
Citation: Patel, U.; Susman, D.; Allan,

A.L. Influence of Extracellular

Vesicles on Lung Stromal Cells

during Breast Cancer Metastasis. Int.

J. Mol. Sci. 2023, 24, 11801. https://

doi.org/10.3390/ijms241411801

Academic Editor: Hugo Ronaldo

Freitas Caires

Received: 12 June 2023

Revised: 17 July 2023

Accepted: 19 July 2023

Published: 22 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Influence of Extracellular Vesicles on Lung Stromal Cells during
Breast Cancer Metastasis
Urvi Patel 1,†, David Susman 1,† and Alison L. Allan 2,3,4,*

1 Department of Anatomy & Cell Biology, Western University, London, ON N6A 5W9, Canada;
upatel32@uwo.ca (U.P.); dsusman@uwo.ca (D.S.)

2 Departments of Anatomy & Cell Biology and Oncology, Western University, London, ON N6A 5W9, Canada
3 London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 5W9, Canada
4 Lawson Health Research Institute, London, ON N6A 5W9, Canada
* Correspondence: alison.allan@lhsc.on.ca; Tel.: +1-519-685-8600 (ext. 55134)
† These authors contributed equally to this work.

Abstract: Breast cancer is a prominent cause of cancer diagnosis and death in women globally, with
over 90% of deaths being attributed to complications that arise from metastasis. One of the common
locations for breast cancer metastasis is the lung, which is associated with significant morbidity
and mortality. Curative treatments for metastatic breast cancer patients are not available and the
molecular mechanisms that underlie lung metastasis are not fully understood. In order to better treat
these patients, identifying events that occur both prior to and during metastatic spread to the lung is
essential. Several studies have demonstrated that breast cancer-derived extracellular vesicles secreted
from the primary breast tumor play a key role in establishing the lung pre-metastatic niche to support
colonization of metastatic tumor cells. In this review, we summarize recent work supporting the
influence of extracellular vesicles on stromal components of the lung to construct the pre-metastatic
niche and support metastasis. Furthermore, we discuss the potential clinical applications of utilizing
extracellular vesicles for diagnosis and treatment. Together, this review highlights the dynamic nature
of extracellular vesicles, their roles in breast cancer metastasis to the lung, and their value as potential
biomarkers and therapeutics for cancer prevention.
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1. Introduction

Recent global statistics from 2020 highlight that breast cancer is the most commonly
diagnosed cancer and a leading cause of cancer mortality in women, with more than
2.2 million annual reported cases and more than 680,000 annual deaths worldwide [1].
Countries ranking high on the human development index are associated with higher
incidence rates due to a combination of reproductive, hormonal, and lifestyle risk factors.
There has been a rise in breast cancer cases in developing regions as they move towards
improving human lifestyle and reflecting the profile of ‘westernized’ countries. In general,
the 5-year net survival rates of breast cancer patients in high-income countries range from
85–90% for early stages (I and II), while lower income regions such as sub-Saharan African
countries sit at ~66% [1]. These survival rates become lower for more advanced stages (III
and IV) in both settings. Stage I and II tumors are primarily localized whereas stage III and
IV breast cancers begin to form regional or distant metastases, respectively [2].

Breast cancers are often classified as invasive or non-invasive based on their histopathology,
with ductal carcinoma in situ (DCIS) and lobular carcinoma in situ (LCIS) representing the
two groups of non-invasive cancers. DCIS is subclassified into papillary, cribriform, solid
and comedo groups, where papillary and cribriform subtypes are low-grade, and solid
and comedo are high-grade. Treatment of DCIS is required due to the risk of progression
into an invasive breast cancer [3]. LCIS is also considered a risk factor for potential disease
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progression and requires active surveillance alone when not associated with infiltrating
carcinoma [3–5]. Breast cancer is further categorized into four main clinically relevant
molecular subtypes based on expression of the estrogen receptor (ER), progesterone recep-
tor (PR), and human epidermal growth factor receptor 2 (HER2). The subtypes, arranged
by worsening prognosis, are luminal A (ER+, PR+/−, HER2-), luminal B (ER+, PR+/−,
HER2+/−), HER2-positive (ER-, PR-, HER2+), and triple-negative (ER-, PR-, HER2-) [6].
Luminal A carcinomas are low-grade and responsive to hormone therapies such as ta-
moxifen or aromatase inhibitors with low rates of relapse. Luminal B cancers benefit
from both hormone therapy and chemotherapy but are more aggressive and have higher
recurrence rates. HER2-positive cancers can be subclassified as luminal HER2, expressing
both hormone receptors and HER2; or HER2-enriched, expressing only the HER2 receptor.
Therapies for this subtype include trastuzumab, pertuzumab, and other tyrosine kinase
inhibitors which target the HER2/neu protein. Triple-negative breast cancers represent
a heterogenous group of highly aggressive breast cancers. The lack of ER/PR/HER2 ex-
pression limits treatment options to individual or combined chemotherapy, surgery, and
radiotherapy with reduced efficacy, although there are some promising new therapeutic
options emerging including immunotherapy [7–9].

2. Breast Cancer Metastasis

Regardless of subtype, a significant challenge in treating breast cancer is that once the
disease becomes metastatic, treatment efficacy substantially decreases [3]. As a result, over
90% of breast cancer deaths are attributed to complications that arise from metastasis [10].
Metastasis is a key hallmark of cancer that results in disease progression and the formation
of secondary tumors in distant organs [10,11]. The metastatic cascade begins with cancer
cells detaching from the primary tumor and invading into adjacent tissues; crossing the
endothelial layer to intravasate into the bloodstream or lymphatic circulation [10,12]. These
circulating tumor cells travel through the body to distant capillary beds and extravasate into
the parenchyma of other organs [10,12]. At the secondary site, cancer cells proliferate under
favorable conditions to generate new colonies and complete the metastatic cascade [10,12].

