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Abstract: The powerful immune responses elicited by the mRNA vaccines targeting the SARS-
CoV-2 Spike protein contribute to their high efficacy. Yet, their efficacy can vary greatly between
individuals. For vaccines not based on mRNA, cumulative evidence suggests that differences in
the composition of the gut microbiome, which impact vaccine immunogenicity, are some of the
factors that contribute to variations in efficacy. However, it is unclear if the microbiome impacts the
novel mode of immunogenicity of the SARS-CoV-2 mRNA vaccines. We conducted a prospective
longitudinal cohort study of individuals receiving SARS-CoV-2 mRNA vaccines where we measured
levels of anti-Spike IgG and characterized microbiome composition, at pre-vaccination (baseline),
and one week following the first and second immunizations. While we found that microbial diversity
at all timepoints correlated with final IgG levels, only at baseline did microbial composition and
predicted function correlate with vaccine immunogenicity. Specifically, the phylum Desulfobacterota
and genus Bilophila, producers of immunostimulatory LPS, positively correlated with IgG, while
Bacteroides was negatively correlated. KEGG predicted pathways relating to SCFA metabolism and
sulfur metabolism, as well as structural components such as flagellin and capsular polysaccharides,
also positively correlated with IgG levels. Consistent with these findings, depleting the microbiome
with antibiotics reduced the immunogenicity of the BNT162b2 vaccine in mice. These findings suggest
that gut microbiome composition impacts the immunogenicity of the SARS-CoV-2 mRNA vaccines.

Keywords: COVID-19; mRNA vaccines; microbiome; gut microbiome; SARS-CoV-2 mRNA vaccines;
vaccine efficacy; microbial diversity; Bilophila; Desulfobacterota; immunization

1. Introduction

The rapid development and administration of vaccines against SARS-CoV-2 have
played a critical role in the COVID-19 pandemic response. As of January 2023, over
13 billion vaccine doses against SARS-CoV-2 have been administered globally [1]. Novel
mRNA vaccines have dominated COVID-19 vaccination programs due to their ability to
elicit potent immune responses while allowing for rapid design and manufacturing [2].
Although the mechanisms underlying the immunogenicity of mRNA vaccines are not fully
elucidated [3], its varied efficacy between individuals and reduction in efficacy among the
obese, hypertensive, and elderly, resemble the patterns of conventional vaccines [4–10]. This
suggests that the underlying variables that generally influence vaccine immunogenicity,
such as primed innate immunity, may also guide the response to mRNA vaccines [11]. A
full accounting of the factors that guide the immunogenicity and efficacy of mRNA vaccines
will benefit at-risk individuals and populations.

The composition and function of the gut microbiome change significantly over the
course of a lifetime and vary profoundly between individuals [12–14]. Evidence from
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both animal and clinical studies demonstrate that a healthy intact microbiome and pro-
duction of microbial metabolites are critical for eliciting an effective immune response to
vaccination [15–19]. Mouse studies have revealed that microbiome-derived components
(e.g., LPS, DNA, and flagellin) that stimulate pattern recognition receptors, such as Toll-Like
Receptors (TLRs), act as endogenous adjuvants that boost steady state innate immunity
and promote the efficacy of oral and parenteral vaccines [20–23]. This appears to translate
to humans, as a clinical study on the trivalent influenza vaccine found that the abun-
dance of gut microbiota (as measured by 16S copy numbers as well as LPS and flagellin
levels in stool) and microbial synthesis of specific secondary bile acids, correlated with
immunogenicity in individuals with low pre-existing immunity [17]. In addition, a recent
vaccinology study indicated that this may also hold true for at least 12 other vaccines, as
pre-existing blood transcriptional signatures indicative of inflammatory TLR signaling,
as elicited by the adjuvant, are predictive of high serum antibody responses one month
after immunization [11].

Yet, experiments in mice investigating the source of adjuvant activity that mediates the
high immunogenicity of the BNT162b2 mRNA vaccine found that robust antibody and CD8
T cell responses to BNT162b2 vaccination are not dependent on individual TLRs (including
TLR2-5 and TLR7), nor STING, which detects cytoplasmic microbial DNA [24]. However,
the functional redundancy of TLR signaling upon stimulation of different TLRs by different
microbiome-derived ligands, such as flagellin and LPS, would not be revealed by these
experiments. Consistent with this idea, a previous study has shown that the common
downstream TLR signaling adapter Myd88 was required for optimal antibody responses
to a differently formulated mRNA vaccine [25]. Additionally, a study conducted in Hong
Kong on the BNT162b2 mRNA vaccine found that individuals with baseline microbiomes
harboring a higher relative abundance of microbial genes associated with the expression
of flagellin and fimbriae had better antibody responses, suggesting the microbiome may
act as an endogenous adjuvant in this instance [26]. Further studies are required to build
a consensus on how the microbiome relates to the efficacy of the mRNA vaccines across
different populations.

