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Abstract: Autophagy plays a complex impact role in tumor initiation and development. It serves as a
double-edged sword by supporting cell survival in certain situations while also triggering autophagic
cell death in specific cellular contexts. Understanding the intricate functions and mechanisms of
autophagy in tumors is crucial for guiding clinical approaches to cancer treatment. Recent studies
highlight its significance in various aspects of cancer biology. Autophagy enables cancer cells to
adapt to and survive unfavorable conditions by recycling cellular components. However, excessive
or prolonged autophagy can lead to the self-destruction of cancer cells via a process known as
autophagic cell death. Unraveling the molecular mechanisms underlying autophagy regulation in
cancer is crucial for the development of targeted therapeutic interventions. In this review, we seek to
present a comprehensive summary of current knowledge regarding autophagy, its impact on cancer
cell survival and death, and the molecular mechanisms involved in the modulation of autophagy for
cancer therapy.
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1. Introduction

Macroautophagy (referred to as autophagy throughout this review) is a highly con-
served biological process that involves the engulfment of unfolded proteins or damaged
organelles by double-membrane cytosolic vesicles known as autophagosomes that then get
delivered to the lysosome for breakdown. Subsequently, the resulting macromolecules are
released back into the cytosol for reuse [1,2].

As a self-eating process that is conserved from yeasts to humans, autophagy plays an
important role in cancer. Its impact on tumorigenesis can vary depending on the context,
exhibiting tumor-suppressive, tumor-promoting, or neutral effects [3,4]. In pre-malignant
lesions, several studies have suggested that enhancing autophagy might prevent cancer
development. However, in advanced cancers, both autophagy enhancement and inhibi-
tion have been implicated as therapeutic strategies [5,6]. Under physiological conditions,
autophagy proceeds at basal levels in most tissues to ensure the routine turnover of su-
perfluous or damaged components, maintain cellular homeostasis, and enable adaptation
under stress. Moreover, autophagy can protect cells from becoming cancerous by removing
reactive oxygen species (ROS), long-lived proteins, and damaged mitochondria.

Three major types of autophagy have been identified in mammalian cells according
to the pathway to deliver the cargo: macroautophagy, microautophagy, and chaperone-
mediated autophagy (CMA) [6,7]. Among these, macroautophagy is considered the primary
form and has received more extensive research attention compared to microautophagy
and CMA [8,9]. The term “autophagy” (intracellular degradation process) was coined by
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Christian de Duve in 1963, and since then, increasing research efforts have focused on
understanding the relationship between autophagy and various diseases. Dysregulated
autophagy has been implicated in a wide range of pathologies, including metabolic diseases,
neurodegenerative diseases, infectious diseases, and cancers [10,11]. Microautophagy,
a non-selective lysosomal degradative process, contributes to the development of human
diseases such as neurodegenerative diseases, albinism, autosomal recessive diseases, and
glycogen storage disease [7,12–14]. On the other hand, CMA stands out for its selectivity
in targeting specific substrates for degradation. It plays an important role in regulating
neuronal survival, the growth of tubular kidney cells, and the impact of NF-κB-mediated
transcription in response to nutritional stress [6,15–18].

In recent years, the role of autophagy in cancer attracted increasing attention, and un-
derstanding its roles in cancer development may provide a new perspective for developing
novel therapeutics for cancer treatment.

2. Autophagy and Its Formation Process

Autophagy is tightly controlled via complex signaling pathways and core autophagy
proteins. Autophagy mainly includes the following four stages in mammals: initia-
tion, elongation, autophagosome formation, fusion with the lysosome, and degrada-
tion of the autophagic body [6,19] (Figure 1). Great efforts were made to identify the
autophagy-related (ATG) genes in yeast in the 1990s [20,21], and approximately 40 ATG
genes, of which its products are required for autophagy, have been identified in the yeast
Saccharomyces cerevisiae.
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Figure 1. The process of autophagy. Autophagy triggered by cellular stress and regulated by
mammalian target of rapamycin (mTOR-negative regulation). It involves the formation of protein
complexes like unc-51-like autophagy activating kinase (ULK1) and phosphoinositide 3-kinase (PI3K).
The autophagosome membrane undergoes expansion and elongation via ATG12 conjugation to ATG5.
Autophagosomes eventually fuse with lysosomes with SNARE proteins for content degradation and
macromolecule recycling.

2.1. Initiation of Autophagy

The process of initiation involves the induction of the phagophore formation. While
most autophagic activity occurs at the basal level, it is upregulated in response to vari-
ous environmental stresses [22]. Autophagy can be triggered via intra- or extracellular
stresses, including hypoxia, oxidative stress, pathogen infection, and notably nutrient
starvation [23–25]. The dynamic process of autophagy begins with the sequestration of
cytoplasmic constituents by an expanding membrane called a phagophore or isolation mem-
brane. Two major protein complexes play a role in this initiation step. The first is the class
III PI3K complex, which includes VPS34 (also known as PIK3C3), ATG14, ATG6/Beclin1,
and UV radiation resistance-associated gene protein (UVRAG, also known as p63) [26–28].
The second complex is the ULK1 (ATG1) complex, consisting of ULK1, ULK2 (mammalian
homologs of ATG1), and FIP200 (also known as RB1CC1), an essential positive regulator
of autophagosome formation. Upon stimulation, the ULK1 complex is activated, subse-
quently activating the class III PI3K complex [6,29,30]. The kinase of mTOR, a member of
the PI3K-related kinase family, plays a negative regulatory role in the autophagy process in
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mammals [4,31,32]. Under nutrient-rich conditions, mTORC1 phosphorylates the ULK1
complex and ATG13, leading to the dissociation of the ULK1/ATG13/FIP200 complex
and the inhibition of autophagy [33,34]. The nucleation and recruitment of the initial
phagophore membrane require the class III PI3K complex, which, in turn, recruits two
interconnected ubiquitin-like (Ubl) conjugation systems to the phagophore [35].

