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Abstract: Connexin 43 (Cx43) is expressed in the left and right ventricles and is primarily responsible
for conducting physiological responses in microvasculature. Studies have demonstrated that NADPH
oxidase (NOX) enzymes are essential in cardiac redox biology and are responsible for the generation
of reactive oxygen species (ROS). NOX2 is linked to left ventricular remodeling following myocardial
infarction (MI). It was hypothesized that conjugated linoleic acid (cLA) treatment increases NOX-2
levels in heart tissue and disrupts connexins between the myocytes in the ventricle. Data herein
demonstrate that cLA treatment significantly decreases survival in a murine model of MI. The
observance of cLA-induced ventricular tachyarrhythmia’s (VT) led to the subsequent investigation
of the underlying mechanism in this MI model. Mice were treated with cLA for 12 h, 24 h, 48 h, or
72 h to determine possible time-dependent changes in NOX and Cx43 signaling pathways in isolated
left ventricles (LV) extracted from cardiac tissue. The results suggest that ROS generation, through
the stimulation of NOX2 in the LV, triggers a decrease in Cx43 levels, causing dysfunction of the gap
junctions following treatment with cLA. This cascade of events may initiate VT and subsequent death
during MI. Taken together, individuals at risk of MI should use caution regarding cLA consumption.

Keywords: conjugated linoleic acid (cLA); connexin 43 (Cx43); NADPH oxidase (NOX); reactive
oxygen species (ROS); myocardial infarction (MI)

1. Introduction

Conjugated linoleic acid (cLA) refers to a group of positional and geometrical isomers
of octadecadienoic acid, with two alternating double bonds. Rumen bacteria has the unique
ability to convert linoleic acid into cLA via an enzymatic isomerase reaction, and therefore
at least 28 possible isomers of linoleic acid are found in meat and dairy products [1]. The
prominent cLA isomers that are commercially available as dietary supplements and in food
products are mixtures of cis-9, trans-11-cLA and trans-10, cis-12-cL, with cis-9, trans-11
accounting for 72–94% of total cLA in foods. There is emerging evidence that individual
cLA isomers may be responsible for specific biological or biochemical changes in the body.
Most studies use isomeric mixtures, as there are 28 different geometric and positional
isomers of cLA [1]. However, isomers cis-9, trans-11-cLA and trans-10, cis-12-cLA are the
only two isomers to date that have been linked to specific biological effects. For example,
both isomers have been shown to inhibit carcinogenesis. However, individually, cis-9,
trans-11 is mainly responsible for anticarcinogenic effects, whereas the trans-10, cis-12
isomer reduces body fat and is commonly referred as the most effective isomer affecting
blood lipids.

Numerous studies have reported positive effects of cLA consumption, including
weight loss in obese individuals [2], modulation of immune function [3,4] anti-carcinogenic
activity [5], protection against atherogenesis [6,7], reversal of atherosclerosis [8], and nor-
malization of glucose and insulin homeostasis in pre-diabetic animal models [9,10]. Addi-
tionally, the Food and Drug Administration notably reported that cLA as being “generally
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regarded as safe” in 2008. However, we have since shown that cLA treatment lowers physi-
ological nitric oxide (NO) levels and impairs heart function in aged mice [11]. Following
these findings, we wanted to determine if survival was also affected as a result of impaired
heart function.

Connexins are gap-junction transmembrane channels that mediate the cell-to-cell
movement of small molecules and/or ions to maintain intercellular homeostasis [12]. Gap
junctions contain transmembrane ion-channel proteins which are cylinders constructed
from 6 copies of transmembrane proteins, otherwise known as connexins [12]. In the
heart, connexins mediate ion flow through the cardiac myocytes, forming intercellular
pathways that allow for the organization of electrical excitation responsible for heart muscle
contraction [13,14].

Approximately twenty connexins have been identified in the mouse genome and
twenty-one in the human genome, where orthologous are increasingly characterized in
other vertebrates [15]. There are 3 main connexins expressed in the heart, including
Connexin-43 (Cx-43), Connexin-40 (Cx-40), and Connexin-45 (Cx-45) [16]. Previous studies
have shown that Cx-43 is highly expressed in both ventricles, where both atria equally
express Cx-43 and Cx-40 [16,17]. Myocytes of the sinoatrial and atrioventricular nodes
normally have small, isolated gap junctions composed of Cx-45 [16,18]. Since it is known
that connexins are of essential importance during intercellular communication, changes in
connexin expression and distribution are expected to have insightful impacts on cardiac
conduction and the generation of arrhythmias. Previous studies have shown Cx-43 to be
an arrhythmogenic junction in the heart [16,19]. Lerner et al. have shown that Connexin-43
(Cx43)-deficient mice were susceptible for ischemia-induced VT [20].

