAs) with miRNAs, affecting gene expression at the post-transcriptional
level; and MAGI2-AS2 [41], HAND2-AS1 [42], ZNF300P1 [43], and HYMAI [44], whose down-
regulation in EOC is explained by hypermethylation of the promoter. The third piece of
evidence for the validation of our meta-analysis comes from the fact that 99 deregulated lncR-
NAs in EOC patients were also deregulated in EOC cell lines (Supplementary Materials, Table
S4). The lncRNAs that showed significant upregulation, and which were more frequently
found in different cohorts, but that had not been previously related to EOC diagnosis, were
ENSG00000187951, MIR205HG, ZNF232-AS1, ENSG00000285756, LINC01297, TFAP2A-AS1,
LINC01977, and LINC01770, as shown in Figure 2a. Some of them have been previously
related to other cancer types. MIR205HG is the host gene for the microRNA miR-205 but, al-
though originating from the same primary transcript through alternative splicing, its lncRNA
and miRNA are functionally independent [45–47]. MIR205HG promotes lung squamous cell
carcinoma [48], osteosarcoma [49], melanoma [50], cervical cancer [51,52], head and neck
squamous carcinoma [46], and esophageal squamous carcinoma [53]; however, in esophageal
adenocarcinoma, it is downregulated and hinders HNRNPA0 mRNA translation by interacting
with LIN28A [54] and affecting the Hedgehog pathway [55]. MIR205HG also acts in physio-
logical processes, such as in embryogenesis by regulating the transcription of Pit1, Zbtb20,
prolactin, and growth hormone in the anterior pituitary in mouse models [47]; or in cell fate
by preventing luminal differentiation of human prostate basal cells through the interferon
pathway by forming a DNA:RNA triplex in the Alu regulatory elements in the proximal
promoter of target genes [45,56]. LINC01770 is upregulated in endometrial cancer in compari-
son with endometrial dysplasia tissues [57]. LINC01977 is upregulated and correlated with
poor prognosis in lung adenocarcinoma [58] and breast cancer [59]; in lung adenocarcinoma,
TGF-β derived from infiltrated tumor-associated macrophages (TAM2) activates SMAD3,
which binds LINC01977 to induce its nuclear transport, where it upregulates transcription
by simultaneously binding the promoter and super-enhancer, facilitating the interaction be-
tween SMAD3 and CBP/P300 to activate ZEB1 transcription [58]. In breast cancer, LINC01977
expression is also correlated with chemoresistance to doxorubicin by targeting the miR-212-
3p/GOLM1 axis [59]. LINC01297 is upregulated in estrogen receptor (ER)-positive breast
cancer, in comparison with ER-negative breast cancer [60] and lung adenocarcinoma [61];
there is also a positive correlation between LINC01297 and the expression of its nearby gene
LINC01296, which acts as an oncogene in bladder cancer [62]. Conversely, ENSG00000285756
and TFAP2A-AS1, which were EOC-upregulated lncRNAs in our analysis, are downregu-
lated in other cancer types. ENSG00000285756 is downregulated in cervical cancer [63], and
TFAP2A-AS1 is downregulated and correlated with a good prognosis in breast cancer, acting
in vitro as a tumor suppressor by sponging miR-933 to modulate SMAD2 mRNA stability [64];
TFAP2A-AS1 is also transcriptionally activated by KLF15 and inhibits the proliferation and
migration of gastric cancer cells by sponging miR-3657 to regulate NISCH mRNA stability [65].
The lncRNAs that were more frequently downregulated in different cohorts, but that had not
been previously related to EOC diagnosis, were PGM5-AS1, ENSG00000267058, EPM2A-DT,
NR2F1-AS1, KLF3-AS1, GLIDR, ERVK13-3, and CLN8-AS1, as shown in Figure 2b. PGM5-AS1
(ENSG00000224958) is downregulated in both EOC patients and EOC cell lines; it is also
downregulated and negatively correlated with oxaliplatin resistance in colorectal cancer [66]
but, on the other hand, it is upregulated and sponges miR-140-5p to prevent FBN1 mRNA
degradation in osteosarcoma [67]. KLF3-AS1 is downregulated in esophageal squamous cell
carcinoma stem cells, promoting cell migration and invasion by being unable to sponge
miR-185-5p, which induces KLF3 mRNA degradation, thereby preventing transcriptional
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repression of SOX2 and OCT4 by KLF3 [68], and acts as a competing endogenous tumor
suppressor RNA in gastric cancer [69] and osteosarcoma [70]. Conversely, several lncRNAs
that are downregulated in EOC are upregulated and stimulate cancer progression in other
tissues. NR2F1-AS1 is upregulated in non-small cell lung [71], thyroid [72], pancreatic [73],
and hepatocellular [74] cancers; in pancreatic cancer, it is induced by hypoxia, its expression is
positively correlated with the expression of its sense gene NR2F1, and they both trigger the
AKT and mTOR pathways, promoting proliferation, migration, and invasion [75]. NR2F1-AS1
is also upregulated in dormant breast cancer stem-like cells and increases tumor dissemination
by recruiting PTBP1 to the mRNA of its sense gene (NR2F1), promoting its translation so that
NR2F1 represses ∆Np63 transcription [76]. GLIDR is upregulated and promotes glioma [77],
lung [78], and prostate [79] cancers by acting as competing endogenous RNAs for miRNAs.
ERVK13-3 is upregulated in osteosarcoma [80].