2.2. Elongation and Autophagosome Formation

The phagophore engulfs portions or organelles of the cytoplasm to form an autophago-
some, which is a double-membrane sequestering vesicle [33,36–39]. Autophagosome
formation involves multiple complex processes with several ATG proteins being recruited
to govern this process [38]. Two Ubl conjugation systems, ATG8 and ATG12, mediate this
process. ATG8 is conjugated to the lipid phosphatidylethanolamine (PE), while Atg12
is conjugated to ATG5. The conjugation of ATG12 to ATG5 involves the E1-like enzyme
ATG7, which catalyzes the conjugation, and ATG10, an E2 conjugating enzyme. The re-
sulting ATG12–ATG5 complex, an important regulatory molecule in the early stages of
autophagosome formation, then interacts with ATG16 to form a multimeric complex. This
ATG12–ATG5–ATG16 complex is associated with the growing phagophore and forms a
larger multimeric complex via interaction with ATG16L [21,40,41]. The other Ubl conju-
gation system involved in autophagosome formation also relies on the E1-like enzyme
ATG7. In this system, ATG7 activates ATG8, which is then transferred to the E2-like enzyme
ATG3. ATG8 is subsequently linked to the target lipid PE via an amide bond, facilitated
by the E3-like ATG12–ATG5 conjugate. Before interacting with PE, ATG8 must undergo
processing via ATG4, a cysteine protease, which exposes a glycine residue. ATG4 also
cleaves ATG8-PE to release free ATG8 after autophagosome formation [42,43]. Microtubule-
associated protein light chain 3B (LC3B), the mammalian homolog of yeast ATG8, was
identified as a protein that co-purified with microtubule-associated protein 1A and 1B from
rat brains [44]. It serves as a marker protein for autophagy. LC3B is cleaved via ATG4
to form LC3B-I, which is then transferred to ATG3, then conjugated with PE to generate
processed LC3B-II, which is an important maker of autophagy [45–47].

2.3. Fusion with the Lysosome and Degradation of the Autophagic Body

Once the autophagosome formation is completed, LC3B-II, which is attached to the
outer membrane, is cleaved from PE via ATG4 and returns to the cytosol. The double-
membrane autophagosome engulfs and sequesters intracellular components and then
fuses with lysosomes (or vacuoles in yeast) to form an autophagolysosome (AL) [48,49].
During the peak of autophagy, numerous lysosomes are incorporated into autolysosomes.
The fusion of autophagosomes with lysosomes requires SNARE proteins such as STX17,
SNAP29, and VAMP8. STX17 translocates to the outer membrane of the completed au-
tophagosome and promotes fusion by binding to SNAP29 and VAMP8 [6,49,50]. UVRAG,
associated with the PtdIns3K complex, has also been reported to activate the GTPase RAB7
and facilitate fusion [51–53]. As the autophagosome fuses with the lysosome, it transforms
into an autolysosome. Subsequently, the inner membrane disintegrates and is degraded
together with sequestrated materials in acidic autolysosomes via hydrolase.

The lysosome, often described as a “cellular garbage can”, plays a key role in the
autophagic process. The unique pH of the lysosome leads to degradation, a process relying
on a series of lysosomal/vacuolar acid hydrolases, containing proteinases A and B (encoded
by PEP4 and PRB1, respectively), the lipase ATG15, and cathepsin B, D (a homolog of
proteinase A), and L in mammalian cells [54]. Research has shown that TFEB, a transcription
factor, controls lysosomal biogenesis and regulates autophagy by driving the expression of
related genes [55].

Therefore, to comprehensively understand the role of autophagy in cancer cells, it
is necessary to explore the specific steps and regulatory mechanisms of the autophagy
pathway. Examining the involvement of autophagy-related genes, signaling pathways, and
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selective autophagy processes can provide valuable insights into how autophagy impacts
cancer development, progression, and therapeutic responses.

3. Autophagy in Cancer Development

Autophagy plays diverse roles and regulates multiple processes involved in cancer
development, including cell apoptosis, cell ferroptosis, cell metastasis, and cell cycle.
However, the role of autophagy in cancer development and progression is two-fold. On
one hand, autophagy acts as a suppressor pathway, preventing tumor initiation. On the
other hand, autophagy serves as a survival pathway by mitigating cellular metabolic stress,
thereby contributing to tumor growth and progression [56]. The role and the molecular
mechanisms of autophagy regulators at different stages of autophagy are summarized in
Tables 1 and 2, while Figure 2 illustrates these mechanisms.
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Tables 1 and 2.

3.1. The Role of Autophagy in Apoptosis

Autophagy is closely linked to cell death and apoptosis [57]. Its complex relationship
with apoptosis has sparked controversy, as autophagy has been found to have the ability
to inhibit, delay, or promote apoptosis [58]. In particular, under stressful conditions, au-
tophagy acts as a crucial cytoprotective mechanism that enhances cell survival. Autophagy
has been demonstrated to protect cells from various forms of cellular damage, including
hypoxia, metabolic stress, detachment-induced anoikis, and apoptosis or necrosis induced
by anticancer therapies or other cell death triggers [59]. Moreover, autophagy’s role in
protecting cancer cells from apoptosis is well established, leading to extensive preclinical
and clinical studies exploring the use of autophagy inhibitors in combination with other
anticancer agents to enhance tumor cell death [57].

3.1.1. Autophagy Inducers Regulate Cancer Cell Apoptosis

Luteolin, derived from Trachelospermum jasminoides, apocynaceae family, was found to
induce autophagy and inhibit cell viability while promoting apoptosis in human liver cancer
cells (SMMC-7721) [56]. Another compound, 7-O-geranylquercetin (GQ), a derivative of
quercetin, induced autophagy and apoptosis via ROS generation in human non-small cell
lung cancer cell lines (A549 and NCI-H1975). GQ treatment increased autophagosome
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formation and expression of autophagy-related proteins and suppressed p62 levels. The
inhibition of autophagy reversed GQ-induced apoptosis [60]. Additionally, classical swine
fever virus (CSFV) induced autophagy and delayed apoptosis by suppressing the ROS-
dependent RLR signaling pathway and facilitating persistent infection in host cells [61].

Table 1. Summary of autophagy inducers in cancer cells.

Drugs Cancer
Development Mechanisms Cancer Type Refs

Natural Products

Luteolin Cell apoptosis Increased Beclin 1 Liver cancer [56]

Resveratrol (RSV) Cell apoptosis LKB1-AMPK and PI3K/AKT-regulated
mTOR signaling pathways HL-60cell [62]

Apigenin Cell apoptosis Inhibition of PI3K/Akt/mTOR pathway HCC [63]

Erastin Cell ferroptosis Increased of TfR1expression and lipid
ROS accumulation Hela, lung [64]

Erianin Cell ferroptosis Accumulation of Fe2+ and ROS,
lipid peroxidation

Colorectal cancer
(CRC) [65]

Ginsenoside Rh4 Cell ferroptosis Activating ROS/P53 pathway CRC [66]

Anomanolide C Cell ferroptosis Reduced GPX4 expression, accumulation
of Fe2+ TNBC [67]

6-Gingerol Cell ferroptosis Increased ROS level and LC3B-II and
Beclin-1 expression Prostate cancer [68]

Curcumin Cell ferroptosis Increased level of Beclin1 and LC3,
decreased P62 NSCLC [69]

Chrysin Cell ferroptosis Increased ROS, inhibition of carbonyl
reductase1 (CBR1) PCa [70]