Excess amounts of reactive oxygen species (ROS) have been implicated in the genesis
of arrhythmia by altering Cx-43 [21]. NADPH oxidase (NOX) enzymes have been impli-
cated in cardiac redox biology and are responsible for the generation of ROS [22,23]. Of the
NADPH oxidase homologs, NOX2 and NOX4 are most abundantly expressed in the my-
ocardium [24]. Under physiological conditions, nonphagocytic NADPH oxidase enzymes
generate lower levels of intracellular ROS that are necessary for cell signaling, adaptation
and survival, unlike phagocytic NADPH oxidase, which releases a large “respiratory burst”
of superoxide (O2

•) for pathogen extermination [23]. The NOX family is composed of
seven members (Nox1–Nox5, Duox1, and Duox2) that transfer electrons across biological
membranes to generate ROS [24]. NOX2 has been linked to left ventricular remodeling
after myocardial infarction [25].

In the present study, we wanted to further examine the effects and potential mech-
anisms of cLA treatment on MI. Our results indicate that cLA treatment significantly
decreases survival in a murine model of myocardial ischemia (MI), causing life-threatening
spontaneous ventricular tachycardia (VT) and sudden cardiac death (SCD). Time point
treatment was used to further elucidate the possible mechanism whereby cLA induces
life-threatening arrhythmias. Herein, we demonstrate that cLA significantly induces levels
of NOX2 expression and ROS generation in myocytes, which results in the disruption of
connexins between the myocytes in the ventricle, causing life-threatening arrhythmias and
subsequent death in mice during MI.

2. Results
2.1. Electrocardiogram (ECG) Recordings Prior to MI Surgery Demonstrate VT following
Treatment with cLA

Structural and functional changes following MI are characterized by using non-
invasive ECG to determine post-infarct cardiac remodeling. During the MI surgery, electro-
cardiogram (ECG) recordings in untreated mice detected normal sinus rhythms (Figure 1A).
Following the ligation of LAD, mice without treatment developed ST-segment elevation,
which is an earliest sign of MI (Figure 1B). Previous studies revealed that reduction of Cx-43
expression increases frequency of spontaneous ventricular ectopy and arrhythmogenesis
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compared to control mice [26]. Mice treated with cLA developed VT and died within 1–2
min following ligation of LAD (Figure 1C).

Before ligation of LAD
No treatment

A

5 min after ligation of LAD
No treatment

ST-segment elevationB

5 min after ligation of LAD

cLA for 72 h

Ventricular Tachycardia
C

Figure 2 
Figure 1. cLA treatment induces ventricular fibrillation following MI. ECG data from control and
cLA-treated mice (A) before MI, (B) 5 min after MI in control mice, and (C) 5 min after MI in cLA-
treated mice demonstrate changes in ST segment elevation following LAD. MI surgery in untreated
mice (n = 15); MI surgery in cLA-treated mice (n = 35).

2.2. Treatment with cLA Does Not Affect Cardiac Function before MI

To establish baseline myocardial function, echocardiography was performed in
3-month-old mice (untreated). The analysis of left ventricular function, determined via per-
centage of fractional shortening (%FS), demonstrated that there were no significant changes
in cardiac function between untreated and treated groups (Figure 2A,B). FS was normal in
both control (53 ± 3%) and cLA-treated (51 ± 4%) groups (Figure 2 Table). These results
indicate that cLA does not cause adverse myocardial changes in the cardiac function of
normal, healthy mice. However, cLA treatment with MI results in abnormal heart rhythms
and SCD.
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Figure 2. cLA treatment does not affect cardiac dysfunction after 72 h of treatment. Treatment with
cLA does not affect cardiac function, FS in (A) control and (B) cLA-treated mice were 53 ± 3 and
51 ± 4, respectively. MI surgery in untreated mice (n = 15); MI surgery in cLA-treated mice (n = 35).