In addition to the gut microbiome’s impact on immunity, viral infection and immuniza-
tion have the potential to disrupt the composition of the microbiome. Changes in the gut
microbial composition due to respiratory viral infections have been well established and
include sweeping changes during COVID-19 infection [27–36]. A portion of these changes
likely result from eliciting a powerful immune response, rather than viral infection itself, as
respiratory viral immunization alone can induce changes in gut microbial composition [28].
To investigate whether the response to mRNA vaccination is influenced and/or altered by
the gut microbiome, we conducted a pilot study including recipients of both the Moderna
(mRNA-1273) and Pfizer (BNT162b2) vaccines. We analyzed the composition of the gut
microbiome with 16S sequencing and measured IgG levels prior to vaccination and one
week following both the first and second doses. We identified correlations between baseline
microbial diversity, taxa, and predicted metabolic gene markers with IgG responses. In
addition, we performed a proof-of-concept experiment in mice which demonstrates that a
healthy intact microbiome boosts the immunogenicity of the Pfizer (BNT162b2) vaccine.

2. Results
2.1. Subject Demographics

A total of 16 healthy subjects (4 male, 12 female) participated in this study (Table 1,
Figure 1). The average age at enrollment was 30.4 years, with an age range of 18–48 years.
Primary series mRNA COVID-19 vaccines were received by all subjects, of whom nine
(56.3%) received the vaccine manufactured by Pfizer-BioNTech (COMIRNATY) and seven
(43.8%) received the vaccine manufactured by Moderna (Spikevax). Fifteen subjects
chose to self-report race/ethnicity, a cohort that consisted of nine (56.3%) Caucasians and
six (40%) Asians.
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Table 1. Characteristics of the study population.

Subjects (n = 16)

Sex (M:F) 4:12
Age (median [IQR]) 27.5 [24.8–34.3]
Vaccine manufacturer

Pfizer 9
Moderna 7

Race
White/Caucasian 9
Asian 6
Unspecified 1

Antibiotic intake (past 3 months) 2
Probiotic intake (past 2 weeks and/or currently) 2
Blood sample collected for IgG titer post-dose 2 14
Matching stool samples collected at baseline, post-dose 1, and
post-dose 2 16
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Figure 1. Study Design. Baseline blood and stool samples were collected from study participants
up to 14 days prior to their first vaccine dose. Participants received their second vaccine dose either
21 (Pfizer) or 28 (Moderna) days after the first. Follow-up stool and blood samples were collected at
7 days post-dose 1 and dose 2.

2.2. IgG Response to SARS-CoV-2 Vaccination

Baseline IgG levels were low with a median titer of 0.46 µg/mL (IQR: 0.34, 0.73)
(Figure 2A), indicating that there was little to no prior exposure to or infection with
SARS-CoV-2 among the study cohort. The median titer of IgG at the second timepoint
was 0.52 µg/mL (IQR: 0.35, 0.80)—an average fold-change of 0.11 µg/mL from the first
timepoint—an insignificant change in IgG level (Wilcoxon p = 0.15). At the third timepoint,
there was a significant increase in IgG (p = 0.00049) from both the baseline and dose
1 timepoints, with a median of 104.0 µg/mL (IQR: 31.1, 145.4). The average log-fold change
between the second and third timepoints was 198.8 µg/mL. All subjects had an increase
in IgG to greater than 4.0 µg/mL and were considered to have responded positively to
immunization. (Figure 2A). Both participants with exposure to antibiotics in the last
3 months also responded adequately to the vaccine, with final IgG titers of 23.83 and
103.03 µg/mL.
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along with several samples containing relatively high abundances of Faecalibacterium, 
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Figure 2. Summary of IgG responses. (A) Between baseline and dose 1 there was no significant
increase in IgG (p = 0.15), however, IgG levels increased dramatically following dose 2 (p = 0.00049)
(n = 15 at baseline, n = 14 at dose 1 and dose 2); (B–D) age significantly correlated with final IgG
level. Among the 14 subjects for whom we obtained IgG levels post-dose 2, a significant negative
linear relationship was observed between age and IgG response (p = 0.018). There were no significant
IgG differences observed between the 10 male and 4 female subjects (p = 0.84) nor between subjects
receiving the Moderna (n = 6) or Pfizer (n = 8) vaccines (p = 1.0). Sex is indicated by shape, vaccine
manufacturer by color, and age by opacity.

Since it is well documented that older age groups tend to have a less robust immune
response to vaccination, we fitted a linear model to our age data against IgG responses and,
as expected, found a significant (p = 0.018, R2 = 0.3307) negative correlation between age and
final IgG response, even among our relatively young cohort (Figure 2B). Between subjects
who received the Pfizer or Moderna vaccine, there was no significant difference in their
final IgG levels after the second vaccine dose (Figure 2C). There was also no statistically
significant difference in IgG level by sex between the 4 male and 10 female subjects in our
study from whom we obtained IgG data after the second vaccine dose (Figure 2D).

2.3. The Baseline Microbiome and Demographic Factors

A total of 1,156,986 high-quality reads were obtained for an average of 17,050 reads
per sample. We identified 2668 unique ASV, which consisted of 224 unique genera and
12 unique phyla. The gut microbiome in our cohort is dominated by Bacteroides and Blautia,
along with several samples containing relatively high abundances of Faecalibacterium,
Agathobacter, Prevotella_9, and Bifidobacterium (Figure 3A).