Urolithin A Cell metastasis Decreased the MMP-9 expression CRC [71]

Gallotannin (GT) Cell metastasis Inhibition of PI3K/Akt/mTOR pathway CRC [72]

Halofuginone (HF) Cell metastasis Suppression of STMN1 and p53 expression Breast cancer [73]

Salidroside Cell apoptosis Activation of the AMPK pathway and
downregulation of mTOR pathway HUVECs [74]

Itraconazole Cell proliferation Repression of AKT1-MTOR signaling Glioblastoma [75]

Isorhapontigenin
(ISO) Cell growth MAPK8-JUN-dependent transcriptional

induction of SESN2 Bladder cancer [76]

Others

SGK1 Cell metastasis Inhibition EMT process PCa [77]

Valproic acid (VPA) Tumor growth Activation of AMPK and inhibition of
downstream MTOR signaling Lymphoma [78]

pH-sensitive polymeric nanoparticles loaded with gold(I) compounds were shown
to induce autophagy and apoptosis in MCF-7 breast cancer cells by inhibiting thioredoxin
reductase, increasing ROS levels, and impairing lysosomes [79]. Plant lectins, of non-
immune origin, could block EGFR-mediated survival pathways, leading to autophagic cell
death via the modulation of autophagic hub proteins and miRNAs [80]. Resveratrol (RSV),
a polyphenol phytoalexin found in grapes and blueberries, induced autophagy-mediated
apoptotic cell death in HL-60 cells via the LKB1-AMPK and PI3K/AKT-mTOR signaling
pathways [62]. Nimbolide, a terpenoid lactone from neem, induced autophagy-mediated
apoptotic cell death in breast cancer cells by modulating epigenetic modifications and
regulating Beclin 1, LC3B, p62, and mTOR protein expression [81]. Apigenin, a natural
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flavonoid found in various fruits and vegetables, triggered apoptosis and autophagy in
hepatocellular carcinoma cells by inhibiting the PI3K/Akt/mTOR pathway [63].

3.1.2. Autophagy Inhibitors Regulate Cancer Cell Apoptosis

Oridonin, a diterpenoid from the Chinese herb Rabdosia rubescens, Lamiaceae family,
induced cell apoptosis in breast cancer cells by suppressing autophagy [82]. In an inflam-
matory microenvironment, autophagy promoted the apoptosis of mesenchymal stem cells
(MSCs) by inhibiting the expression of the pro-survival gene Bcl-2 via the suppression
of the ROS/mitogen-activated protein kinase 1/3 pathway [83]. Salinomycin, a mono-
carboxylic ionophore, could induce breast cancer cell apoptosis and ROS production by
blocking autophagy [84]. S-adenosyl-L-methionine (AdoMet), a naturally occurring sulfo-
nium compound, inhibited the proliferation of breast cancer cells MCF-7 by inducing both
autophagy and apoptosis. Combining AdoMet with the autophagy inhibitor chloroquine
(CLC) synergistically inhibited autophagy, leading to growth inhibition and apoptosis in
breast cancer cells [85].

Table 2. Summary of autophagy inhibitors in cancer cells.

Drugs Cancer
Development Mechanisms Cancer Type Refs

Natural Products

Oridonin Cell apoptosis Inhibition of Beclin 1 Breast cancer [82]

Salinomycin Cell apoptosis ROS production led to
mitochondrial dysfunction Breast cancer [84]

AdoMet Cell apoptosis Enhanced beclin-1 and LC3B-II Breast cancer [85]

Metformin Cell ferroptosis Inhibiting lncRNA H19, increasing
lipid ROS Breast cancer [86]

Melatonin + erastin Cell ferroptosis Increased lipid ROS and P62 Squamous cell
carcinoma [87]

Deoxypodophyllotoxin (DPT) Tumor growth Triggered mitochondrial ROS PCa [88]

miRNAs

MIR152 Cell apoptosis Downregulation of ATG14 Ovarian cancer [89]

MiR-221 Cell apoptosis Downregulation of TP53INP1 CRC [90]

MiRNA-30a Cell metastasis Increased beclin-1 and Atg5 HCC [91]

Others

PCBP1 Cell apoptosis Downregulation of LC3B CRC [92]

IBP Cell metastasis Repression of MTORC2 signaling Breast cancer [93]

KPNA2 Cell metastasis Inhibition of p53 OSCC [94]

MCT4 Cell ferroptosis Increasing lipid ROS, inhibiting
AMPK pathways Bladder cancer [95]

H2S Cell proliferation
and differentiation

Elevated LC-3II, ATG5,
and Beclin-1 HaCaT cells [96]

MIR152, a miRNA involved in autophagy regulation, enhances cisplatin-induced
apoptosis and inhibits cell proliferation in cisplatin-resistant ovarian cancer by reducing
cisplatin-induced autophagy [89]. Poly C binding protein (PCBP1), a tumor suppressor,
promotes tumor cell apoptosis during starvation by downregulating LC3B and repress-
ing autophagy. PCBP1 overexpression triggers caspase 3- and 8-mediated apoptosis and
downregulates anti-apoptotic Bcl-2 expression. The effect of PCBP1 is synergized via
an autophagic inhibitor, indicating its ability to inhibit autophagy and induce apopto-
sis [92]. FOXO3a, an autophagy-regulating transcription factor, undergoes basal autophagy-
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mediated turnover, creating a feedback loop. The inhibition of autophagy via FOXO3a
stimulates the transcription of the pro-apoptotic BBC3/PUMA gene, sensitizing cells to
apoptosis. Autophagy inhibitors can transform the action of MDM2-targeted drugs from
growth inhibition to apoptosis, reducing tumor burden [57]. MiR-221, known to modulate
proliferation, apoptosis, cell cycle distribution, and cell migration in various cancers, has
also been found to regulate autophagy. In colorectal cancer (CRC), miR-221 promotes
cell proliferation by inhibiting autophagy and targeting tumor protein 53-induced nuclear
protein 1 (TP53INP1) [90].

3.2. Interaction between Autophagy and Ferroptosis

Ferroptosis, on the other hand, is a recently discovered form of regulated cell death
characterized via lethal lipid ROS accumulation, leading to cell membrane destruction [97].
It is now appreciated as likely one of the most widespread and ancient forms of cell
death; unlike apoptosis or necrosis, ferroptosis relies on iron and lipid metabolism. It
is triggered via intracellular antioxidant depletion or changes in key lipid metabolism
enzymes [98]. Ferroptosis has emerged as a potential therapeutic approach in cancer for
selectively targeting cancer cells, especially those with altered iron metabolism or impaired
antioxidant defenses [99]. Recent studies have unveiled the intricate crosstalk between
autophagy and ferroptosis, the pharmacological modulation of ferroptosis, via both its
induction and inhibition, holds great potential for the treatment of various diseases, like
cancers [100].