2.3. Treatment with cLA Increases NOX2 Expression, while Decreasing CX43 Expression in
Cardiomyocytes

Additionally, it is known that ROS plays a role in ventricular arrhythmogenesis by
altering Cx43 between myocytes [21,27,28]. Cx43 decreased in a time-dependent man-
ner within the left ventricle in cLA-treated mice (Figure 3A). As early as 24 h following
treatment with cLA, Cx43 expression was significantly decreased compared to the control
(Figure 3B). In contrast, NOX2 expression significantly increased following treatment with
cLA (Figure 3A,B). Further, IHC linear staining of Cx43 was decreased 72 h following
cLA treatment (Figure 4A,B). cLA-induced anti-tumorigenic effects have been linked to
ROS generation and subsequent apoptosis in animals and cancer cell lines [29,30]. cLA
isomers effectively inhibited the growth of cancer cells and this effect was associated with
disruption of intercellular Cx43 [31]. Our results further demonstrate that cLA induces
ROS within the myocardium within 72 h following treatment. Further, cLA reduces Cx43
expression, causing decreased survival in mice during MI.
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Figure 3. cLA treatment alters Cx-43 level and increases NOX2 level in heart tissue. cLA decreases
levels of Cx-43expression in time point treated mice (A). Conversely, it increases levels of NOX-
expression (B). MI surgery in untreated mice (n = 15); MI surgery in cLA-treated mice (n = 35).
* p < 0.05 vs. control, # p < 0.05 vs. cLA 12 h.
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Figure 4. cLA exacerbates connexin-43 disruption in mice after 72 h of treatment. Cx-43 is stained in
red, in control (A) Cx-43 is represents linear staining, which is disrupted in cLA-treated mice after
72 h of treatment (A). Quantitated protein expression reveals that cLA lowers CX-43 expression in
mice treated with cLA after 72 h of treatment (B). MI surgery in untreated mice (n = 15); MI surgery
in cLA-treated mice (n = 35).

3. Discussion

The principal findings of this study are that treatment with cLA disrupts connexin
connections between myocytes leading to life-threatening arrhythmias, resulting in VT
during MI. The treatment of mice with cLA 3 days prior to MI surgery resulted in a lower
survival rate during MI compared to untreated MI mice. This was caused by VT compared
to untreated MI mice (Figure 5). SCD can occur without structural heart disease and
is attributed in most cases to electrical disturbances leading to abnormal heart rhythms.
Cx43 is the most important protein in ventricular gap junctions and reduction in Cx43
results in SCD [32–34]. In the heart, myocyte-to-myocyte electrical coupling is mediated
via gap junctions, forming the intercellular pathway for proper conductance of electrical
excitation in synchronous contraction [16,35,36]. The regulation of Cx43 is under continuous
investigation as it is still unclear whether the effects of Ca2+ are direct or due to the action
of intracellular mediators.

Physiological concentrations of Ca2+ are known to regulate the permeability of Cx43
in a calmodulin-dependent manner. Recently it was shown that the lipolysis/lipogenesis
balance in white adipocytes is also regulated through Ca2+ flux, and that its signaling is
controlled through vesicular ATP release [37]. Further, the deuterated form of linoleic
polyunsaturated fatty acid (D4-Lnn), a polyunsaturated fatty acid (PUFA), induced cyto-
protective effects in an oxygen-glucose deprivation (OGD) ischemic-type model through
the activation of the phosphoinositide calcium system [38]. The suppression of damaging
proteins and activation of protective genes was also related to an increase in ROS, result-
ing in an overall inhibition of neuronal apoptosis [38]. Similarly, neuronal cells treated
with deuterated PUFAs, completely prevented the ROS-induced effects of oligomeric
α-synuclein on lipid peroxidation [39].
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NOX2 expression in heart tissue has been shown to increase ROS generation and the
incidence of arrhythmias [40]. To investigate ROS generation in myocytes, heart slices
were stained with MitoTracker. Mice treated with cLA showed ROS generation within
72 h, as demonstrated by a significant increase in MitoTracker staining, compared to
control mice (Figure 6A,B). The use of different NOX enzyme isoforms is known to result
in different ROS, which highlights the complex role of NOX-derived ROS in in cardiac
pathophysiology [41]. However, it has also been reported that NOX2 is a prominent ROS
generator and leads to direct myocardial damage, compared to that of other isoforms [42].
Our results demonstrate that increased ROS production at the 72 h time point may be
responsible for the disruption of connexins and the development of abnormal heart rhythm
following treatment with cLA in MI. Overall, further investigation is warranted as to the
consumption of cLA and the potential for increased an risk of VT and SCD with MI.
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4. Materials and Methods
4.1. Animals

The mice were fed standard chow and water ad libitum. All animal procedures were
reviewed and approved by the independent Institutional Animal Care and Use Committee
(IACUC) of the University of Louisville, School of Medicine (IACUC protocol 14079). In
addition, all studies were performed in accordance with the animal care and use guidelines
of the National Institutes of Health.

4.2. Mouse Model of Myocardial Infarction

Male C57BL/6 mice, when 10–12 weeks old, were anesthetized with isoflurane, in-
tubated, and ventilated with a CWE advanced ventilator (Webster, TX, USA). Body tem-
perature was maintained with an Indus Temperature feedback/surgical table and ECG
system. An aseptic procedure was used for the preparation of the surgical site through
scrubbing with a 0.8% chlorhexidine solution. A left thoracotomy was performed via the
fourth intercostal space and the lungs retracted to expose the heart. After opening the
pericardium, the left anterior descending (LAD) coronary artery was ligated with an 8–0
silk suture near its origin between the pulmonary outflow tract and the edge of the atrium.
Ligation was deemed successful when the anterior wall of the left ventricle (LV) turned
pale. The lungs were inflated by increasing positive end-expiratory pressure, and the
thoracotomy side was closed in layers. The lungs were re-expanded, and the chest was
closed. The animals were removed from the ventilator and allowed to recover on a heating
pad. Mice were checked daily for signs of pain or distress and were given Buprenex at
0.05 mg/kg SQ before the procedure and every 12 h for 48 h. Mice were treated with cLA
(10 mg/kg/d-via osmotic mini-pump) 3 days prior to the ligation of the LAD artery.