The distribution and growth of metastases in different organs is not arbitrary; instead,
tumor cells demonstrate organ-specific preferences for metastasis [13–16]. In 1889, an En-
glish surgeon named Stephen Paget proposed the ‘seed and soil’ hypothesis, positing that a
cancer cell (the ‘seed’) will only metastasize to secondary sites (the ‘soil’) that support and
promote cancer growth. This proposed theory was inspired by Paget’s review of 735 necrop-
sies, 241 of which possessed secondary liver metastases and 70 with lung infiltration. These
findings highlighted that tumor dissemination was likely a non-random event, motivated
by additional unknown factors at the time [14]. Paget’s hypothesis has largely withstood
the test of time, generating more than a century of research that continues to elucidate the
complex process of metastasis. Today we better understand that breast cancers demonstrate
an increased propensity for metastasis to bone (50.7%), lung (23.9%), liver (19.7%), and
brain (5.7%) tissue, with each breast cancer subtype demonstrating varying affinities for
these targeted secondary organs [17]. Experimental studies from our lab using an ex vivo
model system assessed the migration of breast cancer cells towards organ-conditioned
media generated from the primary organ sites of breast cancer metastasis (bone, brain,
liver, lung) of healthy mice. Breast cancer cells exhibited migratory patterns that parallel
the organotropic metastatic behavior observed in breast cancer patients [18]. For exam-
ple, patients with aggressive triple-negative disease typically show a greater occurrence
of lung metastases [17]. Supporting this, we observed that triple-negative breast cancer
cells demonstrated the greatest migration towards lung-conditioned media in vitro [18]
and preferential spontaneous metastasis to the lung in vivo [19]. Further investigation
revealed that the lung-conditioned media contained multiple soluble factors such as ba-
sic fibroblast growth factor (bFGF), epiregulin, and vascular endothelial growth factor A
(VEGFA), which are involved in promoting tumorigenic and metastatic behaviors [18],
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supporting the idea that unique components of the lung microenvironment may support
breast cancer metastasis.

3. The Pre-Metastatic Niche

Gao and colleagues [15] recently proposed five general principles underlying metastatic
organotropism, all highlighting the importance of the metastatic microenvironment. These
are (1) tropism may develop prior to dissemination by forming a supportive ‘pre-metastatic
niche’ via modification of the microenvironment in the target organ; (2) chemotactic and
adhesive factors aid in attracting cancer cells to and maintaining cancer cell survival and
growth in a secondary microenvironment; (3) vasculature is essential to cancer infiltration
via extravasation; (4) successful metastasis is dependent on the ability of resident stromal
cells to modify the secretome and extracellular matrix (ECM) in the secondary microenvi-
ronment; and (5) cancer–microenvironment interactions perpetually change throughout the
colonization process [15] (summarized in Figure 1). In particular, establishing a permissive
microenvironment in the secondary site is a critical first step for successful metastasis. This
concept of a ‘pre-metastatic niche’ (PMN) was first proposed in 2005 by Kaplan et al. [20],
who noticed that the formation of aggregates of vascular endothelial growth factor receptor
1 (VEGFR1)-expressing, bone-marrow-derived hematopoietic progenitor cells in targeted
organs of metastasis prior to cancer cell arrival at the site. Blocking VEGFR1 function
limited pre-metastatic cluster formation and successful metastasis [20]. The PMN was
subsequently defined as a microenvironment in a secondary organ that has been modified
to improve cancer metastasis [21–23].
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niche. (1) Metastatic organotropism may develop prior to dissemination from the primary breast
tumor to the lung by forming a supportive ‘pre-metastatic niche’ via modification of the lung
microenvironment. (2) Chemotactic and adhesive factors aid in attracting breast cancer cells to and
maintaining breast cancer cell survival and growth in the lung. (3) Vasculature within the lung is
essential for cancer infiltration via extravasation. (4) Successful metastasis is dependent on the ability
of resident stromal cells to modify the secretome and extracellular matrix (ECM) in the lung. (5) Breast
cancer–lung microenvironment interactions perpetually change throughout the colonization process.
Based on principles reported by Gao and colleagues [15]. Created using BioRender.
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In the context of breast cancer, the lung is a particularly unique environment for
metastasis given its physical proximity to the breast, extensive capillary networks and a
large surface area for infiltration [15]. Additional modifications including remodeling of
the lung ECM and secretome and breakdown of endothelial tight junctions all support
formation of a lung PMN [24]. Current research is focused on better understanding the
significance of the PMN in breast cancer progression. Growing evidence has established
PMN formation as an integral step in organotropic metastasis of breast cancer. Generating
the PMN demonstrates the successful recruitment and manipulation of multiple cell types
and tissues prior to tumor dissemination. One of the key factors that can contribute to
breast cancer–stroma crosstalk in order to mediate PMN formation are extracellular vesicles
(EVs) [25,26].

4. Extracellular Vesicles

Extracellular vesicles are lipid-bound vesicles secreted by all cell types. Originally
believed to be cellular debris, further analysis has revealed that EVs function as packaging
entities containing molecular cargo such as proteins, nucleic acids, lipids, and metabolites,
which can be transported through the body and transferred between cells as a mode of
communication [27]. Extracellular vesicles are classified based on size, function, and bio-
genesis [28]. Exosomes (30–150 nm) are intraluminal vesicles that form from the plasma
membrane via the endosomal pathway and have a regulated secretion [29,30]. Endosomes
(100–500 nm) are degradative, pre-lysosomal vesicles that primarily function in recycling or
degradative systems of ligands and macromolecules [31,32]. Early sorting endosomes (ESE)
are initially formed by inward invagination of the plasma membrane, followed by matura-
tion into late sorting endosomes (LSE), and a second invagination of the LSE to generate
multivesicular bodies (MVB) [33]. Multivesicular bodies are a subset of endosomal vesicles
that can be transported to the plasma membrane via cytoskeletal and microtubule networks.
Multivesicular bodies are generated by inward invagination of the endosomal membrane
with the release of discrete intraluminal vesicles (ILVs) into the MVB lumen. The MVBs
can then either fuse with lysosomes and be degraded, or fuse with the plasma membrane
and release the contained ILVs in the extracellular space as exosomes. Deriving from ILVs,
exosomes have size constraints and cannot be larger than 150–200 nm, depending also on
the method used to detect the size [28,33]. Microvesicles (30–1000 nm) are produced and
released directly into the extracellular space via outward blebbing of the plasma membrane
instigated by increased cytosolic calcium levels. Activation of calcium-dependent proteases
such as calpain results in disruption of the cytoskeleton and subsequent vesicle release
from domains called lipid rafts [29,34]. Microvesicles have selectively enriched contents
and (similar to exosomes) have a regulated release, making them important signaling com-
ponents in response to physiological changes [35,36]. Apoptotic bodies (50–5000 nm) are
formed from dying cells as they degrade their cellular content [29,37]. They are formed via
apoptotic cell disassembly, a general three-step process requiring plasma membrane bleb-
bing, outward membrane protrusions, and fragmentation into EVs [38]. The mechanism of
vesicle formation varies depending on regulators involved [39,40]. The release of apoptotic
bodies serves as a mode of clearing dead cell debris via phagocytes and communicating
with surrounding cells via the uptake of encapsulated proteins and nucleic acids. Finally,
large oncosomes (1–10 µm) are exclusively cancer-related EVs. They are generated by the
blebbing of amoeboid cancers and have been identified in luminal A and triple-negative
breast cancer as well as in prostate cancer [41,42]. Unlike microvesicles and exosomes
which have been the focus of more research, the full extent of apoptotic body and large
oncosome signaling and functionality has not yet been elucidated [38,43].