3.2.1. Autophagy Inducers Regulate Cancer Cell Ferroptosis

Efforts are underway to develop cancer therapies that induce ferroptosis. While
various nanoparticle-based strategies have been explored to deliver iron, peroxides, and
other toxic substances for indiscriminate tumor cell killing, targeted approaches are being
developed to exploit the multiple enzymes involved in ferroptosis regulation. Among these
enzymes, GPX4 stands out as a potential target due to its expression in numerous cancer cell
lines and its crucial role in their survival [100,101]. Anomanolide C, a withanolide isolated
from Tubocapsicum anomalum (Solanaceae family), suppresses the tumor progression and
metastasis in TNBC cells by inducing autophagy-dependent ferroptosis, which leads to
Fe2+ accumulation via ubiquitinating GPX4 [67].

Erastin induces autophagy, which leads to iron-dependent ferroptosis by degrading
ferritin and upregulating transferrin receptor 1 (TfR1) expression [64,102]. Erianin, de-
rived from Dendrobium nobile Lindl (Orchidaceae family), inhibits growth and metastasis
in KRASG13D colorectal cancer via autophagy-induced ferroptosisa [65]. Furthermore,
another compound ginsenoside Rh4 could also inhibit colorectal cancer cell proliferation by
activating autophagy-induced ferroptosis [66]. 6-Gingerol is a bioactive compound isolated
from Zingiber officinale. Studies found that 6-Gingerol may induce protective autophagy,
autophagic cell death, and ferroptosis-mediated cell death in prostate cancer cells [68].
Curcumin is a yellow polyphenol compound derived from the turmeric plant. It could
induce ferroptosis via activating autophagy in non-small cell lung cancer (NSCLC) A549
and H1299 cells [69]. Chrysin is a natural bioflavonoid widely found in propolis, honey,
and blue passion flowers (Passiflora caerulea). Research showed that chrysin enhanced PC
sensitivity to gemcitabine by inducing ROS-dependent autophagy-mediated ferroptotic
death [70].

3.2.2. Autophagy Inhibitors Regulate Cancer Cell Ferroptosis

Metformin, commonly used for T2D therapy, can induce ferroptosis in breast cancer
by inhibiting autophagy via lncRNA-H19 [86]. MCT4, a lactate/proton monocarboxylate
transporter 4, is upregulated in patients with bladder cancer and associated with poor
prognosis. The knockdown of MCT4 promotes oxidative stress, induces ferroptosis, and
inhibits autophagy in bladder cancer [95]. Combined treatment of melatonin and erastin
markedly reduces the tumor size in vivo, enhances apoptosis and ferroptosis, and decreases
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autophagy levels without any systemic side effects [87]. Combining ferroptosis induction-
based treatment with other therapeutic approaches, such as immune checkpoint blockade
and radiotherapy, could be considered as potential options. Research shows that anti-
PDL1 therapy has been shown to enhance the effectiveness of ferroptosis-inducing therapy.
Researchers discovered that anti-PDL1 antibodies can stimulate CD8+ T cells to release
IFNg, which, in turn, downregulates both subunits of system xc− in tumor cells. This
downregulation sensitizes cancer cells to ferroptosis, resulting in a synergistic anticancer
effect. Combining immunotherapy with ferroptosis induction shows promise as a treatment
approach where the two modalities mutually enhance each other [100,103].

The interplay between autophagy and ferroptosis in cancer is a fascinating and evolv-
ing field of research; whether a given cancer is more sensitive or resistant to ferroptosis
induction is dictated by its specific genetic background [100]. Further investigations are
needed to elucidate the molecular mechanisms governing their interdependencies and
develop effective therapeutic strategies targeting both autophagy and ferroptosis in cancer
treatment. Understanding and harnessing this interplay may exhibit great potential for
improving cancer therapies and patient outcomes in the future.

3.3. Autophagy Regulates Cancer Cell Metastasis

Autophagy is a catabolic process involved in protein degradation, cell growth reg-
ulation, and maintaining cellular homeostasis. It has a significant impact on cancer de-
velopment, metastasis, and cellular phenotypes, with both pro-tumorigenic and tumor-
suppressive roles [104,105].

3.3.1. Autophagy Inducers Regulate Cancer Cell Metastasis

Long non-coding RNA MALAT1 is upregulated in pancreatic cancer and promotes
cancer proliferation and metastasis by stimulating autophagy. It interacts with the RNA-
binding protein HuR to enhance the post-transcriptional regulation of TIA-1, affecting the
autophagic process [105]. Urolithin A, a polyphenol metabolite, induces autophagy in CRC
cells. It inhibits cell migration and reduces matrix metalloproteinas-9 (MMP-9) activity.
The inhibition of autophagy or caspases suppresses urolithin A-induced cell death and
anti-metastatic activity [71]. Serum- and glucocorticoid-induced protein kinase 1 (SGK1)
is associated with prostate cancer (PCa) progression and metastasis. SGK1 inhibition
attenuates epithelial–mesenchymal transition (EMT) and metastasis, while its overexpres-
sion promotes the invasion and migration of PCa cells. The inhibition of SGK1 induces
anti-metastatic effects with the autophagy-mediated repression of EMT via the downregu-
lation of Snail. Combined mTOR and SGK1 inhibition enhances autophagy and exhibits
synergistic anti-metastatic effects in PCa cells [77].

Gallotannin (GT), a polyphenolic compound, has been shown to suppress the lung
metastasis of metastatic CRC cells by inducing apoptosis and autophagy [72]. Cholesterol
in lipid rafts plays a crucial role in cancer cell survival during metastasis. Methyl-β-
cyclodextrin (MβCD), a polysaccharide that depletes membrane cholesterol, selectively
induces cell death in cancer cells. Cholesterol depletion leads to the downregulation of
caspase-8 mRNA, indirectly promoting the induction of autophagy. Membrane cholesterol
depletion also reduces the migratory efficiency of breast cancer MDA-MB 231 cells [106].
Halofuginone (HF), an analog of quinazolinone alkaloid, inhibits the growth, migration,
and invasion of MCF-7 cells. It activates autophagy by suppressing the expressions of
STMN1 and p53 [73].