Our second objective was to find differentially expressed lncRNAs showing a signif-
icant correlation with favorable or unfavorable prognosis. From our initial selection of
studies from 46 different cohorts, only 11 contained information about death and relapse
events over time. The analysis of these data rendered a limited amount of lncRNAs whose
differential expression could be related to prognosis. Among them, high expression of
GUSBP11 and MIR924HG (underlined in Tables 3 and 4) was positively correlated with
shorter OS and DFS, meaning a negative prognosis. In accordance with our data for EOC,
high expression levels of GUSBP11 are predicted to bind miR-22-3p to avoid CCN2A mRNA
degradation, correlating to poor overall survival in hepatocellular carcinoma patients [81].
Conversely, GUSBP11 expression correlates with better prognosis in head and neck squa-
mous cell carcinoma [82], bladder cancer [83], papillary renal cell carcinoma [84], and
pancreatic adenocarcinoma [85]. Regarding MIR924HG, there is no information about it in
the literature. However, miR-924, which is hosted in the MIR924HG locus, acts as a tumor
suppressor in non-small-cell lung carcinoma [86] and hepatocellular carcinoma [87]. In our
analysis, AQP5-AS1 was associated with a more favorable prognosis due to its correlation
with longer survival periods in different studies. There is no information regarding the
antisense lncRNA AQP5-AS1 in the literature, but the sense transcript encodes the protein
AQP5, which is overexpressed in OC tissues [88] and promotes proliferation and migration
in OC [89]; however, contradictory data can also be found, since high AQP5 expression is
correlated with a better prognosis in OC patients [90].

The third objective was the identification of differentially expressed lncRNAs associ-
ated with metastasis in EOC. Seven studies included samples that allowed comparisons
of (i) peritoneal solid metastasis vs. cancer cells from the ascitic fluid, (ii) peritoneal solid
metastasis vs. primary tumor, and (iii) cancer cells from the ascitic fluid vs. primary tumor.
Upregulation of LINC02544, LINC01235, HECW2-AS1, and MIR31HG in relation to this
process was found from this meta-analysis and, since it has not been previously found
in EOC, deserves special mention. Previous data about the influence of these lncRNAs
in invasion or metastasis and unfavorable prognosis can be found in other cancers and
reinforce our findings. LINC02544 is overexpressed in lung squamous cell carcinoma pa-
tients with lymph node metastasis, and it promotes proliferation, migration, and invasion
in vitro by sponging miR-138-5p—a potential target of E2F3 [91]; increased expression of
LINC02544 has also been related to in vitro invasion and unfavorable prognosis in breast
cancer [92]. LINC01235 is upregulated in gastric cancer patients versus healthy individ-
uals and metastatic versus non-metastatic gastric cancer patients, promoting migration,
invasion, and EMT, as well as negatively affecting prognosis [93,94]. MIR31HG has been
associated with unfavorable prognosis in gastric cancer [95], lung adenocarcinoma [96],
head and neck squamous cell carcinoma [97,98], colorectal cancer [99], and non-small cell
lung carcinoma [100].