A growing body of research highlights the importance of EV signaling in breast cancer
progression, particularly in the context of the PMN and the metastatic microenvironment.
This signaling is mediated in large part by the cargo contained within the EVs. As an
example, in addition to proteins, EVs contain a variety of non-coding RNAs including
circular RNAs (circRNAs), microRNAs (miRNAs) and long non-coding RNAs (lncRNAs).
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Along with other cargo components, non-coding RNAs contained within EVs contribute to
many important aspects of the metastatic process, such as angiogenesis, cancer–stromal
cell communication, and epithelial-to-mesenchymal transition (EMT) [44,45]. The protein
and RNA cargo components that have been observed to be contained within breast-cancer-
derived EVs are the focus of this review and are summarized in Tables 1 and 2, respectively.
Although lipids are important in regulating EV contents and EV-derived lipids can modify
recipient cell activity [46], to date there is currently limited data in the literature focused
on the role of lipid-based EV cargo in influencing breast cancer features. While work by
Nishida-Aoki and colleagues has demonstrated that highly metastatic breast cancer EV
lipid contents can activate angiogenesis upon uptake by endothelial cells [47], further
research in this important area is needed.

Relative to the normal physiological state, the process of tumorigenesis has an impact on
EV release, both in terms of the number of EVs released as well as their cargo/composition.
In particular, the production and packaging of EVs is influenced by the conditions of the
individual and various environmental stimuli. Cargo within EVs can be influenced by
conditions such as obesity, cardiovascular disease, and autoimmune disorders to further
support tumorigenesis. For example, EVs derived from obese adipose tissue promoted
the proliferation of MDA-MB-231 and MCF7 breast cancer cells along with increasing
invasion and migration of MDA-MB-231 cells. This was accomplished through activation
of extracellular signal-regulated kinase (ERK) and phosphatidylinositol-3-kinase (PI3K)
pathways [48]. There have been associations discovered between cardiovascular disease
and high levels of microvesicles that have pro-angiogenic effects and influence inflam-
mation [49]. Furthermore, autoimmune organs can produce EVs that carry autoantigens
which trigger unwanted immune responses to assist tumor cells in successful immune
evasion [50].

Extracellular vesicles are released at higher rates in environments of high temperature,
acidity, and hypoxia, a feature that is particularly relevant in cancer since tumors are inher-
ently hypoxic [51–53]. Once a tumor grows beyond a 70–200 µm proximity from nearby
blood vessels, cancer cells become oxygen-starved [54]. Furthermore, research into the
disparity between hypoxic versus normoxic cancer EVs has revealed that hypoxia affects EV
size, production, and contents [55]. The altered signaling that is observed during hypoxia is
largely driven by hypoxia-inducible factors (HIFs), a protein family of oxygen homeostasis
regulators. These transcription factors exist in three variants (HIF1, HIF2 and HIF3) with
an α or β subunit. The β subunit is constitutively expressed and minimally reactive to
oxygen saturation, while the α subunit is increasingly expressed under hypoxic conditions.
Oxygen deprivation promotes the heterodimerization of HIFα and HIFβ, resulting in tran-
scription factor functionality and increased EV release [55,56]. With respect to breast cancer,
HIF-1α has been associated with EV release. Pachane et al. [57] compared the proteomes
of EVs derived from MDA-MB-231 breast cancer cells grown in hypoxic versus normoxic
conditions and observed that hypoxic EVs were enriched with proteins associated with the
mTOR, TGF-β and pro-angiogenic VEGFA/VEGFR2 pathways. In breast cancer, mTOR
activation contributes to increased proliferation, migration, and invasion; TGF-β signaling
is involved in the differentiation of resident fibroblasts into cancer-associated fibroblasts,
and endothelial uptake of VEGF promotes angiogenesis [58–61]. Overall, these studies
support the concept that hypoxia is an important physiological regulator of breast cancer
EVs, resulting in EV-mediated cancer–stromal interactions and cancer-cancer signaling that
support tumor growth and metastasis.
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Table 1. Breast-cancer-derived extracellular vesicle protein contents.

Cellular Source
of EVs Experimental System Protein Function Reference

MDA-MB-231 breast
cancer cells (human)

In vitro Tissue Factor
Exchanged between breast cancer cells
to increase aggressiveness and induce

cancer-associated thrombosis
[62,63]

In vitro + in vivo ITGα6, ITGβ1, ITGβ4 Promotes lung-tropic
extracellular vesicles [64]

In vitro + in vivo NDPK-B
Regulates purinergic signaling to

enhance endothelial cell migration
and permeability

[65]

In vitro + in vivo TβRII
Activates TGF-β signaling pathway to
promote CD8+ T cell exhaustion and

enhance EMT
[59]

In vitro + in vivo Survivin Upregulates SOD1 to induce
CAF activation [66]

In vitro + in vivo Caveolin-1
Induces fibroblast-mediated

tenascin-C release, M2-polarization of
macrophages, and angiogenesis

[67]

In vitro + in vivo Myosin-9 Enhances macrophage infiltration [68]

In vitro + in vivo MMP-1
Interacts with PAR1 to promote EMT,

invasion, and migration of breast
cancer cells

[69]

In vitro RRAGB, RPTOR, MTOR,
RRAGA Activates mTOR signaling cascades [57]

In vitro
SMAD2, SMAD3,
SMAD9, SMAD1,

SMAD5
Activates TGF-β signaling cascades [57]

In vitro

ABCF2, FXR2, AP2S1,
SHC2, ARF6, ARF4,
MTOR, CDC42BPB,

STAM, SHC1, EIF3H

Activates VEGFA/VEGFR2
angiogenic signaling [57]