PERMANOVA was performed using both Bray–Curtis and Jaccard distance metrics to
evaluate any demographic factors that may have significantly impacted the composition of
the baseline microbiomes. There were no significant differences in baseline microbiomes
between male and female subjects, or between recipients of the Moderna or Pfizer vaccines.
Furthermore, microbiome beta diversity remained insignificant (p > 0.1) between sexes
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and vaccine groups at both the dose 1 and dose 2 timepoints, indicating that there was no
significant difference in microbiome composition between these groups at any sampling
timepoint. There was also no obvious difference in microbiome composition between the
two subjects having consumed antibiotics in the last 3 months (represented by IgG levels
of 23.83 and 103.03 in Figure 3A) and the rest of the study cohort. Age was significantly
related to baseline microbiome composition with Jaccard distance (p = 0.039), and also
showed an association with Bray–Curtis distance (p = 0.071) (Figure 3B–F). This indicates
that age has a significant impact on the microbiome composition.
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Figure 3. Summary of microbiome profiles. (A). Relative abundance of the top 25 genera across the
3 sampling timepoints; (B–G) PCoA plots of baseline microbiomes with colors to indicate subjects
of varying age, sex, and final IgG level. PERMANOVA identified a significant relationship between
the baseline microbiome and age (p = 0.039), as well as between the baseline microbiome and IgG
response post-dose 2 (p = 0.017) with the Jaccard distance metric. All 16 subjects were included for
analysis of relative abundance, age, and sex. IgG analysis included the 14 subjects from whom final
IgG titers were obtained.

2.4. Baseline Microbial Beta-Diversity Is Associated with IgG Response

Additionally, PERMANOVA identified a significant (p = 0.017) correlation between the
baseline microbiome and IgG using Jaccard distance (Figure 3G), indicating a significant
relationship between microbiome composition and immune response to vaccination among
our study population. This effect remained significant when controlling for age (p = 0.019),
suggesting that there are variations in the microbiomes with IgG which are independent of
the age variation. To then evaluate specific microbial signatures which associate with vacci-
nation response, linear and quadratic models were constructed to examine relationships
with measures of alpha diversity as well as individual taxa.

2.5. Microbial Alpha Diversity Is Associated with IgG Response

Linear and quadratic regression models were used to investigate relationships be-
tween IgG response and richness and Shannon diversity. Four sets of linear correlations
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were constructed to investigate the impact of sex and age on any identified relationships,
including uncontrolled, age-controlled, sex-controlled, and age- and sex-controlled models.

Following these steps, it was found that increased baseline Shannon diversity and
richness were significantly correlated with increased IgG levels. Although the correlation
with richness was no longer significant when controlled for age, the relationship with
Shannon diversity remained significant (p = 0.048). Further investigation revealed that
baseline richness was significantly correlated with age (p = 0.03, R2 = 0.27), which explains
why the correlation no longer held once this confounding variable was accounted for. No
further linear correlations were identified at other timepoints.

Quadratic models were also constructed in sets of four, similar to the linear models.
It was found that the average Shannon diversity of each individual across all timepoints
showed a significant quadratic relationship with IgG (Figure 4A). Both richness and Shan-
non diversity at dose 1 showed parabolic relationships to IgG response, both with and
without controlling age and/or sex (Figure 4D–E). Shannon diversity at dose 2 also showed
a significant quadratic relationship with IgG response when controlled for age and sex
(Figure 4F). These findings indicate that a very high or low diversity after the first or
second dose appears to be associated with a poorer immune response among participants,
while a high diversity prior to beginning the vaccination series is associated with an
improved response.
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Figure 4. Diversity and richness are associated with IgG response. n = 14, including all subjects with
final IgG titers. Linear and quadratic regressions with and without controlling age (ac), sex (sc), or
age and sex (asc) as covariates. (A,B) Shannon diversity and richness at baseline (BL) showed positive
linear correlations with the final IgG level. (C,D) Shannon diversity and richness after dose 1 showed
significant quadratic relationships with the final IgG level. (E) Shannon diversity at dose 2 was also
quadratically associated with the final IgG level. (F) The average Shannon diversity of each subject
across all 3 timepoints showed a significant quadratic relationship with the final IgG. ** indicates
p < 0.05.

2.6. Specific Microbes at Baseline Are Associated with IgG Response

Linear regression models were constructed to investigate how the baseline abundance
of specific microbes may correlate with IgG response (Table S1). Models were created using
CLR-transformed rarefied data and were tested both with and without controlling for age
and/or sex. Nine genera and phyla at baseline significantly correlated with IgG response,
including the sulfate-reducing Bilophila of the Desulfobacterota phylum (q = 0.09, 0.06),
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which showed positive correlations with IgG at the genus and phylum levels (Figure 5B). An
unclassified genus (UCG 002) of the Oscillospiraceae family was also positively correlated
with IgG, along with Alistipes (Figure 5D,I). Negative correlations were observed among the
genera Colidextribacter, Clostridium innocuum group, Lachnoclostridium, and an unclassified
genus (UCG 004) of the Lachnospiraceae family, as well as Bacteroides, a genus known to
produce immunosuppressive LPS (Figure 5). The trend of decreasing baseline abundance
of Bacteroides with improved IgG responses is visibly apparent on the bar plot of the most
highly abundant genera (Figure 3A).
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Figure 5. Taxa correlated with IgG response. n = 14, including all subjects with final IgG titers. Linear
regressions with and without controlling age (ac), sex (sc), or age and sex (asc) as covariates. (A–I)
Eight baseline taxa significantly correlated with the final IgG response. The genus Bilophila and
its phylum Desulfobacterota showed significant positive correlations with final IgG (q = 0.09, 0.06,
respectively). Alistipes and an unclassified Oscillospiraceae genus also positively correlated with
IgG, while Colidextribacter, Clostridium innocuum, Lachnoclostridium, Bacteroides, and an unclassified
Lachnospiraceae genus negatively correlated. (J) Ruminococcus torques was the only taxa at dose 1
to correlate with the final IgG response. No significant findings were found at the dose 2 timepoint.
** indicates p < 0.05.