3.3.2. Autophagy Inhibitors Regulate Cancer Cell Metastasis

Autophagy and autophagy-related genes (Atg) have significant roles in tumorigenesis
and tumor metastasis [107]. Cadherin-6, a type 2 cadherin, is involved in EMT during em-
bryonic development and is aberrantly re-activated in cancer. In thyroid cancer, cadherin-6
promotes EMT and metastasis by inhibiting autophagy [108]. Interferon regulatory factor-4
binding protein (IBP) is a novel activator of Rho GTPases. Increased expressions of IBP
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are associated with malignant behaviors in human breast cancer cells, and its expression
negatively correlates with cell autophagy. Studies have shown that IBP-mediated breast
cancer cell growth and metastasis in vitro and in vivo are strongly linked to the suppression
of mTORC2-dependent autophagy. In particular, the inhibition of autophagy occurs via
the activation of the mTORC2/Akt/FOXO3a signaling pathway, leading to the increased
phosphorylation of Akt on ser473 and FOXO3a on Thr32 [93]. Autophagy is an important
survival mechanism under conditions of cell stress, and its inhibition can suppress pul-
monary metastasis of hepatocellular carcinoma (HCC) in vivo and in vitro by impairing
the anoikis resistance and lung colonization of HCC cells [59].

Hypoxia-regulated autophagy has been found to suppress metastasis in breast cancer
by preventing tumor fibrosis. The inhibition of autophagy via the hypoxia-induced expres-
sion of the kinase-dead ULK1 mutant K46N increased lung metastases in MDA-MB-231
xenograft mouse models [109]. MiRNA-30a has been shown to inhibit the metastasis of
hepatocellular carcinoma in a well-established nude mouse model of lung metastasis via
suppressing autophagy-related protein Beclin 1 and ATG5 directly [91]. SIRT1, a NAD+-
dependent protein deacetylase that belongs to the mammalian sirtuin family, could facilitate
melanoma metastasis by accelerating E-cadherin degradation via inhibiting autophagy via
the deacetylation of Beclin 1 [104]. Karyopherin α2 (KPNA2), a member of the importin
α family involved in nucleocytoplasmic transport, plays a crucial role in autophagy reg-
ulation. The knockdown of KPNA2 inhibits autophagy, suppresses cell migration, and
reduces cisplatin resistance in oral aquamous cell carcinoma (OSCC) cell lines, such as
CAL-27, SCC-15, and Tca8113. The function of KPNA2 in autophagy is p53-dependent,
and by regulating the translocation of p53, KPNA2 induces autophagy to promote the
chemoresistance and metastasis of OSCC cells [94].

3.4. Autophagy and Cancer Cell Cycle

Autophagy is a process by which cells recycle their own components to maintain
cellular homeostasis. It is also known as a form of programmed cell death. [110]. The cell
cycle, on the other hand, is a series of events that occur in a cell, leading to its division and
duplication of its DNA (DNA replication) to produce two daughter cells.

The cell cycle consists of four phases: G1 phase, S phase (synthesis), G2 phase (col-
lectively known as interphase), and M phase (mitosis). The cell cycle is crucial for the
development of a single-cell fertilized egg into a mature organism, as well as for the renewal
of tissues such as hair, skin, blood cells, and internal organs. Autophagy and cell cycle
arrest have a tight biological relationship. There is a close biological relationship between
autophagy and cell cycle arrest. Researchers have used pharmacological methods to induce
cell cycle arrest and have found that it is closely linked to autophagy [111]. Previous studies
have suggested that autophagy can be activated by increasing the expression of p21, a pro-
tein involved in cell cycle regulation [112]. The overexpression of p21 can induce autophagy
in breast cancer cells and metabolically inhibit tumor growth [111], indicating that p21
may act as a molecular bridge between autophagy and cell cycle arrest [113]. Studies have
also confirmed that autophagy is tied to the process of the cell cycle. For example, the
knock out or suppression of the p53 gene, a well-known tumor suppressor gene, has been
shown to cause a periodic peak of autophagy around the G1/S phase. Additionally, the
neutralization of p53 leads to the suppression of an autophagic program but only during
discrete phases of the cell cycle [114].

The cell cycle is tightly controlled by precise mechanisms, and some autophagy genes
have been found to contribute to cell cycle progression [115]. ATG5, a critical host-defense
mechanism, prevents renal fibrosis by modulating G2/M arrest in proximal epithelial cells
and its subsequent effect on COL1 (collagen, type I) production. The renal protection effect
of ATG5 is dependent on its autophagic activity [115].
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3.5. Autophagy in Cancer Proliferation and Differentiation

Regarding the instrumental role of autophagy in cancer development, as mentioned
above, such as cell apoptosis, metastasis, and cell cycle, autophagy may also be regulated
in other progressions of cancer, such as proliferation and differentiation.

One study demonstrated that hydrogen sulfide (H2S) can promote the proliferation
and differentiation of keratinocyte (HaCaT) by activating autophagy. Human keratinocyte
cells exposed to sodium hydrosulfide (NaHS) as a H2S donor showed increased expressions
of autophagy-related proteins LC-3II, ATG5, and Beclin-1 in a dose-dependent manner.
ATG5 is an essential protein involved in the formation of autophagosomes. When au-
tophagy was blocked using ATG5 siRNA, cell proliferation and differentiation induced
via sodium hydrosulfide were inhibited. These findings provide additional insights into
the role of autophagy in keratinocyte proliferation and differentiation [96]. Another study
focused on a long noncoding RNA called HOTAIRM1, which is associated with myeloid
cell differentiation and the degradation of the oncoprotein PML-RARA. It was found that
HOTAIRM1 regulates autophagy, and when its expression was reduced, autophagosome
formation was inhibited. This suggests that HOTAIRM1 enhances the autophagy path-
way, leading to the degradation of the PML-RARA oncoprotein and promoting myeloid
cell differentiation [116]. The expression level of the autophagy-related protein Beclin-1
is also relevant to cancer differentiation. A low expression of Beclin-1 has been posi-
tively correlated with poor differentiation, lymph node metastasis, distant metastasis,
epithelial–mesenchymal transition (EMT) stage, tumor recurrence, and overall patient sur-
vival time [117]. These findings suggest that the dysregulation of autophagy, as indicated
by the decreased Beclin-1 expression, can contribute to aggressive cancer behavior and
poor patient outcomes.

3.6. Defective Autophagy in Tumorigenesis

Defective autophagy, characterized by impaired or dysregulated autophagic processes,
has been implicated in various aspects of tumorigenesis [118]. When autophagy malfunc-
tions, it can lead to the accumulation of damaged proteins and organelles, genomic insta-
bility, and altered cellular metabolism, all of which contribute to tumorigenesis [118–121].
Understanding the role of defective autophagy in tumorigenesis has prompted research
into targeting autophagy as a potential therapeutic strategy. Here, we shortly summarized
that defective autophagy impacts different aspects related to tumorigenesis.