In vitro + in vivo EphA2
Increases vascular permeability by
downregulating tight junctions in

endothelial cells
[70]

In vitro + in vivo EDIL3
Promotes breast cancer cell invasion

via the integrin–FAK
signaling pathway

[71]

MCF10CA1a breast
cancer cells (human) In vitro + in vivo Annexin II

Promotes angiogenesis and activates
p38, NF-κB and STAT3 pathways in

endothelial cells
[72]

EO771 mammary
carcinoma cells

(mouse)
In vitro + in vivo CCL2

Binds to CCR2-expressing cells in the
lung and changes immune

environment to increase
metastatic burden

[73]

ITG, integrin; NDPK-B, nucleoside diphosphate kinase-B; TβRII, transforming growth factor-β type II receptor;
TGF-β, transforming growth factor β; CD8, cluster of differentiation 8; EMT, epithelial to mesenchymal transition;
SOD1, superoxide dismutase type 1; CAF, cancer-associated fibroblast; MMP, matrix metalloproteinase; PAR1,
protease-activated receptor 1; RRAGB, Ras-related GTP-binding protein B; RPTOR, regulatory-associated protein
of mTOR; mTOR, mammalian target of rapamycin; RRAGA, Ras-related GTP-binding protein A; SMAD3, mothers
against decapentaplegic homolog 3; ABCF2, ATP-binding cassette subfamily F member 2; FXR2, FMR1 autosomal
homolog 2; FXR2, fragile X-syndrome-related protein 2; AP2S1, adaptor related protein complex 2 subunit sigma
1; SHC2, Src homology-2-domain-containing-transforming protein C2; ARF, ADP-ribosylation factor; EIF3H,
Eukaryotic translation initiation factor 3 subunit H; VEGFA, vascular endothelial growth factor A; VEGFR2,
vascular endothelial growth factor receptor 2; EphA2, ephrin type-A receptor 2; EDIL3, EGF-like repeat and
discoidin I-like domain-containing protein 3; FAK, focal adhesion kinase; NF-κB, nuclear factor kappa B; STAT3,
signal transducer and activator of transcription 3; CCL2, C-C motif chemokine ligand 2; CCR2, C-C chemokine
receptor 2.
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Table 2. Breast-cancer-derived extracellular vesicle RNA contents.

Cellular Source of EVs Experimental Model Type RNA Function Reference

MDA-MB-231 breast
cancer cells (human) In vitro miR-939

Targets VE cadherin to increase
endothelial monolayer

permeability
[74]

In vitro + in vivo miR-105
Targets ZO-1 to increase migration

and permeability of endothelial
cells

[75]

In vitro + in vivo miR-122
Suppresses glucose uptake in lung
fibroblasts by downregulating the
glycolytic enzyme pyruvate kinase

[76]

In vitro + in vivo miR-9-5p, miR-195-5p,
miR-203a-3p

Targets ONECUT2 transcription
factor to induce cancer stem cell

phenotype and increase expression
of genes associated with stemness

in breast cancer cells

[77]

In vitro + in vivo miR-138-5p

Decreases KDM6B expression in
macrophages, inhibits M1

polarization, and stimulates M2
polarization

[78]

In vitro + in vivo miR-9 Induces CAF phenotype [79]

In vitro + in vivo circPSMA1

Inhibits miR-637, which targets
Akt1 to regulate cell proliferation
and migration in triple-negative

breast cancer cells

[80]

MCF7 breast cancer cells
(human) In vitro miR100, miR-222, miR-30a

Mediates drug resistance against
docetaxel and adriamycin in
sensitive breast cancer cells

[81]

In vitro miR-221/222
Targets estrogen receptor, mediates
tamoxifen resistance in sensitive

breast cancer cells
[82]

In vitro miR-155

Mediates chemoresistance against
doxorubicin and paclitaxel,

triggers EMT in sensitive breast
cancer cells

[83]

MDA-MB-231, MCF7
breast cancer cells

(human)
In vitro + in vivo miR-146a

Modifies expression of
thioredoxin-interacting protein

and activates the Wnt/β catenin
pathway, induces CAF phenotype

[84]

In vitro miR-1246
Targets CCNG2, promotes
migration and viability of
mammary epithelial cells

[85]

In vitro LncRNA-H19 Induces doxorubicin resistance in
sensitive breast cancer cells [86]

In vitro + In vivo LncRNA-SNHG1

Targets miR-216b-5p which
upregulates JAK2 and STAT3 to

enhance migration and
angiogenesis of endothelial cells

[87]

4T1 mammary carcinoma
cells (mouse) In vitro + In vivo miR-200b-3p

Binds to PTEN to regulate
AKT/NF-κB/CCL2 cascade in

alveolar epithelial type II cells and
recruit myeloid-derived

suppressor cells

[88]

In vitro + In vivo miR-183-5p

Targets PPP2CA to promote NF-κB
signaling and enhanced expression

of IL-1β, IL-6, and TNF-α in
tumor-associated macrophages

[89]

4T07 mammary carcinoma
cells (mouse) In vitro + In vivo Let-7 Recruit neutrophils and stimulate

N2 polarization [90]
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Table 2. Cont.

Cellular Source of EVs Experimental Model Type RNA Function Reference
4T1, 4T07 mammary

carcinoma cells
(mouse)

In vitro + in vivo miR-125b
Negatively regulates p53,
increases CAF activation

markers
[91]

In vitro + in vivo miR-567

Increases sensitivity to
trastuzumab and inhibits

autophagy in resistant breast
cancer cells

[92]

miRNA, Micro RNA; VE, vascular endothelial; ZO-1, zonula occludens 1; ONECUT2, one-cut homeobox 2;
KDM6B, lysine demethylase 6B; CAF, cancer-associated fibroblast; circPSMA1, circular RNA proteasome 20S
subunit alpha 1; EMT, epithelial to mesenchymal transition; CCNG2, cyclin G2; LncRNA, long non-coding RNA;
JAK2, janus kinase 2; STAT3, signal transducer and activator of transcription 3; SNHG1, small nucleolar RNA host
gene 1; PTEN, phosphatase and tensin homolog; NF-κB, nuclear factor kappa B; CCL2, C-C chemokine ligand
2; PPP2CA, protein phosphatase 2 catalytic subunit A; IL-1β, interleukin-1β; IL-6, interleukin-6; TNF-α, tumor
necrosis factor α; Let-7, Lethal-7.