While there were many significant correlations with the baseline microbiome, there
were no significant correlations at the dose 2 timepoint, and only 1 significant finding
at the dose 1 timepoint, the genus Ruminococcus torques group, which showed a negative
correlation with IgG (Figure 5J). Additionally, the CLR transformed abundances of each
genus and phyla were averaged across all three timepoints for each individual and further
tested using the aforementioned models; however, there were no significant correlations
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between this aggregate data and IgG. These findings suggest that the microbiome pre-
vaccination is critical to eliciting an appropriate immune response.

2.7. Increase of Proteobacteria in Response to Vaccination Series

To investigate changes in the microbiome over the course of the vaccination series,
PERMANOVA was performed using both Bray–Curtis and Jaccard distance metrics, with
no significant differences observed by timepoint (p = 1.0). This was further visualized
with PCoA plots using these distance metrics. While there was no clustering by timepoint,
the three samples from each subject tend to cluster together, indicating that each subject
had a unique microbiome that remained relatively consistent over the vaccination course,
which was an expected finding (Figure 6A,B). To investigate any changes in differential
abundance which may have occurred during vaccination, DESeq2 was performed at the
ASV, genus, and phylum levels. A significant increase in Proteobacteria, a phylum known to
produce immunostimulatory LPS [37], was identified in the second vaccine dose (log2 fold
change = 1.24, adjusted p = 0.04) (Figure 6C). The DESeq2 finding was followed up with a
paired Wilcoxon rank-sum test (p = 0.093) and visualized on a boxplot, which provided
further support for a trend of heightened Proteobacteria after vaccination. No other
significant findings were found, indicating that the relative abundance of most microbes,
except Proteobacteria, remained relatively consistent over the vaccination course.
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Figure 6. Longitudinal trends. n = 16, including all subjects. (A,B) PCoA plots indicate that the
3 samples from each of the 16 individual subjects tend to cluster together, indicating that each
subject had a consistently distinct microbiome. PERMANOVA confirmed there was no significant
change in the microbiome over the vaccination course (p = 1.0); (C) upon using DESeq2 to evaluate
individual taxa, a significant increase in the phylum Proteobacteria after dose 2 was observed (log2fold
change = 1.24), which was confirmed as a trend with a Wilcox test (p = 0.093).

2.8. Predicted Metabolic Functions Correlate with IgG Response

KEGG orthologs, Enzyme Classification numbers (ECs), and metabolic pathways pre-
dicted from PICRUSt2 were further analyzed at each timepoint to evaluate any correlations
with IgG. Linear models were constructed, and it was found that the predicted metabolic
functions at baseline tended to be much more greatly correlated with IgG response than
at the other timepoints, as only correlations from this timepoint showed both significant
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p-values and FDR adjusted q-values, indicating that once again, the baseline microbiome
appears to be most critical to eliciting an appropriate immune response (Table S2).

There were 144 significant (q < 0.2) baseline metabolic signatures positively correlated
with IgG, including 4 metabolic pathways, 15 ECs (Figure 7), and 124 KOs (Figure S1)
(Table S2). The most significant finding was a positive correlation between the KO sulfoac-
etaldehyde dehydrogenase and IgG response, which is consistent with the sulfate-reducing
microbes Desulfobacterota and Bilophila being most strongly associated with IgG. At the
EC level, a sulfoacetaldehyde dehydrogenase, two sulfolactate dehydrogenases, hydro-
gensulfite reductase, and dissimilatory sulfite reductase were positively associated with
IgG. Additionally, many markers associated with the type-3 secretion system, flagellin,
and capsular polysaccharides were positively correlated with IgG, particularly at the KO
level, suggesting a possible immunostimulatory mechanism via these microbial signatures.
Furthermore, several pathways related to short-chain fatty acid metabolism at baseline
correlated with IgG response.
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Figure 7. Predicted metabolic functions correlate with the final IgG response. (A) Many baseline
KEGG predicted metabolic function markers, including four metabolic pathways. (B) Fifteen enzyme
classifications (ECs) correlated with final IgG levels. No significant findings were found at the dose 1
or dose 2 timepoints.