The intersection of differentially expressed lncRNAs obtained in the three previous
analyses (diagnosis, prognosis, and metastasis) highlighted the importance of two lncRNAs
(NR2F2-AS1 and RPH3AL-AS1) in EOC. A priori, we did not expect a large overlap between
lncRNAs useful in diagnosis and prognosis, since lncRNAs discovered in each category
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may be regulating different phases and functions of oncogenesis. A greater overlap exists
between metastasis and prognosis, since the functional relationship between metastasis and
prognosis is very straightforward, and the presence of metastasis is usually associated with
shorter survival times. NR2F2-AS1 is upregulated in several malignancies, such as non-
small cell lung cancer, clear cell renal cell carcinoma, and prostate, cervical, nasopharynx,
and esophageal cancers, being considered an oncogene [101], contrary to what we observed
in EOC. Its gene product NR2F2 or COUP-TFII is highly expressed in the ovarian stroma
and is negligible in the ovarian epithelium, although NR2F2 is downregulated at the
mRNA level in OC tissues. NR2F2 expression increases in the epithelial component and is
associated with shorter periods before recurrence [102]. NR2F2 acts as an oncogene in other
cancers, such as renal, prostate, or breast cancers [103]. RPH3AL-AS1 is located within
the cytoband 17p13.3, and its downregulation in EOC could be due to the high deletion
frequency of this chromosomal region in OC patients [104,105].

Next, as a fourth objective, we aimed to identify lncRNAs related to standard chemother-
apy resistance. Among the studies considered in this meta-analysis, there were only three
studies containing information that allowed us to study this correlation. Although the
results from our meta-analysis confirm the influence of two lncRNAs previously associated
with resistance to chemotherapy in EOC (WDFY3-AS2 [21] and MALAT1 [22]) and some
new lncRNAs that were also detected, more studies are needed to validate these results.

Epithelial ovarian cancer can be further classified into five subtypes according to its
histological structure: high-grade serous, low-grade serous, endometrioid, clear cell, and
mucinous [29]. We found in our meta-analysis that the differential expression of lncRNAs
is highly specific for the different subtypes, which can be used for diagnostic purposes.

One of the most interesting characteristics of lncRNAs is that they can be detected in
tumor-derived small extracellular vesicles, as well as free molecules or protein-associated
complexes circulating in the blood. The fact that circulating levels of some lncRNAs in
serum or plasma samples can correlate to those found in tumor tissue increases their im-
portance as biomarkers in liquid biopsy for EOC, with ongoing clinical trials [5]. There are
examples of some lncRNAs identified in our meta-analysis that have been previously found
in liquid biopsies. HAND2-AS1—which is downregulated in EOC tumors, as confirmed in
13 studies (Table 2)—had been also detected in blood plasma from triple-negative breast
cancer patients [106]. The expression of SP2-AS1, which was downregulated in eight stud-
ies (Table 2), was previously detected in blood and associated with the risk of endometriosis
and ENOC [107]. UCA1, which was upregulated in 10 EOC studies (Table 2), also showed
increased levels in serum-derived exosomes from cisplatin-resistant OC patients [108] and
plasma from colorectal cancer patients [109]. PGM5-AS1, downregulated in tumor tissues
from 12 EOC studies (Table 2), was also downregulated in plasma from colorectal cancer
patients [109]. The lncRNA ESRG, upregulated in eight EOC studies (Table 2), was detected
in exosomes present in effusion supernatants from HGSOC [110]. GUSBP11, which was
correlated with a poor prognosis in EOC (Tables 3 and 4, and Figure 4), was upregulated in
plasma from gastric cancer patients in comparison with healthy individuals [111].