5. Influence of EVs on Lung Stromal Components
5.1. Endothelial Cells

One of the crucial stromal components in the lung is endothelial cells, which form
a single layer lining along all blood vessels [93]. They are necessary for the process of
angiogenesis—the formation of new blood vessels that supply nutrients and oxygen for
tumor growth and also facilitate tumor cell dissemination [94]. Endothelial cells respond
to pro- and anti-angiogenic factors released by the microenvironment that can either
promote or inhibit vessel formation, respectively [93]. They also perform a barrier function,
since substances in the blood are required to cross the endothelial layer in order to enter
another site [93]. In the tumor microenvironment, the balance between these factors can
be disrupted with an increase in pro-angiogenic factors to promote the formation of new
vasculature [94]. Moreover, cancer-associated endothelial cells take on a different phenotype
than that seen in normal tissues. In the normal physiological state, endothelial cells typically
form organized and efficient vasculature with high integrity, allowing tightly regulated
passage of nutrients to tissues and control of blood flow. In contrast, cancer-associated
endothelial cells often form disorganized vasculature that is morphologically abnormal [95].
This vasculature tends to be unstable and leaky, influencing blood flow throughout the
tumor [95] and supporting the metastatic process by easing the extravasation step in which
tumor cells need to cross the endothelial monolayer to enter the secondary site [10].

There is growing evidence that tumor-derived EVs can promote angiogenesis by regulat-
ing the activity of endothelial cells at distant secondary sites to facilitate metastasis [54,96–99].
Zhou et al. demonstrated that EVs purified from triple-negative MDA-MB-231 breast
cancer cells promoted metastasis-supporting behavior of primary human microvascular
endothelial cells (HMVECs) [75]. They observed an increase in migration and permeability
of the endothelial layer in vitro which was attributed to the presence of miR-105 in EVs
derived from MDA-MB-231 cells [75]. The primary target of miR-105 is ZO-1, which was
shown to be downregulated in HMVECs treated with EVs [75]. These results were repli-
cated in vivo, where mice injected with MDA-MB-231 EVs showed similar pre-metastatic
changes in lung endothelial cells, resulting in increased metastasis to the lung [75]. An-
other factor that regulates vessel permeability and contacts between endothelial cells are
adherens junctions, specifically vascular endothelial cadherin (VE-cadherin) [74]. A study
by Di Modica et al. showed that EVs from MDA-MB-231 cells were able to reduce the
expression of VE-cadherin in endothelial cells, resulting in impaired endothelial function
and enhanced permeability of the endothelial layer [74]. Endothelial cells treated with
MDA-MB-231 EVs were found to display increased passage of breast cancer cells across
the endothelium and a loss of cell-to-cell contacts in vitro [74]. This effect was attributed to
the presence of miR-939 in these breast-cancer-derived EVs which targeted and disrupted
expression of VE-cadherin [74].
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In addition to miRNAs, growing evidence demonstrates that proteins contained within
EVs can modify the behaviour of endothelial cells to promote angiogenic processes [72].
Specifically, breast-cancer-derived EVs have been shown to harbor annexin II (Anx-II),
a protein associated with various cancer processes such as migration, proliferation, an-
giogenesis, and extracellular matrix degradation [72]. Maji and colleagues demonstrated
that EVs from MCF10CA1a breast cancer cells contained Anx-II that resulted in increased
endothelial tube formation in vitro and in vivo [72]. Moreover, when mice were injected
with EVs from lung metastatic MDA-MB-4175 cells, the EVs localized primarily to the lung
and resulted in higher numbers of lung metastases [72]. Another study comparing EVs
from non-tumorigenic HME-1 cells to EVs from MDA-MB-231 cells demonstrated that
MDA-MB-231 EVs were enriched in nucleoside diphosphate kinase (NDPK-B) expression
and phosphotransferase activity [65]. Although NDPK-B is involved in several functions, its
primary role is to transfer phosphate from nucleoside triphosphates to nucleoside disphos-
phates in nucleotide metabolism [100]. When endothelial cells were treated with NDPK-B+
EVs, enhanced migration and increased permeability of the endothelial monolayer was
observed [65]. These changes were suggested to increase angiogenesis and extravasation
in the lung to promote metastasis [65]. In mouse models, EV treatments showed an in-
crease in pulmonary vascular leakage and greater lung metastasis that were caused by
disruptions to the purinergic signaling pathway through changes in NDPK-B [65]. Together,
these studies demonstrate the ability of breast-cancer-derived EVs to transport cargo to
endothelial cells in the lung. By inducing pro-tumorigenic changes including increased
permeability of the endothelial layer and enhanced angiogenesis, metastatic breast tumor
cells are more likely to extravasate into the lung and colonize, leading to the successful
formation of macrometastases.

5.2. Fibroblasts

Another important stromal component is fibroblasts, the primary source of ECM
components in lung tissue. These cells generate optimal tissue conditions for lung func-
tion by synthesizing what is termed the “matrisome”. The matrisome is composed of all
structural and adhesive proteins and ground substance components such as proteoglycans,
glycoproteins, fibrillar proteins, and ECM-modifying proteins [101]. In addition, fibrob-
lasts generate the basement membrane which separates the epithelium and surrounding
stroma. This membrane serves as a barrier composed of type IV collagen and laminins
with varying permeability, promoting the adhesion and migration of attaching cells via in-
tegrins and initiating cell signaling by releasing growth factors and other ECM-remodeling
enzymes [102,103]. The ability of fibroblasts to create and remodel the lung ECM dictates
interactions between all stromal cell components including endothelial cells, adipocytes,
immune cells, neuronal cells, and others [104]. Additionally, the remodeling abilities of
fibroblasts are essential for tissue repair during wound healing [105].

Thus far, the literature has emphasized the importance of fibroblast function in pro-
moting cancer metastasis. The generation of heterogenous groups of cancer-associated
fibroblasts (CAFs) has proven to be an essential step for remodeling the lung ECM into a
cancer-promoting environment [106]. Research suggests that activation of the IL-6/STAT3,
FGF2/FGR1, TGF-β/SMAD, and NF-κB signaling cascades may contribute to the activa-
tion and function of CAFs from normal fibroblasts [107]. Several studies have shown that
during lung metastasis, there is significant crosstalk between primary breast tumor cells
and lung fibroblasts that is mediated through EVs [108]. In breast cancer, specific RNAs and
proteins contained within tumor-derived EVs such as miR-9, TGF-β, and Survivin activate
CAFs [66,79,109,110]. Communication via EV release and uptake by fibroblasts supports
the formation of a lung PMN and the establishment/growth of colonizing metastases.