Autophagy is intricately connected to cellular metabolism as it supplies recycled com-
ponents for energy production and biosynthesis [122]. In the context of tumors, impaired
autophagy can disrupt metabolic pathways, hinder nutrient recycling, and encourage
cancer cells to rely on alternative energy sources, such as aerobic glycolysis (the Warburg
effect) [123]. This metabolic reprogramming bestows a growth advantage on cancer cells,
facilitating their survival and uncontrolled proliferation [124]. In addition to its role in
metabolism, autophagy also has a role in inflammatory and immune responses. It regu-
lated inflammation by removing damaged organelles and protein aggregates [125]. When
autophagy becomes defective, it hampers the removal of damaged cellular components,
resulting in their accumulation. This accumulation triggers chronic inflammation, which
can contribute to the development of tumors [125,126]. Persistent inflammation fosters
an environment that promotes cell proliferation, genomic instability, and angiogenesis,
all of which support tumor growth and progression [48]. Moreover, autophagy also ex-
hibits a dual role in immunotherapy [127]. On one hand, it enhances the immunogenicity
of tumor cells by presenting tumor antigens to immune cells, thereby facilitating tumor
recognition and triggering an immune response. On the other hand, defective autophagy
can impair immune cell function, specifically in antigen presentation and T-cell activation.
Consequently, defective autophagy in tumor cells can limit the effectiveness of immunother-
apeutic approaches like immune checkpoint inhibitors or adoptive cell therapies. Further
research is needed to elucidate the precise mechanisms and develop therapeutic strategies
to manipulate autophagy for cancer treatment.
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In addition, research has shown that sphingolipid is a bioactive lipid that regulates
various cellular functions, including proliferation, migration, senescence, and cell death,
and targeting sphingolipid signaling pathways has emerged as a potential therapeutic strat-
egy. Dysregulation of sphingolipid metabolism can impact the autophagy of mitochondria,
or mitophagy, contributing to the development of various diseases, including cancer and
neurodegenerative disorders. Modulating sphingolipid levels and their downstream signal-
ing pathways could potentially enhance mitophagy and promote the selective elimination
of cancer cells that rely on mitochondrial metabolism for survival and growth. Hence,
understanding the role of sphingolipids in mitophagy regulation may have implications
for developing novel therapeutic approaches for these diseases as well [128].

4. Autophagy in Cancer Therapeutics

Autophagy’s role in tumor biology is complex, with both positive and negative effects
on cancer cells. Scientific studies have demonstrated that inhibiting autophagy can enhance
the efficacy of anticancer treatments, whereas promoting autophagy can induce cell death
under certain conditions. Depending on the inducing factors, duration, and cell type,
excessive or sustained autophagy can lead to autophagic tumor death [129,130].

4.1. Promotion of Autophagy in Cancer Therapeutics

Chitosan nanoparticles (CS-NPs) have been extensively investigated as potential
carriers for drug delivery in cancer treatment. They have also been identified as a novel
autophagy initiator at nontoxic concentrations ranging from 10 to 100 µg/mL. CS-NPs
have been found to induce autophagy and regulate cellular apoptosis. The induction of
autophagy by CS-NPs is characterized by an increase in the ratio of LC3 II to LC3 I, and
it has been shown that CS-NPs-mediated autophagy is associated with the generation
of ROS. When the ROS scavenger N-acetylcysteine is used, it attenuates the CS-NPs-
induced autophagy. These findings suggest that CS-NPs are capable of inducing protective
autophagy via ROS generation, which inhibits tumor cell death [131].

Salidroside, which is derived from the traditional Chinese medicine Rhodiola crenulata
(Crassulaceae family), has been found to increase autophagy and reduce apoptosis in
human umbilical vein endothelial cells (HUVECs) under oxidative stress. This effect is dose-
dependent and is achieved via the activation of the AMPK pathway and the downregulation
of the mTOR pathway [74]. The histone deacetylase (HDAC) inhibitor valproic acid (VPA)
synergistically interacts with chemotherapeutic agents to induce autophagy in lymphoma
cells and enhance their sensitivity to chemotherapy. This is accomplished by activating
AMPK and inhibiting downstream MTOR signaling [78].

Itraconazole, a traditional antifungal drug, has emerged as a potential anti-cancer agent
capable of inhibiting the proliferation of glioblastoma cells both in vitro and in vivo via the
induction of autophagy via the repression of AKT1-MTOR signaling [75]. Isorhapontigenin
(ISO), a derivative of stilbene found in the Chinese herb Gnetum cleistostachyum (Gnetaceae
family), has been shown to induce autophagy and inhibit the growth of bladder cancer.
This effect is mediated via the MAPK8-JUN pathway, which transcriptionally induces
SESN2 [76]. Gefitinib (GEF), an inhibitor of EGFR tyrosine kinase, has been found to
induce autophagy in NSCLC cell lines, and the combined treatment with clarithromycin
(CAM), a macrolide antibiotic having the effect of inhibiting autophagy flux, enhances the
cytotoxic effect in NSCLC cell lines. These results suggest that GEF-induced autophagy
has a cytoprotective function and indicates the therapeutic potential of using CAM in GEF
therapy [132].

4.2. Inhibition of Autophagy in Cancer Therapeutics

Deoxypodophyllotoxin (DPT), a naturally occurring flavolignan isolated from
Anthriscus sylvestris (Apiaceae family), has demonstrated the ability to inhibit tumor
growth in PCa via suppression of autophagy by triggering mitochondrial ROS in vivo
and in vitro [88]. cAMP response element-binding protein 1 (CREB1), a nuclear transcrip-
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tion factor, is involved in the regulation of genes associated with cell survival and death.
In autophagy-defective cells, CREB1 induces DNA damage and subsequent apoptosis in
response to etoposide. Reactivating CREB1 or inhibiting autophagy not only enhances
the efficacy of rapamycin but also mitigates the chemoresistance mediated by MTOR
inhibition [133]. The combination of temsirolimus (TEM), an MTOR inhibitor, and hy-
droxychloroquine (HCQ), an autophagy inhibitor, has been found to enhance cell death in
preclinical models. This study suggests that the combination of TEM and HCQ modulates
autophagy in patients and exhibits significant antitumor activity [134].

Salinomycin, a monocarboxylic ionophore, induces apoptosis and the production of
ROS, both of which are blocked by autophagy, resulting in the protection of cancer cells.
This interplay between autophagy and apoptosis induced via salinomycin sheds light
on the relationship between these two physiological responses in cancer cells [84]. Acid-
sensing ion channels (ASICs), which are voltage-insensitive cation channels in the epithelial
Na+ channel/degenerin superfamily, have been implicated in various physiological and
pathological conditions. Studies have demonstrated that the downregulation of ASICs
inhibits gastric cancer growth by reducing autophagy [135]. These studies highlight the
feasibility of inhibiting autophagy to promote apoptosis and suggest that combining
autophagy inhibitors with anti-tumor therapies may lead to more effective cancer treatment.