2.9. The Intact Gut Microbiome Is Important for Optimal Vaccination Response in Mice

To corroborate the clinical findings, we next examined the impact of the gut micro-
biome on COVID-19 vaccine efficacy with a mouse model. We assessed the Pfizer COVID-19
mRNA vaccine-induced anti-SARS-CoV-2 Spike IgG production when the gut microbiome
was depleted with a cocktail of antibiotics (Abx). Compared to those in the control mice
(Ctrl), the serum Spike IgG concentrations in the Abx mice were reduced by ~30% (Figure 8),
suggesting that the gut microbiome is important for optimal vaccination efficacy.
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Figure 8. The gut microbiome contributes to optimal vaccination efficacy. (A) Timeline of antibi-
otic treatment and immunization; (B) concentrations of serum anti-SARS-CoV-2 spike IgG. Each
dot = one animal, with squares indicating control mice and triangles indicating antibiotic-treated
mice. p < 0.001 (one-way ANOVA). Ctrl: control mice treated with water instead of antibiotics in the
same way. *** indicates p < 0.001.

3. Discussion

Our study supports the hypothesis that the gut microbiome boosts the immunogenicity
of mRNA vaccines as it does for conventional vaccines. We identified a positive relationship
between both microbial diversity and several microbial taxa at baseline with final levels
of IgG. These included positive correlations with Desulfobacterota and Bilophila, and a
negative correlation with Bacteroides. In addition, we noted positive associations between
several predicted metabolic gene markers at baseline and IgG response, including pathways
associated with short-chain fatty acid (SCFA) synthesis and markers of sulfur metabolism.
Consistent with a role for the microbiome as an endogenous adjuvant, predictive gene
ontology analysis also identified strong positive correlations between IgG levels and several
bacterial structural components such as flagellin and capsular polysaccharides. As a
follow-up to our human study, we performed a proof of principle experiment in mice,
which demonstrated that an intact microbiome may be important for optimal mRNA
vaccination immunogenicity.

It is well documented that the efficacy of conventional vaccines and mRNA vaccines
can vary with chronological age, generally decreasing over the course of a lifetime [4–8,38,39].
Higher alpha diversity is generally associated with a healthy gut microbiome compared
to disease conditions. However, recent findings suggest that alpha diversity of the gut
microbiome increases with age, and that exceedingly high diversity is evidence of reduced
colonization resistance due to poor health [40–42]. Despite this, we found that baseline
levels of microbial diversity and richness were linearly correlated with the final IgG re-
sponse, even after controlling for age in the case of diversity. Yet, at dose 1, there was an
age-independent parabolic relationship between IgG levels, and microbial diversity and
richness. Similar, yet weaker, diversity findings were observed at the dose 2 timepoint and
with aggregate data. This relationship suggests that there may exist an optimal microbial
diversity and richness for promoting effective IgG responses, which likely reflects the
overall health of the individual [43].
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In moving forward with our analysis, we continued to note which of the many correla-
tions we identified were accompanied by a relationship with age. While the age variance
complicates the interpretation of our findings, it does not dismiss the potential for a true
relationship between our identified microbial signatures and vaccine response, as the effect
of age on vaccination response may potentially be mediated by age-related changes in the
microbiome [17]. To deconstruct these relationships, we further evaluated the role of the
microbiome as an independent factor influencing IgG response by controlling for age in
our analysis. Although some studies have observed a sex difference in COVID-19 vaccine
response [44], we did not observe any significant differences in microbiome composition or
IgG response between males and females or between recipients of the Moderna and Pfizer
vaccines, potentially due to a small sample size.

While we found correlations between microbial diversity/richness and immunogenic-
ity across all timepoints, correlations with individual taxa existed primarily at baseline.
Specifically, we found that levels of the genus Bilophila and its phylum Desulfobacterota,
taxa associated with the Western diet, and consumption of animal products [37,45] cor-
related with IgG response for both mRNA vaccines. Although a recent study on the
inactivated COVID-19 vaccine did not identify a correlation between Bilophila and IgG
levels, it did find that this genus had the greatest impact on the activation of numerous
immune cell subsets [19]. Among all the taxa that correlated with IgG in our study, only
Desulfobacterota remained significant after controlling for age.

Desulfobacterota is a newly designated phylum containing members reclassified from
the Thermodesulfobacteria phylum and Deltaproteobacteria class of the phylum Proteobac-
teria [37]. Bilophila, a prior member of Deltaproteobacteria, synthesizes immunostimulatory
endotoxin (LPS), a common property among Proteobacteria [37]. Consistent with the
prominent role of bacterial LPS in modulating vaccine immunogenicity, we found that
baseline levels of Bacteroides, which contains immunosuppressive LPS [46], negatively
correlated with IgG. Epidemiological data have linked the ratio of Enterobacteriaceae (a
family within the phylum Proteobacteria) to Bacteroides with vaccine immunogenicity, and
this is believed to be representative of their respective LPS properties [15]. Experimental
evidence in support of the LPS theory is found in proof of principle experiments which
successfully boosted responses to an oral rotavirus vaccine in humans by increasing the
relative abundance of Proteobacteria with narrow-spectrum antibiotics [16].