Lung fibroblasts also support PMN formation by modulating the inflammasome and
deposition of cancer-supportive ECM components. Hoshino and colleagues found that
lung-targeted MDA-MB-231 EVs activated fibroblast S100 genes responsible for prolif-
eration and migration [64]. In vivo studies have also shown that activation of S100A4
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in mouse lung fibroblasts attracts T-lymphocytes which release cytokines that promote
breast to lung metastasis. Deletion of S100A4+ fibroblasts have been shown to hinder
metastasis, emphasizing the role of fibroblasts in inflammation and inflammatory cell
recruitment [111]. Additional work by Gong et al. found that cyclooxygenase 2-expressing
(COX-2+) resident lung fibroblasts promoted reprogramming of lung myeloid cells to
reform the immune microenvironment. Deletion of the PTGS2 gene encoding COX2 pre-
vented fibroblast-mediated immune remodeling and subsequently impaired breast cancer
metastasis to the lungs [112]. To further understand how breast cancers generate inflamma-
tory, cancer-associated fibroblasts (iCAFs), Gonzalez-Callejo and colleagues treated lung
fibroblasts with MDA-MB-231 EVs, then re-treated MDA-MB-231 cells with conditioned
media acquired from EV-treated fibroblasts. They reported that EV treatment induced
increased IL-6, IL-8, and CXCL1 secretion in fibroblasts, which corresponded with the
acquisition of chemoresistance to paclitaxel and the expression of Nanog and ALDH1A1
stem cell markers in MDA-MB-231 cells [113]. These findings support the generation of a
metastasis-promoting lung inflammasome organized by fibroblast recruitment of EVs.

A hallmark of PMN formation is remodeling of lung ECM components. Medeiros et al. [114]
observed that mice bearing triple-negative SUM159 breast tumors demonstrated enhanced
levels of periostin, fibronectin, tenascin-c, matrix metalloproteinase 9, collagen A1, C-C
chemokine ligand 2 (CCL2), and lysyl oxidase in the lung when compared to the lungs of
tumor-naïve or MCF7 tumor-bearing mice. Additional in vitro work has confirmed that
lung fibroblasts only demonstrate elevated periostin and fibronectin levels when treated
with triple-negative breast cancer EVs, and not luminal A EVs [114]. Earlier work by
Libring et al. found that breast cancer EVs greatly improved the deposition of aberrant
fibronectin clusters by lung fibroblasts consistent with fibronectin patterns at the primary
tumor [115]. Increased ECM deposition at the primary tumor and PMN stiffens tissues
to promote breast to lung metastasis [116–118]. Studies by Hoshino et al. suggest that
lung fibroblast EV uptake is dependent on the presence of integrin β4 (ITGβ4), which is
predominantly expressed in lung-targeting, triple-negative cancers [64]. Together, these
findings suggest that lung ECM remodeling is linked to organotropic breast cancer EVs
that prime the lung microenvironment for metastasis.

Aside from establishing the PMN, CAFs are important in the tumor microenvironment
for cancer progression and can release their own EVs that contribute to this. CAF-derived
EVs promote breast cancer growth and tumorigenicity [108]. Cancer-associated fibroblast
EVs containing miR-500a-5p were transferred to MDA-MB-231 and MCF7 breast cancer
cells. This resulted in the downregulation of ubiquitin-specific peptidase 28 (USP28) and
induced breast cancer cell proliferation, migration, invasion, and EMT [119]. Patient-
derived CAF EVs have been shown to contain miR-21, miR-143, and miR-378e and to
promote EMT and stemness in T47D breast cancer cells [120]. Additionally, CAFs can
reprogram breast cancer metabolism to promote an aggressive phenotype. CAF EVs
containing lncRNA SNHG3 attenuated miR-330-5p activity to promote pyruvate kinase
M1/M2 (PKM) function in support of enhanced glycolysis and proliferation of cancer
in vitro and in vivo [121]. Interestingly, MDA-MB-231 EVs enriched with ITGβ4 activated
mitophagy and lactate generation in CAFs, and CAF-conditioned media used to re-treat
MDA-MB-231 cells enhanced breast cancer invasiveness, proliferation, and EMT [122].
These findings highlight the importance of breast cancer and CAF-derived EVs in the lung
microenvironment to support critical aspects of successful metastasis such as proliferation,
invasion, and EMT.

5.3. Immune Cells

At each step of the metastatic cascade, it is vital that tumor cells evade immune de-
struction to successfully survive and reach a distant organ for colonization [11]. Even at the
new site, immune components are altered to form an immunosuppressive environment that
facilitates the creation of the PMN. In the lung, two specific populations of macrophages
exist including alveolar macrophages found in the airway and alveolar lumen, and intersti-
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tial macrophages found in the parenchyma [123]. These macrophages are part of the innate
immune system and take on different phenotypes depending on their environment [124].
Typically, M1 macrophages are pro-inflammatory, have enhanced antigen presentation
and exert anti-tumorigenic effects, while M2 macrophages are anti-inflammatory and
promote tissue remodeling and tumor progression [124]. It has been observed that EVs
from MDA-MB-231 cells carry miR-138-5p, which is transferred to macrophages to de-
crease the expression of lysine demethylase 6B (KDM6B). This ultimately leads to M2
polarization and transcriptional inhibition of pro-inflammatory factors involved in M1
polarization [78]. When mice bearing breast tumors were engrafted with macrophages
treated with miR-138-5p breast-cancer-derived EVs, significantly higher incidences of lung
metastasis were observed, suggesting that miR-138-5p may signal lung macrophages to
induce pre-metastatic changes to the tumor immune microenvironment [78]. Another study
revealed that MDA-MB-231 cells that exhibit high signal-induced proliferation-associated
1 (SIPA1) protein expression can release EVs with upregulated expression of myosin-9 to
promote the recruitment of macrophages and metastasis of tumor cells to the lung [68].
Neutrophils are another component of the innate immune system that can undergo changes
to promote tumorigenesis [125]. It has been demonstrated that Lin28B, an RNA binding
protein, increased breast cancer stem cell populations which are a main source of EVs with
low let-7 miRNAs [90]. These EVs were able to recruit neutrophils and encourage M2
conversion to build an immunosuppressive PMN in the lung mediated by programmed
death-ligand 2 (PD-L2) upregulation and cytokine imbalance [90].