Finally, it is also important to remark that EOC is intrinsically associated with late
diagnosis and, therefore, most of the studied samples included in this meta-analysis
come from advanced stages of the disease, which implies that early-stage samples are
underrepresented. Studies with larger cohort sizes and increased representation of samples
from the initial stages of EOC, along with the use of sensitive, normalized, universally
standardized, and reproducible techniques to detect circulating lncRNAs, are still needed
to make possible the translation of these findings into the gynecological clinical setting.

4. Materials and Methods
4.1. Selection of Suitable Gene Expression Datasets for Meta-Analysis

Microarray- and bulk RNA-Seq-based gene expression profiling studies for ovarian
cancer were identified in PubMed and the Gene Expression Omnibus (GEO—https://www.
ncbi.nlm.nih.gov/geo/ accessed on 15 January 2023) [112]. The search terms included

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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“ovarian cancer” AND (“microarray” OR “RNA-Seq”) AND “patients”. Eligible studies
and datasets had to fulfill the following requirements: (i) include case and control human
studies, (ii) perform transcriptomic analyses, and (iii) have available raw and/or processed
microarray or RNA-Seq data. Studies were not considered if they were (i) letters, abstracts,
and human case reports, i.e., not full and original research studies; (ii) studies based only
on cell lines as a model of study; (iii) RT-qPCR-based studies only; (iv) studies neglecting
ncRNAs—specifically lncRNAs; or (v) only focused on stromal or germinal ovarian cancer.

4.2. Data Extraction and Processing

Microarray intensity files (CEL or text), probe information tables, and RNA-Seq read
count tables, along with the experimental metadata included in the series matrix files, were
downloaded from the GEO Accession Display for each selected dataset, whereas FASTQ
files were downloaded from the European Nucleotide Archive (ENA) browser. It is worth
noting that we only considered genes with Ensembl IDs, as their GENCODE annotation is
manually supervised and, therefore, updated and reliable. Because of this, some lncRNAs
with only NCBI Gene IDs were not considered, although they were perhaps still interesting
for EOC; thus, we may have underestimated our results for the sake of a more confident
annotation. The version of the annotation was Ensembl 108 (GRCh38.p13).

4.2.1. Microarray

Microarray data were processed using BRB-ArrayTools (version 4.6.2), developed by
Dr. Richard Simon (Biometric Research Program, National Cancer of Institute, BeThesda,
Rockville, MA, USA) and the BRB-ArrayTools Development Team. Affymetrix CEL files
were imported with the Data Import Wizard option, using the JustRMA normalization
method and standard Affymetrix probe set IDs. The text files were imported using the
General Format Importer option, adjusting the red and green thresholds to 10 and 100,
respectively, and the background intensity and spot flag information were considered
when available. Regardless of the importing option, the experiment descriptor files created
from the corresponding series matrix files were also imported, and in all cases the option
“Average the replicate spots within an array” was selected. Affymetrix Human Genome
U133 Plus “1.0” and 2.0 arrays were annotated with chip-specific Bioconductor packages,
whereas the rest were annotated using information included in the intensity file or the probe
information table, both resulting in EntrezId, UniGene ID, and/or GenBank Nucleotide Ac-
cession Number lists. These IDs were converted to Ensembl Gene IDs using bioDBnet [113],
unified in one list, and annotated by merging with the human genome information (hg38,
GRCh38.p13) using RStudio (v4.1.0)’s merge function from the data.table package.