The above studies have shown that excessive ROS production, resulting from cellular
metabolism, can lead to oxidative stress and damage various cellular components, including
proteins, lipids, and DNA, which contributes to the development of diseases including
cancer [136]. Ceramides, the base of all sphingolipids, are formed when a fatty acid binds
to the amino group. Some ceramides have been associated with mitochondrial dysfunction,
including suppressing the mitochondrial respiratory chain, increasing ROS levels, and
reducing mitochondrial membrane potential [137]. Autophagy, the process of degrading
and recycling cellular components, helps the cells cope with oxidative stress, eliminates
ROS, and maintains cellular redox balance. By selectively removing damaged mitochondria,
proteins, and organelles, autophagy prevents ROS accumulation and protects against tumor
development [138]. However, the relationship between autophagy and ROS is complex,
and the effects may vary depending on the cellular context [139]. Further research is
needed to fully understand the interplay between autophagy, ROS, and tumorigenesis,
thus uncovering new therapeutical targets for cancer therapy.

5. Conclusions and Outlooks

Autophagy plays a crucial role in regulating various aspects of tumor cell homeostasis,
including the occurrence and development of cell apoptosis, metastasis, and cell cycle
arrest [140]. Throughout this review, it has become evident that interventions that activate
or inhibit autophagy hold significant therapeutic potential. As a tumor suppressor mecha-
nism, autophagy can induce tumor cell death, prevent tumor formation, and decrease the
probability of DNA mutation [141]. This autophagy-mediated cell death is often referred
to as “autophagic cell death” or “autophagic programmed cell death”, characterized by
the excessive activation of autophagy leading to uncontrolled self-degradation and cell
death [142]. However, the classification of autophagy as a type of cell death is still a topic
of ongoing research and debate. Autophagy can interact with other forms of cell death,
such as apoptosis or ferroptosis, and the specific outcomes may depend on the context and
cellular conditions. Autophagy also serves as a tumor protective mechanism, enabling
tumor cells to withstand nutrient deficiency, radiotherapy, chemotherapy, and other harsh
conditions, thereby helping them escape apoptosis and promoting cell survival [143].

Dysregulated autophagy has been implicated in the development of various types of
cancer [144]. With advancements in gene and molecular technology, our understanding
of autophagy will become more comprehensive and profound. A deeper understanding
of the complex interplay between autophagy and other cellular processes, such as apop-
tosis and immune response will facilitate a better explanation of its dual role in cancer
development and progression. It may also pave the way for autophagy to emerge as a new
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target for cancer therapy. By unraveling the mechanisms underlying autophagy, novel
anti-cancer therapeutics can be developed, revolutionizing the field of cancer treatment.
However, further research is necessary to fully harness the benefits of targeting autophagy
in cancer treatment.
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Abbreviations

AdoMet S-adenosyl-L-methionine
AL autophagolysosome
ATG autophagy related
Atg autophagy-related genes
ASICs acid-sensing ion channels
CAM clarithromycin
CBR1 carbonyl reductase1
CLC chloroquine
CMA chaperone-mediated autophagy
CRC colorectal cancer
CSFV classical swine fever virus
CS-NPs chitosan nanoparticles
CREB1 cAMP response element-binding protein 1
DPT deoxypodophyllotoxin
GEF gefitinib
EMT epithelial–mesenchymal transition
GQ 7-O-geranylquercertin
GT gallotannin
HaCaT human keratinocytes
HCC hepatocellular carcinoma
HCQ hydroxychloroquine
HDAC histone deacetylase
HF halofuginone
H2S hydrogen sulfide
HUVECs human umbilical vein endothelial cells
IBP interferon regulatory factor-4 binding protein
ISO isorhapontigenin
KPNA2 karyopherin α2
LC3B microtubule-associated protein light chain 3B (LC3B)
MSCs mesenchymal stem cells
mTOR mammalian target of rapamycin
MβCD methyl-β-cyclodextrin
MM9 matrix metalloproteinas-9
NSCLC non-small cell lung cancer
OSCC oral squamous cell carcinoma
PE phosphatidylethanolamine
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PCBP1 poly C binding protein
PI3K phosphoinositide 3-kinase
PCa prostate cancer
RSV resveratrol
ROS reactive oxygen species
SGK1 serum- and glucocorticoid-induced protein kinase 1
TEM temsirolimus
TP53INP1 tumor protein 53-induced nuclear protein 1
Ubl ubiquitin-like
ULK1 unc-51 like autophagy activating kinase
VPA valproic acid

References
1. Safaralizadeh, R.; Beilankouhi, E.A.V.; Valilo, M.; Dastmalchi, N.; Teimourian, S. The function of autophagy in the initiation, and

development of breast cancer. Curr. Med. Chem. 2023. E-pub Ahead of Print. [CrossRef] [PubMed]
2. Debnath, J.; Gammoh, N.; Ryan, K.M. Autophagy and autophagy-related pathways in cancer. Nat. Rev. Mol. Cell Biol. 2023, 1–16.

[CrossRef] [PubMed]
3. Amaravadi, R.; Kimmelman, A.C.; White, E. Recent insights into the function of autophagy in cancer. Genes Dev. 2016, 30,

1913–1930. [CrossRef] [PubMed]
4. Laplante, M.; Sabatini, D.M. mTOR Signaling in Growth Control and Disease. Cell 2012, 149, 274–293. [CrossRef] [PubMed]
5. Levy, J.M.M.; Thorburn, A. Targeting autophagy during cancer therapy to improve clinical outcomes. Pharmacol. Ther. 2011, 131,

130–141. [CrossRef]
6. Levy, J.M.M.; Towers, C.G.; Thorburn, A. Targeting autophagy in cancer. Nat. Rev. Cancer 2017, 17, 528–542. [CrossRef]
7. Li, W.-W.; Li, J.; Bao, J.-K. Microautophagy: Lesser-known self-eating. Cell. Mol. Life Sci. 2011, 69, 1125–1136. [CrossRef]
8. Ghosh, R.; Pattison, J.S. Macroautophagy and Chaperone-Mediated Autophagy in Heart Failure: The Known and the Unknown.

Oxidative Med. Cell. Longev. 2018, 2018, 8602041. [CrossRef]
9. Yamamoto, H.; Matsui, T. Molecular mechanisms of macroautophagy, microautophagy, and chaperone-mediated autophagy.