With regard to adaptive immunity, T cells play a crucial role in anti-tumor immunity;
however, their activity can be stunted depending on the microenvironment [126]. EVs
derived from human MDA-MB-231 and mouse 4T1 breast cancer cells have been shown
to express programmed death-ligand 1 (PD-L1) on their surface, which inhibits T cell
activation and cytotoxic functions to assist tumor immune evasion [127]. It has also been
reported that MDA-MB-231 cells can release and transfer the TGF-β type II receptor (TβRII)
through EVs to recipient cells to trigger the TGF-β signaling pathway [60]. The EVs
carrying TβRII promote CD8+ T cell exhaustion by stimulating activation of SMAD3
(mothers against decapentaplegic homolog 3) to associate with T cell factor 1 (TCF1)
transcription factor while also promoting EMT [60]. Nude mice injected with 4T07 breast
cancer cells experienced significantly higher lung metastasis and lower metastasis-free
survival when treated with TβRII+ EVs. This demonstrates the ability of EVs to establish
an immunosuppressive PMN in the lung [60].

Cytokines are secreted or membrane-bound proteins that allow for intercellular com-
munication [128]. The set of cytokines present in the tumor microenvironment have been
shown to influence the behaviour of immune cells while promoting or inhibiting cancer
pathogenesis [128]. Murine 4T1 breast cancer cells release LC3+ EVs which stimulate lung fi-
broblasts to produce CCL2 through the TLR2/MyD88/NF-κB (toll-like receptor 2/myeloid
differentiation primary response 88/ nuclear factor kappa B) signaling pathway [129]. This
in turn encourages lung PMN formation through recruitment of monocytes, suppression of
T cell function, and enhanced vascular permeability. By reducing the release of LC3+ EVs
from these cells or neutralizing CCL2, lung metastasis was inhibited, further supporting the
role of EVs in developing the PMN [129]. Another group also found that CCL2 expression
in the lung could be regulated by 4T1 breast cancer EVs containing miR-200b-3p, which
binds to PTEN to stimulate the AKT/NF-κB pathway [88]. They observed EV uptake by
type II alveolar epithelial cells in vivo which resulted in recruitment of myeloid-derived
suppressor cells to promote immune suppression in the lung. The number of lung metas-
tases was significantly higher in EV-treated mice compared to those with CCL2 knockdown,
again demonstrating the role of EVs in priming the lung microenvironment for metastatic
breast tumor cells [88]. Collectively, these findings demonstrate how EVs can modify the
behaviour of different cells of the immune system to form the tumor immune microenvi-
ronment. These alterations come together to support PMN formation and assist metastatic
breast tumor cells in successfully evading immune mechanisms in the lung.
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Taken together, the studies described above highlight that EVs secreted by primary
breast tumor cells can travel through the circulatory system to the lung in order to influence
changes in the lung microenvironment via their effect on stromal cells such as endothelial
cells, fibroblasts, macrophages, neutrophils, and T cells. In turn, these changes support
formation of the PMN prior to the arrival of metastatic breast tumor cells to promote their
survival and growth into successful metastases (Figure 2).
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6. Clinical Implications

Current breast cancer treatments are non-curative for lung metastasis, and thus, it is
imperative to explore diagnostics that may predict metastasis during early stages when it
may be more treatable. Available imaging technologies may not be able to provide sufficient
information regarding pre-metastatic changes occurring in the lung, and lung biopsies are
invasive and may not be practical for the patient [130]. Liquid biopsies can be utilized as a
way to measure EVs in bodily fluids such as blood that require less invasive procedures to
retrieve, and can contain molecular factors that could act as biomarkers for PMN formation
in the lung [131]. Additionally, in circumstances where tissue biopsies can’t be acquired,
EV profiling can be performed to better understand the patients’ disease [132]. Molecular
markers within EVs are protected within the lipid bilayer to maintain their stability and can
include proteins, lipids, and nucleic acids that come from either cancer or stromal cells [29].
It has been shown that EVs collected from breast cancer patients have different molecular
contents compared to healthy donors [132,133].

Several studies have analyzed blood serum levels of EV-associated miRNAs and their
correlation to patient characteristics and prognosis. One study analyzed EVs of 50 breast
cancer patients and 12 healthy women. They identifed higher levels of circulating EV-
associated miR-373 related to enhanced survival in patients with aggressive triple negative
breast cancer patients who are at a greater risk of lung metastasis compared to patients
with luminal A/B disease [134]. By identifying miRNAs that are correlated with specific
subtypes of breast cancer, better predictions can be made regarding potential metastatic
destinations [134]. Zhou et al. extended their study by collecting circulating EVs in mice
bearing MDA-MB-231 xenografts at a pre-metastatic or metastatic stage [75]. They ob-
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served significantly higher levels of EV-associated miR-105 in the sera of both groups of
mice, indicating that the presence of miR-105 could be detected at early stages, prior to
metastasis [75]. Additionally, they examined EVs derived from the sera of breast cancer
patients and found that patients with significantly higher miR-105 levels eventually devel-
oped distant metastases [75]. Heat shock protein 70 (HSP70) has also been identified at
increased levels within circulating EVs in metastatic patients compared to non-metastatic
patients or healthy controls [135]. Overall, these studies demonstrate the potential of EVs
as biomarkers for identifying patients at pre-metastatic stages [75,135]. Other markers such
as developmental endothelial locus 1 (Del-1) and fibronectin have been identified on circu-
lating EVs in the plasma of breast cancer patients [136,137]. These EVs were also observed
to decrease substantially following treatment, suggesting a potential application for EVs in
both identifying at-risk patients as well as following their response to treatment [136,137].
One clinical trial sought to identify the value of triple-negative, EV-derived miRNAs as
biomarkers for disease recurrence. They discovered that patients with plasma containing
EV miR-200a-3p, miR-203a-3p, and miR-7845-5p had an increased disease recurrence [138],
and a few ongoing clinical trials are assessing the diagnostic and/or prognostic value of
EVs in breast cancer (ClinicalTrials.gov: NCT05798338, NCT05831397, NCT05417048 and
NCT04288141). Collectively, this work provides evidence that that EVs carry pertinent
information that can be used to predict and monitor the state of breast cancer patients.