4.2.2. RNA-Seq

RNA-Seq data were processed using RStudio (version 2022.12.0 Build 353), R (version
4.1.0), Bioconductor (version 3.14), and DESeq2 (version 1.34). For GSE190688, GSE98281,
and GSE115573 studies, read count files were not available; hence, after concatenating the
GSE115573 files belonging to each sample, we mapped the three of them and quantified the
reads using Kallisto [114] against human (hg38) cDNA and ncRNA transcriptomes obtained
from Ensembl FTP (January 2023). After merging both cDNA and ncRNA abundance files,
they were imported into RStudio using tximport and implemented into DESeq2 using
the function DESeqDataSetFromTximport. For the rest of the cases, read counts for each
Ensembl Gene ID and sample were imported to R in a single file, including the experimental
design. Gene filtering and normalization were carried out using DESeq2. In the case of
GSE189553, read counts were rounded to the closest integer so that they could be analyzed
by DESeq2.

When using datasets from Gene Expression Profiling Interactive Analysis [115], gene
expression profiling was compared between ovarian cancer patients from the Cancer
Genome Atlas (TCGA) and normal ovarian tissues from Genotype-Tissue Expression
(GTEx). Specifically, in the “FUNCTIONS”, “Expression Analysis”, and “Differential
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Genes” tab, the “OV” dataset, which corresponds to ovarian adenocarcinoma, was selected.
Moreover, from GEPIA2, the top differential genes affecting prognostic variables were
downloaded. Specifically, in the “FUNCTIONS”, “Survival Analysis”, and “Most Differen-
tial Survival Genes” tab, the “OV” dataset was again selected. Additionally, GTEx normal
ovary read counts were downloaded from https://gtexportal.org/home/datasets (accessed
on 15 January 2023), and TCGA ovarian adenocarcinoma read counts and raw survival
information were downloaded from UCSC Xena (https://xenabrowser.net/datapages/
(accessed on 15 January 2023)).

Cell line RNA-Seq read count data generated by RNA-Seq by Expectation-Maximization
(RSEM), along with metadata related to the histological subtype and metastatic or non-
metastatic origin of the cell lines, were downloaded from the Cancer Cell Line Encyclo-
pedia [116]. We filtered the information from 57 epithelial ovarian cancer cell lines and 1
immortalized, non-cancerous ovarian epithelium cell line (OELE). There are 74 cell lines
derived from the ovaries, but COLO704, HEY, OVMIU, DOV13, OC315, JHOS3, OVCA420,
and OVCA433 do not have transcriptomic information available, and OVCAR5, HSKTC,
SNU840, KGN, PA1, COV434, BIN67, and SCCOHT1 were not considered in our meta-
analysis because they are not models of epithelial ovarian cancer. RSEM counts were
rounded to the closest integer and then normalized using DESeq2.

4.3. Data Analysis

Four different types of comparisons were carried out to identify differentially ex-
pressed lncRNA genes in EOC: (I) “Diagnostic category”—cancer samples versus normal
samples; (II) “Metastasis category”—peritoneal metastasis versus primary tumor, peri-
toneal metastasis versus cancer cells from ascites or effusion, or cancer cells from ascites or
effusion versus primary tumor; (III) “Drug resistance category”—resistant versus sensitive
or partial responders versus complete responders; and (IV) “Subtype category”—samples
with one histological subtype versus the remaining ones. An additional comparison was
carried out between metastasis-derived cell lines and primary tumor-derived cell lines
using data from cell line transcriptomes.

4.3.1. Differential Expression in Microarray

To identify differentially expressed genes between ovarian cancer patients and women
free of the disease, class comparisons between groups of arrays were carried out using
the function “Class comparison”. Two-sample t-tests were used, setting the significance
threshold of univariate tests as 0.01, assuming (when possible) a random variance model,
and blocking by patient or sample (when matched samples were available).