Mice were treated with cLA (10 mg/kg/d-via osmotic mini-pump) for 12, 24, 48, or
72 h. Following treatment, mice were injected with 50 mg/kg pentobarbital and euthanized.
Tissue was harvested for the following experiments.

4.3. Western Blot

Heart tissue homogenate (100 µg) was electrophoresed using the SDS-PAGE method as
previously described [43,44]. Affinity-purified GAPDH (1:3000) (Trevigen, Gaithersburg, MD,
USA), Nox2 (1:1000) (#ab129068-Abcam, Branford, CT, USA), and Cx-43 (1:1000) (#3512S-Cell
Signaling, Danvers, MA, USA) antibodies were detected using species-appropriate horseradish
peroxidase-labeled secondary antibodies.

4.4. Echocardiography

Transthoracic echocardiography was performed using a VisualSonics ultrasound
system (Vevo 2100; VisualSonics, Inc., Toronto, ON, Canada). Left ventricular function
was analyzed via the short parasternal axis view. Echocardiograms were performed before
MI surgery.

4.5. Histology, Immunohistochemistry and Confocal Microscopy

Hearts were collected from mice and thoroughly washed in PBS. Using Peel-A-Way
disposable plastic tissue embedding molds (Polysciense Inc, Washington, PA, USA) filled
with tissue freezing media (Triangle Biomedical Sciences, Durham, NC, USA), hearts were
preserved and stored at −80 ◦C until analysis. Tissue slices (5 µm in thickness) were made
using the Leica CM 1850 Cryocut microtome (Bannockburn, IL, USA). Slices were placed
on Superfrost™ Plus glass slides, air-dried, and processed for immunohistochemistry (IHC)
staining. Immunohistochemistry and laser-scanning confocal microscopy were used to
visualize cLA-induced changes in Cx43 and mitochondrial stress (MitoTracker) expression
and localization.

Immunohistochemistry was performed on frozen tissue slices using a standard IHC
protocol. Primary antibodies were applied overnight (anti-Cx43). Secondary antibod-
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ies labeled with Texas Red (Invitrogen, Carlsbad, CA, USA) were applied for protein
immunodetection.

Mitochondrial superoxide generation was assessed by MitoTracker (Red CMXRos)
staining, a fluorogenic dye that is taken up by mitochondria. MitoTracker Red CMXRos,
tetramethylrhodamine methyl ester, and 10-N-nonyl acridine orange label mitochondria
in a manner dependent on the membrane potential, thus giving an indication of mito-
chondrial stress. The MitoTracker probe, CMXRos Red, is taken up passively by cells. In
the mitochondria, the probe is oxidized by superoxide, resulting in the emission of red
fluorescence. Fresh frozen 5 µm LV slices were incubated for 45 min at 37 ◦C with 100 nM
MitoTracker (Red CMXRos).

Stained slides were analyzed for fluorescence using a laser scanning confocal micro-
scope (Olympus FluoView-1000, objective 40X, Melville, NY, USA) set at the appropriate
filter settings (Tex-red for Cx-43, Cy-3 for MitoTracker). The total fluorescence (red) inten-
sity in 5 random fields (for each experimental sample) was measured with image analysis
software off-line (Image-Pro Plus 7.0, Media Cybernetics; Bethesda, MD, USA). The flu-
orescence intensity values for each experimental group were averaged and presented as
fluorescent intensity units (FIU).

4.6. Statistical Analysis

Statistical analyses were performed with GraphPad Prism (version 5.0) Statistical
Software, and the significance level was set at p < 0.05. Values are presented as mean ± SD.
Echocardiography and Western blot measurements were analyzed using one-way analysis
of variance (ANOVA), followed by Bonferroni’s multiple comparison post hoc analysis.
Cx-43 and MitoTracker immunofluorescence intensity were analyzed using two-tailed t
test with Welch’s correction for simple two group comparisons.

5. Conclusions

Our data demonstrate that cLA causes life-threatening arrhythmias in MI. Sudden
arrhythmic death is a result of an abnormal heart rhythm. A significant increase in NOX2
expression following cLA treatment in MI results in ROS generation in cardiac tissue.
Further, the disruption of Cx43 between myocytes ultimately causes life-threatening ar-
rhythmias, VT, and death during MI. While cLA is generally regarded as safe, individuals
susceptible to adverse cardiovascular events such as MI should use caution regarding
cLA consumption.
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