From a therapeutic perspective, there is growing number of studies exploring EVs
as a mode of drug delivery for breast cancer patients due to their low immunogenicity,
low toxicity, and high biocompatibility [139]. Since EVs secreted from metastatic breast
cancers harbour integrins that selectively home to the lung, this can be exploited to deliver
therapies directly to lung metastases [64]. For example, biomimetic nanoparticles coated
with exosomal membranes from 4T1 mouse breast cancer cells have been constructed to
hold siRNA-targeting S100A4, a protein that promotes metastasis and is involved in forming
a favourable PMN for metastatic breast cancer cells in the lung. Initial in vitro studies
showed efficient targeting of these nanoparticles to mouse embryonic lung fibroblasts
and successful gene silencing of S100A4. Within postoperative lung metastasis mouse
models, the accumulation of nanoparticles in the lung tissue and decreased numbers of
pulmonary metastases was observed, demonstrating the potential of EV biomimetics as
a therapeutic strategy [140]. Other studies have explored modifications to the bilayer
of EVs such as engineering exosomes from human embryonic kidney cells (HEK293) to
express the GE11 peptide or epidermal growth factor (EGF) to target breast cancer cells
expressing the epidermal growth factor receptor (EGFR) [141]. Through this targeting
strategy, exosomes have been shown to deliver let-7a miRNA to breast cancer cells in
order to alter cell cycle progression and decrease cell division [141,142]. Intravenous
injection of these exosomes in mice has demonstrated the potential to target both the
primary breast tumor and metastases [141]. Another strategy involves loading EVs with
chemotherapeutic drugs to better target tumor cells. Doxorubicin loaded into MDA-MB-
231 exosomes through electroporation has been shown to inhibit breast tumor growth
in mice by increasing its therapeutic index and efficiently releasing the drug to target
cells [143]. Exosomal membranes derived from macrophages and further modified to
target the hepatocyte growth factor receptor, which is highly expressed on triple-negative
breast cancer cells, have been used to develop nanoparticles to also deliver doxorubicin to
breast tumor tissues in vivo to reduce tumor growth [144,145]. The growth of pulmonary
metastases has been shown to be inhibited by treatment with paclitaxel-loaded exosomes
derived from murine RAW 264.7 macrophages [146]. Further advances within this field
have led to novel strategies including bioengineering of tumor-derived exosomes with
liposomes harboring lung-homing markers and gold nanorods. These have demonstrated
improved therapeutic effects on lung metastases through a combination of thermal ablation
mediated by gold nanorods to increase CD8+ T cells and cytokines in the lungs while also
delivering paclitaxel to treat the tumor [147].
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Currently, EV-based drug delivery remains in pre-clinical stages as more data need to
be collected to assess safety and efficacy for patients [148]. Studies evaluating pharmacoki-
netics of EVs are increasing and are aimed at determining doses, route of administration,
and targeting capacity. For example, mice that were intravenously injected with EVs from
4T1 cancer cells have shown quick clearance of EVs and low accumulation at the tumor
site. However, intratumoral injections were found to be more efficient and EVs remained
within the tumor tissue for a longer time [149]. The majority of EVs administered seem to
accumulate in clearance organs such as the liver and spleen, which would influence the
dose required to reach therapeutic doses at the target organ [150]. To date, no clinical trials
involving therapeutic EVs in breast cancer have been published or are currently registered
to ClinicalTrials.gov as ongoing. Nonetheless, with continued optimization and exploration
of different uses for EVs in therapeutics, personalized treatment regimens for patients hold
promise for improving clinical outcomes.

Although there have been promising studies supporting the use of EVs in the thera-
peutic setting, there remain several challenges that remain to be addressed, many of which
parallel the challenges still faced in the experimental/pre-clinical setting [151]. For example,
currently there is a large amount of heterogeneity in terms of EV isolation and purification
protocols that are used, along with a lack of uniformity for evaluation standards regarding
the quality of EVs [152,153]. There is also a lack of standardized procedures to store liquid
biopsies for serial EV analysis, something that is very important given that storage time and
temperature may influence the integrity of EVs, resulting in damage during freeze/thaw
cycles [152]. Moreover, during EV isolation, both normal and tumor-derived EVs are
found in the blood, which can cause interference when identifying biomarkers [154]. For
drug delivery applications, a primary obstacle is the ability to mass produce EVs, as most
isolation techniques are lengthy and have low yield. In addition, most methods of loading
therapeutics into EVs have low efficiency and some can negatively influence the stability
of EVs [139,155]. Finally, careful pharmacokinetic studies are needed to determine admin-
istration doses, route, and frequency for any new, EV-based therapies. Further work is
needed to tackle these various challenges before EV-based biomarkers and therapies can be
integrated into clinical use.

7. Conclusions

Breast cancer continues to be a global challenge and incidence rates are expected to
rise in the next few decades. Metastasis is responsible for the majority of breast cancer
deaths, as it disrupts the function of vital organs and currently lacks curative therapies.
The lung is a deadly site for metastasis and remains a difficult site to treat. Although
considerable advances have been accomplished in the field, there is an urgent need to
understand the underlying molecular mechanisms that regulate breast cancer metastasis to
the lung. Exploring the factors involved in forming the PMN and regulating the metastatic
microenvironment is vital to this understanding. Growing studies have highlighted the
role of EVs in promoting metastasis by acting as an avenue for communication between
the primary breast tumor and the lung microenvironment. Changes to lung stromal
components such as endothelial cells, fibroblasts, and immune cells have been shown
to be mediated by cargo within EVs delivered to the lung. A primary limitation of the
current literature in the field is the heavy reliance on specific breast cancer cell lines
(i.e., MDA-MB-231) without validation in other models, including primary, patient-derived
breast cancer cells. By expanding into other cell lines and more clinically relevant models
such as patient-derived organoids, the heterogeneity of this disease can be better explored,
and we can improve our knowledge regarding the role of EVs in lung metastasis. With this
information, potential biomarkers can be identified for diagnosis, prognosis, prediction
of therapy response, and tracking of disease progression. Due to the unique ability of
breast-cancer-derived EVs to target the lung, novel strategies are being developed to use
EVs as carriers of therapeutics. Altogether, elucidating the function of EVs will ultimately
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assist in formulating strategies to prevent or treat lung metastasis and improve breast
cancer patient outcomes.
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