4.3.2. Differential Expression in RNA-Seq

Differential expression was run with DESeq2 and, finally, annotated to the human
genome hg38, as previously described for microarray data. The false discovery rate (FDR)
cutoff was set as 0.05 and |Log2FC| as 0.585, blocking by patient or sample when matched
samples were available. In the case of GEPIA2, the differential gene expression was
calculated using the LIMMA method, with the |Log2FC| cutoff set as 0.585 and the
q-value cutoff set as 0.01, selecting both overexpressed and underexpressed genes.

4.3.3. Differential Survival in Microarray

Overall survival (OS) and disease-free survival (DFS) gene lists were generated using
BRB-ArrayTools “Survival analysis” and “Genes affecting survival”. This option carries
out Cox proportional hazards model (Wald statistic) univariate tests, and the p-value was
set to 0.01.

https://gtexportal.org/home/datasets
https://xenabrowser.net/datapages/
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4.3.4. Differential Survival in RNA-Seq (GEPIA2)

OS and DFS gene lists were generated based on gene expression by applying the
Log-rank test (Mantel-Cox test). The OV TCGA cohort threshold between the “high” and
“low” groups was set to the median, the confidence interval to 95%, and the p-value to 0.01.

4.4. Pairwise lncRNA Analysis

Significantly dysregulated lncRNAs with Ensembl IDs from microarray or RNA-
Seq studies were selected and separated into “upregulated” or “downregulated” lists,
respectively, for each individual study according to their fold change in the previously
described comparisons.

All possible pairwise comparisons between studies of each category were carried out
within the “upregulated” and “downregulated” lists, separately, using the Excel match
function between Ensembl Gene IDs. As an exclusion criterion for all of the categories, genes
that had contradictory trends in different studies were considered to be ambiguous and
were discarded. For the “Diagnostic category”, only lncRNA genes that were differentially
expressed in at least three independent studies were selected. For the “Survival category”,
lncRNAs were separated into those positively correlated with favorable patient prognosis
or unfavorable prognosis. Finally, selected lncRNA genes for each category were further
compared pairwise with the remaining categories, again using the Excel match function
(version 2305).

4.5. ROC Analysis

Receiver operating characteristic (ROC) curve analysis was performed using easyROC
(version 1.3.1.) (http://www.biosoft.hacettepe.edu.tr/easyROC/ (accessed on 15 January
2023)) [117].

4.6. Figures and Venn Diagrams

Figures were drown with graphpad prism version 8.0.2.Venn diagrams were generated
using InteractiVenn (http://www.interactivenn.net/# (accessed on 15 January 2023) [118]).

4.7. Nomenclature

Novel transcripts that do not have yet a gene symbol are identified by their Ensembl
Gene ID.

5. Conclusions

The study of lncRNAs in cancer is an emerging field, and according to GENCODE
Release 43 [119] the number of known lncRNA genes in the human genome so far is
19,928, which is slightly higher than the 19,393 protein-coding genes. Despite this large
number, only a small proportion of lncRNAs have been associated with EOC, and with
this study we have increased this number, with 1631 new lncRNA genes. This effort
has produced valuable information to take into account in future projects, since specific
lncRNAs are associated with EOC for diagnosis (ENSG00000187951, MIR205HG, ZNF232-
AS1, ENSG00000285756, LINC01297, TFAP2A-AS1, LINC01977, LINC01770, which are
upregulated; and PGM5-AS1, ENSG00000267058, EPM2A-DT, NR2F1-AS1, KLF3-AS1,
GLIDR, ERVK13-3, CLN8-AS1, which are downregulated), prognosis (GUSBP11, MIR924HG,
unfavorable; and AQP5-AS1, favorable), and metastasis (LINC02544, LINC01235, HECW2-
AS1, and MIR31HG). Furthermore, the differential expression of lncRNAs is highly specific
to the different subtypes, which can be used for diagnosis purposes.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms241310798/s1. Complete results of the meta-analysis and references of
previous studies [120–311].
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