A recent study found that baseline pro-inflammatory transcriptional signatures as-
sociated with innate immunity are a general predictor of vaccine immunogenicity [11].
Therefore, the proinflammatory properties of Bilophila may act to prime immune responses
to many types of vaccines. In support of this idea, a very recently published study identified
a strong positive correlation between baseline levels of Bilophila, which is associated with
IBD, and final levels of anti-spike IgG in immunosuppressed IBD patients vaccinated with
BNT162b2 or ChAdOx1 [47]. However, several studies have found specific commensal mi-
crobiota that induces antibodies that cross-react with the RBD domain of the spike protein,
and therefore prime immune responses to both SARS-CoV-2 infection as well as SARS-CoV-
2 vaccines [48–50]. Intriguingly, a relatively recent work in bioRxiv indicates that Bilophila
may in fact support immune responses specific to SARS-CoV-2, as pre-existing IgA and IgG
anti-RBD antibodies in healthy individuals bound only to Bilophila and Parabacteroides [51].
Such a role for Bilophila is consistent with the finding that the relative abundance of Bilophila
is inversely correlated with COVID-19 disease severity [52].

However, caution against using Bilophila for therapeutic purposes in COVID-19 is
warranted as its relative abundance is increased in COVID-19 patients treated with antibi-
otics [53], and antibiotic treatments may result in mortality via translocation of commensal
microbiota and bacteremia [27]. In agreement, a major risk factor for mortality of COVID-19
patients admitted to the ICU is an increased abundance of Bilophila within 60 days of being
admitted to the ICU [54]. This detrimental aspect of Bilophila is likely reflective of its
proinflammatory properties [55,56], which may promote the cytokine storms that underly
severe COVID-19 [57,58].
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In addition to LPS, Bilophila can produce metabolites that interact with the immune
system. Our 16S rRNA gene sequence prediction identified many positive correlations
between gene ontology terms and final IgG response, including positive correlations with
markers of taurine and sulfur metabolism, which are characteristic of Bilophila. Bilophila
preferentially grows in bile-rich environments by utilizing the sulfur in taurine-conjugated
bile acids, which are preferentially synthesized (over glycin-conjugated bile acids) upon
consumption of a typical Western diet [37]. That Desulfobacterota was the only correlation
that remained significant after controlling for age and that Oscillospiraceae, a family
of microbes that also synthesize bile acids, correlate with IgG emphasizes the potential
importance of bile acid levels and vaccine efficacy. This is highly relevant given the putative
role of microbial-produced bile acids in modulating the efficacy of the flu vaccine [17].

Our gene ontology analysis also revealed positive correlations between gene markers
for incorporation of flagellin and piliae, as well as capsular polysaccharides, with final
levels of IgG. This is consistent with a recent study on the Pfizer vaccine in Hong Kong,
which identified a positive correlation between the enrichment of cell motility genes and
IgG levels approximately one month after the second dose [26]. This finding is also
supported by experimental data from mice that revealed that commensal flagellin acts as an
endogenous adjuvant for the trivalent influenza vaccine [20]. The potential link to capsular
polysaccharides is interesting considering they have been shown to modulate responses to
other vaccines and can play diverse immunomodulatory roles through interaction with
Toll-like receptors (TLRs) [59]. At the pathway level, we identified positive correlations
between short-chain fatty acids (SCFAs) synthesis and IgG response. This is consistent with
the recent manuscript on the inactivated COVID-19 vaccine [19], which identified high
levels of SCFA pathways and SCFA levels at baseline as the strongest microbial feature
predictive of anti-Ace2 antibody levels following immunization.

Throughout our study, most of the correlations we identified were between baseline
microbial signatures (richness, diversity, taxonomic abundance, metabolic function) and
final levels of IgG. This is consistent with a study of the inactivated COVID-19 vaccine,
which showed that correlations between microbiota and IgG occurred primarily at base-
line [19]. Comparable results were found in a clinical study of the parenteral trivalent
inactivated influenza vaccine, which revealed that the role of the microbiome in promoting
vaccine efficacy was restricted to individuals with low pre-existing immunity, as opposed
to individuals with high immunity due to prior antigen exposure [17]. Taken together,
the findings from these studies suggest that microbiome composition and function sensi-
tize primary immune responses, but do not significantly impact secondary responses as
memory cells are more sensitive to activation by cognate antigen.

Our study expands the work on the BNT162b2 vaccine previously performed in Hong
Kong [26] by including the Moderna vaccine and by analyzing a new geographically distinct
cohort. Furthermore, our study adhered to a strict three-point timeline that investigated
the impact of the microbiome on secondary immunization and analyzed IgG levels at
approximately seven days post-immunization. This addressed a shortcoming of the Hong
Kong study, which only analyzed the microbial composition and antibody titers at baseline
and one month following the second dose, which may have allowed undefined variables to
weaken any existing correlations.

The data from our human study suggest that differential gut microbiome composi-
tion and function can influence IgG response to mRNA vaccination. We confirmed this
observation by conducting a proof-of-principle experiment in mice, where we observed
that disruption of the microbiome by antibiotic administration resulted in a 30% reduction
of IgG levels as compared to controls. This suggests that mRNA vaccines may depend on
sensing the host microbiome in a manner similar to conventional unadjuvanted vaccines.
We emphasize that larger, more rigorous studies are required to control for any off-target
effect of antibiotics on immune responses [60].