J. Nippon. Med. Sch. 2023, JNMS-2024_91. [CrossRef]
10. Cheon, S.Y.; Kim, H.; Rubinsztein, D.C.; Lee, J.E. Autophagy, Cellular Aging and Age-related Human Diseases. Exp. Neurobiol.

2019, 28, 643–657. [CrossRef]
11. Klionsky, D.J.; Petroni, G.; Amaravadi, R.K.; Baehrecke, E.H.; Ballabio, A.; Boya, P.; Pedro, J.M.B.; Cadwell, K.; Cecconi, F.; Choi,

A.M.K.; et al. Autophagy in major human diseases. EMBO J. 2021, 40, e108863. [CrossRef] [PubMed]
12. Boellaard, J.W.; Schlote, W.; Tateishi, J. Neuronal autophagy in experimental Creutzfeldt-Jakob’s disease. Acta Neuropathol. 1989,

78, 410–418. [CrossRef] [PubMed]
13. Zhang, H.; Mahuran, D.J.; Callahan, J.W. Identification of proteins in the ceroid-like autofluorescent aggregates from liver

lysosomes of Beige, a mouse model for human Chediak–Higashi syndrome. Mol. Genet. Metab. 2010, 99, 389–395. [CrossRef]
14. Nixon, R.A. Autophagy, amyloidogenesis and Alzheimer disease. J. Cell Sci. 2007, 120, 4081–4091. [CrossRef]
15. Arias, E.; Cuervo, A.M. Chaperone-mediated autophagy in protein quality control. Curr. Opin. Cell Biol. 2011, 23, 184–189.

[CrossRef] [PubMed]
16. Yang, Q.; She, H.; Gearing, M.; Colla, E.; Lee, M.; Shacka, J.J.; Mao, Z. Regulation of Neuronal Survival Factor MEF2D by

Chaperone-Mediated Autophagy. Science 2009, 323, 124–127. [CrossRef]
17. Zhou, D.; Li, P.; Lin, Y.; Lott, J.M.; Hislop, A.D.; Canaday, D.H.; Brutkiewicz, R.R.; Blum, J.S. Lamp-2a Facilitates MHC Class II

Presentation of Cytoplasmic Antigens. Immunity 2005, 22, 571–581. [CrossRef] [PubMed]
18. Sooparb, S.; Price, S.R.; Shaoguang, J.; Franch, H.A. Suppression of chaperone-mediated autophagy in the renal cortex during

acute diabetes mellitus. Kidney Int. 2004, 65, 2135–2144. [CrossRef]
19. Nair, U.; Klionsky, D.J. Molecular Mechanisms and Regulation of Specific and Nonspecific Autophagy Pathways in Yeast. J. Biol.

Chem. 2005, 280, 41785–41788. [CrossRef]
20. Klionsky, D.J.; Cregg, J.M.; Dunn, W.A., Jr.; Emr, S.D.; Sakai, Y.; Sandoval, I.V.; Sibirny, A.; Subramani, S.; Thumm, M.; Veenhuis,

M.; et al. A Unified Nomenclature for Yeast Autophagy-Related Genes. Dev. Cell 2003, 5, 539–545. [CrossRef]
21. Nakatogawa, H.; Suzuki, K.; Kamada, Y.; Ohsumi, Y. Dynamics and diversity in autophagy mechanisms: Lessons from yeast. Nat.

Rev. Mol. Cell Biol. 2009, 10, 458–467. [CrossRef] [PubMed]
22. Funderburk, S.F.; Wang, Q.J.; Yue, Z. The Beclin 1-VPS34 complex--at the crossroads of autophagy and beyond. Trends Cell. Biol.

2010, 20, 355–362. [CrossRef] [PubMed]
23. Azad, M.B.; Chen, Y.; Henson, E.S.; Cizeau, J.; McMillan-Ward, E.; Israels, S.J.; Gibson, S.B. Hypoxia induces autophagic cell

death in apoptosis-competent cells through a mechanism involving BNIP3. Autophagy 2008, 4, 195–204. [CrossRef] [PubMed]
24. Chen, Y.; McMillan-Ward, E.; Kong, J.; Israels, S.; Gibson, S.B. Oxidative stress induces autophagic cell death independent of

apoptosis in transformed and cancer cells. Cell Death Differ. 2007, 15, 171–182. [CrossRef]
25. Gutierrez, M.G.; Master, S.S.; Singh, S.B.; Taylor, G.A.; Colombo, M.I.; Deretic, V. Autophagy is a defense mechanism inhibiting

BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 2004, 119, 753–766. [CrossRef]

https://doi.org/10.2174/0929867330666230503145319
https://www.ncbi.nlm.nih.gov/pubmed/37138421
https://doi.org/10.1038/s41580-023-00585-z
https://www.ncbi.nlm.nih.gov/pubmed/36864290
https://doi.org/10.1101/gad.287524.116
https://www.ncbi.nlm.nih.gov/pubmed/27664235
https://doi.org/10.1016/j.cell.2012.03.017
https://www.ncbi.nlm.nih.gov/pubmed/22500797
https://doi.org/10.1016/j.pharmthera.2011.03.009
https://doi.org/10.1038/nrc.2017.53
https://doi.org/10.1007/s00018-011-0865-5
https://doi.org/10.1155/2018/8602041
https://doi.org/10.1272/jnms.JNMS.2024_91-102
https://doi.org/10.5607/en.2019.28.6.643
https://doi.org/10.15252/embj.2021108863
https://www.ncbi.nlm.nih.gov/pubmed/34459017
https://doi.org/10.1007/BF00688178
https://www.ncbi.nlm.nih.gov/pubmed/2675530
https://doi.org/10.1016/j.ymgme.2009.12.009
https://doi.org/10.1242/jcs.019265
https://doi.org/10.1016/j.ceb.2010.10.009
https://www.ncbi.nlm.nih.gov/pubmed/21094035
https://doi.org/10.1126/science.1166088
https://doi.org/10.1016/j.immuni.2005.03.009
https://www.ncbi.nlm.nih.gov/pubmed/15894275
https://doi.org/10.1111/j.1523-1755.2004.00639.x
https://doi.org/10.1074/jbc.R500016200
https://doi.org/10.1016/S1534-5807(03)00296-X
https://doi.org/10.1038/nrm2708
https://www.ncbi.nlm.nih.gov/pubmed/19491929
https://doi.org/10.1016/j.tcb.2010.03.002
https://www.ncbi.nlm.nih.gov/pubmed/20356743
https://doi.org/10.4161/auto.5278
https://www.ncbi.nlm.nih.gov/pubmed/18059169
https://doi.org/10.1038/sj.cdd.4402233
https://doi.org/10.1016/j.cell.2004.11.038


Int. J. Mol. Sci. 2023, 24, 10944 15 of 19
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