The primary limitation of our study was the recruitment of a small sample size.
This limited our ability to identify smaller effects or to generalize our findings to larger,
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more diverse patient populations, as our cohort lacked representation of older age groups
and diverse racial and geographic backgrounds. Despite this limitation, our study was
representative of numerous larger studies, including the Hong Kong study (Pfizer
n = 101), in terms of the distribution of IgG responses between individuals with respect to
age. Furthermore, due to the nature of 16S rRNA sequencing, our assessment of metabolic
function markers relied on predictive metagenomes as opposed to direct genomic data
or metabolomics. Lastly, the mice experiment served as a proof-of-concept study. Only
young adult, female mice were included. This may prevent the generalization of findings
to males and elder mice. However, due to the strong impact of antibiotics on the gut
microbiome, we expect a decrease in IgG response, but the degree of decrease may vary by
sex and age [44,61].

The findings from our cohort study and mouse experiment indicate that there is a role
for the microbiome in eliciting a proper response to mRNA vaccination. We emphasize
the importance of continued research on large diverse study populations, coupled with
additional controlled experiments on animal models, to elucidate the molecular interactions
at play. This research remains critical for understanding and optimizing the efficacy of
mRNA vaccines, our most effective tool currently available to combat COVID-19.

4. Materials and Methods
4.1. Study Cohort and Sample Collection

A prospective cohort study was conducted to recruit COVID-19 vaccine-naive vol-
unteers from the northeast U.S. between March 2021 and October 2021. Adult men and
women who were scheduled to receive the COVID-19 mRNA vaccine, English speaking,
and were able to provide informed consent were invited to participate. We excluded indi-
viduals who had received any COVID-19 vaccine before; received blood product within
three months of enrolling in the study; had a recent COVID-19 infection (within the past
six months); were receiving steroids by mouth or systematically; were pregnant; or had
chronic neurological conditions or autoimmune disease. None of the participants enrolled
in our study were currently taking metformin or proton pump inhibitor medications.

Upon consent, participants were invited to the biobehavioral lab for three investi-
gational visits: within 14 days (range 0–13 days) prior to the first dose of the COVID-19
mRNA vaccine and 7 ± 3 days after the first and the second doses of the COVID-19 mRNA
vaccine. The time in between doses was 21 days for Pfizer (BNT162b2) recipients and
28 days for Moderna (mRNA-1273) recipients. Survey questionnaires were completed at
the beginning of the study to provide information on demographic characteristics, health
factors, and medical/medication history. Venous blood samples (10 mL) were collected in
EDTA tubes during each visit and were immediately centrifuged to obtain plasma. Stools
were collected using OMNIgene®GUT (OMR-200) home collection kits (DNA Genotek
Inc., Ottawa, ON, Canada) within 48 h of each visit and mailed back to the lab, where the
samples were immediately aliquoted and stored at −80 ◦C.

4.2. Quantification of Serum IgG by Enzyme-Linked Immunosorbent Assay (ELISA)

The human anti-SARS-CoV-2 Spike IgG titers were measured with a commercial
ELISA kit (Biolegend, San Diego, CA, USA, Cat # 447807). The human sera were diluted by
1000-fold (timepoint 1 and 2) or 10,000-fold (timepoint 3). Thereafter, 50 µL of each diluted
sample and 50 µL of Assay Buffer B were added to a 96-well plate and incubated at room
temperature for 2 h. The wells were washed four times with the wash buffer. 100 µL of
SARS-CoV-2 Spike S1 Human IgG Detection Antibody solution was added to each well and
incubated at room temperature for 1 h. After four washes, 100 µL of Avidin-HRP solution
was added to each well and incubated at room temperature for 30 min. After stringency
washes, 100 µL of substrate 3,3′,5,5′-tetramethylbenzidine (TMB) was added to each well
and incubated at room temperature for 5–30 min for color development and terminated
with 100 µL of Stop Solution. The absorption at wavelength 450 nm (A450 nm) was read on
a Cytation 1 plate reader (BioTek, Winooski, VT, USA).
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For mouse studies, an ELISA kit from Acro Biosystems, Newark, DE, USA, Cat # RAS-
T018, was applied to the titration of mouse serum IgG. Briefly, 100 µL of each diluted serum
(10,000-fold) or standard was added to a 96-well plate and incubated at room temperature
for 1 h. The wells were washed four times with the wash buffer. Next, 100 µL of diluted
horseradish peroxidase (HRP)-conjugated goat anti-mouse IgG was added to each well and
incubated at room temperature for 1 hr. The rest of the procedures were the same as above.

4.3. Mouse Vaccination

Approximately seven-week-old female C57BL/6 mice (n = 6) were orally gavaged
with 10 mg of an antibiotic cocktail containing vancomycin, neomycin, metronidazole,
and ampicillin once a day for 5 days, and then fed ad libitum with antibiotic water which
contained 1 mg/mL each of neomycin, metronidazole, and ampicillin and 0.5 mg/mL
of vancomycin throughout the experimentation. The control group (n = 6) was sex- and
age-matched mice treated with water in the same way. Five days after the last dose of oral
gavage, pre-immune sera were collected from 4 mice as a baseline measurement, and 4 µg
of COVID-19 mRNA vaccine (Pfizer) was injected intramuscularly into one high leg. The
second dose was given 14 days after the first dose. The immune sera were collected 28 days
after the first dose for subsequent immunological analyses.

4.4. DNA Extraction, 16S rRNA Gene Sequencing and Data Processing

DNA was isolated from human stool samples using the ZymoBIOMICS® DNA
Miniprep Kit. Isolated DNA samples were quantified using a Qubit 2.0 Fluorometer
and normalized to 2 ng/µL. The bacterial 16S rRNA genes were amplified via PCR using
a 515F forward primer for all samples and a unique bar-coded 806R reverse primer for
each individual sample. Amplified PCR products were visualized under UV light on an
agarose gel using the SYBR Safe DNA stain and then purified using the Zymo Select-a-Size
MagBeads. Purified 16S libraries were quantified using the Qubit, and then equal masses
of amplicons from each sample were pooled. Two clean-up steps were performed on
the pooled libraries using the Zymo Select-a-Size MagBeads kit. Purified libraries were
then visualized on an agarose gel and quantified via qPCR using the Illumina Library
Quantification Kit (ROX Low qPCR Mix Cat #E7630). Sequencing of the 16S rRNA gene
was performed on an Illumina MiSeq using the MiSeq Reagent Kit v2 (2 × 250 reads,
500 cycles, Cat #MS-102-2003).

Raw sequencing reads were demultiplexed using Illumina bcl2fastq2 Conversion
Software (v2.20) and RTA (v.1.18.54.4). Reads in each sample were processed using the
DADA2 (v1.22.0) pipeline [62] for taxonomy assignment to amplicon sequence variants
(ASVs) based on the Silva reference database (version 138.1). Our sequencing run included
DNA extraction controls, PCR negative controls, and positive controls. All negative controls
obtained less than 900 reads and positive controls had over 20,000 reads.

4.5. Metabolic Pathway Analysis Based on 16S Data

The PICRUSt2 (Phylogenetic Investigation of Communities by Reconstruction of
Unobserved States) software (v2.5.1) [63] was used to analyze the functional potential
of the microbiome data. ASVs with less than 10% prevalence were excluded from the
data analysis. Linear models were constructed to evaluate correlations between IgG
and the abundance of KEGG orthologs, Enzyme Classification numbers, and inferred
MetaCyc pathways.

4.6. Statistics

Analyses were performed with 48 samples which covered 16 subjects across 3 time-
points. Statistical analysis, calculation of diversity metrics, bar plots, and construction
of Figures 2–6 were performed with R version 4.1.0 in the Rstudio interface version
1.4.1106 with the following packages: compositions (v.2.0–2), DESeq2 (v.1.32.0), ggh4x
(v.0.2.0), ggplot2 (v.3.3.6), ggpubr (v.0.4.0), knitr (v.1.33), microbiome (v.1.14.0), microViz
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(v.0.9.0), phyloseq (v.1.36.0), stats (v.4.1.0), tibble (v.3.1.2), and vegan (v.2.5–7). Figure 1
was constructed using Inkscape (v1.2) software with open-source vector images from the
UXWing site.

IgG titers over 3 timepoints were compared by paired Wilcoxon rank-sum tests. To
determine the differential distribution of IgG levels among categorical sample variables
(i.e., sex and vaccine manufacturer), Wilcoxon rank-sum tests were performed. To evaluate
the relationship between IgG and age, a linear regression was performed.

To visualize the microbiome composition, samples were rarefied to 10,000 reads and
converted to relative abundance. Stacked bar plots were constructed from the top 24 genera
using the compositional bar-plot function in the microViz package [64]. All additional taxa
were grouped in an additional category as “other”.

Alpha diversity was determined using the Richness and Shannon diversity metrics,
computed using the alpha function in the microbiome package. Linear and quadratic mod-
els were constructed in R to evaluate correlations between alpha diversity and IgG response
and were controlled with age and sex as covariates. Significant trends were visualized with
scatterplots which included the corresponding linear or quadratic regression model and
relevant correlation statistics.

Beta diversity was computed on rarefied ASV count data using the Bray-Curtis and
Jaccard distance metrics using the distance function in the phyloseq package [65]. PER-
MANOVA was performed using the Adonis function in the vegan package to evaluate
statistically significant differences in beta diversity across sample variables. Principal
Coordinates Analysis (PcoA) was performed to visualize beta-diversity differences using
the ordination functions in phyloseq.

Differential abundance of taxa was evaluated at the ASV, genus, and phylum levels
using the DESeq2 package [66], with differences represented as log2 fold change. Paired
two-sample Wilcoxon tests were performed to further confirm statistical significance.

To evaluate correlations between the abundance of specific taxa (>20% prevalence)
in baseline microbiomes and IgG response, a center-log ratio (CLR) transformation of the
relative abundance of the microbiome was performed. Linear models were constructed
on the resultant data set and were controlled with age and sex as covariates. The resulting
p-values were adjusted for multiple comparisons with the Benjamini–Hochberg correction,
and then scatter plots were constructed for correlations with FDR-adjusted p-values (q-
values) less than 0.20.
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