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Abstract: Osteosarcoma (OS) is an aggressive tumor with a rare incidence. Extended surgical
resections are the prevalent treatment for OS, which may cause critical-size bone defects. These
bone defects lead to dysfunction, weakening the post-surgical quality of patients’ life. Hence, an
ideal therapeutic agent for OS should simultaneously possess anti-cancer and bone repair capacities.
Curcumin (CUR) has been reported in OS therapy and bone regeneration. However, it is not clear
how CUR suppresses OS development. Conventionally, CUR is considered a natural antioxidant in
line with its capacity to promote the nuclear translocation of a nuclear transcription factor, nuclear
factor erythroid 2 (NRF2). After nuclear translocation, NRF2 can activate the transcription of some
antioxidases, thereby circumventing excess reactive oxygen species (ROS) that are deleterious to cells.
Intriguingly, this research demonstrated that, in vitro, 10 and 20 µM CUR increased the intracellular
ROS in MG-63 cells, damaged cells’ DNA, and finally caused apoptosis of MG-63 cells, although
increased NRF2 protein level and the expression of NRF2-regulated antioxidase genes were identified
in those two groups.
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1. Introduction

Osteosarcoma (OS) is a primary bone malignancy (~20% of newly diagnosed bone
tumors) with a low incidence (approximately 1–3 cases in one million), and it mostly
strikes the adolescent and the senior citizen [1–3]. Although OS is rare, it is aggressive,
and pulmonary and skeletal metastases are common in OS patients. Surgical resection
combined with chemotherapy is the primary remedy for OS [4]. Extended resection is
usually employed to prevent the local recurrence of OS, which may cause severe bone
defects. Due to voluminous bone loss, it is highly universal for OS patients to suffer
dysfunction, weakening the quality of life. Hence, bone rehabilitation cannot be ignored in
comprehensive OS treatment. However, bone rehabilitation is still a massive challenge for
OS patients after surgery because of the potential tumor relapse. Clinically, there is high
demand for an agent with anti-cancer and pro-osteogenic properties in OS treatment.

Reactive oxygen species (ROS), the byproduct of normal oxygen metabolism in cells,
including peroxides, superoxide, singlet oxygen, etc., are mainly generated in mitochon-
dria [5,6]. They are involved in various physiological activities (stem cell renewal, cell
differentiation, proliferation, etc.), while the over-physiological concentration of ROS can
damage lipids, proteins, and DNA in cells [7], precipitating the apoptosis of cells [8]. On
the other hand, a higher level of ROS than normal cells is one of the hallmarks of cancer [9],
and the elevated ROS level is vital for the survival and proliferation of cancer cells [10,11].
Therefore, scavenging ROS and breaking the redox equilibrium in cancer cells might be an
approach for cancer treatment. Nuclear factor erythroid 2-related factor 2 (NRF2), a nuclear
transcription factor, plays a pivotal role in the development of several non-cancerous and
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cancerous diseases [12–16] through relieving intracellular ROS via the activation of target
genes (NADPH, HO-1, NQO1, etc.) [17–19]. However, generally, NRF2 binds to Kelch-like
ECH-associated protein 1(KEAP1), inhibiting its nuclear translocation and causing final
ubiquitination [20], and the rapid ubiquitination leads to a low protein level of NRF2 in nor-
mal cells. Based on this, we assumed that an agonist of NRF2 that decreases ROS level in OS
cells is likely to suppress OS development. On the other hand, it is also reported that NRF2
can induce oxidative stress via KLF9 expression [21–23]. Therefore, the comprehensive role
of NRF2 in ROS regulation should be further uncovered.

Curcumin (CUR), an extract from Curcuma longa, is generally recognized as a potent
natural antioxidant [24,25], and it has been identified to be an agonist of NRF2 that can
free NRF2 from KEAP1 and induce NRF2 nuclear translocation [26]. CUR can be used
to treat various diseases, such as inflammation [27], cancer [28], a variety of pregnancy
complications [29], and osteoporosis [30]. It has been validated that CUR can suppress
OS [31,32]. In addition, it was reported that CUR might promote bone regeneration in
OS treatment [33]. Regarding this, CUR may be a promising candidate for OS therapy
with dual functions: OS suppression and pro-osteogeneration. CUR suppresses cancers
through diverse signaling pathways [34]. Nevertheless, the mechanism of its anti-OS effect
is still unclear.

This research was designed to elucidate the potential mechanism of the anti-OS effect
of CUR. In line with the potent antioxidative effect of CUR and the vital role of ROS in
cancer development, we previously hypothesized that CUR prevents NRF2 degradation,
which leads to the decrease in ROS in MG-63 cells, causing the apoptosis of MG-63 cells.
However, in this study, intracellular ROS in MG-63 cells were elevated with enhanced NRF2
nuclear translocation after CUR treatment, and the increased ROS induced the apoptosis of
MG-63 cells. This result suggests that CUR may have different targets between OS cells and
normal cells for ROS regulation, and CUR may have a dual character in the modulation of
oxidative conditions.

2. Results
2.1. CUR Decreased the Viability of MG-63, Which Was Reversed by NAC

Figure 1 demonstrated the toxic effect of CUR on MG-63 cells and the rescue effect of
NAC. After 24 h, 10 and 20 µM CUR significantly decreased the viability of MG-63 cells
(p < 0.001), and NAC reversed this toxicity in these groups (p < 0.05). When MG-63 cells
were treated for 48 h, 5 µM CUR was toxic to MG-63 cells (p < 0.05). Meanwhile, NAC
rescued MG-63 cells in 5 and 10 µM CUR groups (p < 0.05 and p < 0.001, respectively).
Moreover, with the extension of culture time, the suppression effect of CUR on MG-63 cells
was also enhanced in three CUR-treated groups (p < 0.05, p < 0.01, and p < 0.05, respectively).
This means that the toxicity of CUR to MG-63 cells is time- and dose-dependent. In addition,
due to the rescue effect of NAC, a well-known antioxidant, it suggested that CUR-derived
toxicity may be attributed to excessive ROS.

Up to 20 µM CUR demonstrated promising safety to DPSC (see Figure S1). This result
shows that the toxicity of CUR is more specific to cancer cells.

2.2. CUR Elevated Intracellular ROS in MG-63 Cells

Results from the cell viability assessment implied that CUR increased ROS production
in MG-63 cells, which was confirmed by ROS staining. ROS staining showed that 10 and
20 µM CUR dramatically induced ROS accumulation in MG-63 cells after 48 h (p < 0.01). On
the other hand, NAC scavenged the excessive ROS in these two groups (Figure 2, p < 0.001).
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Figure 1. Viability of MG-63 cells treated by curcumin with or without N-acetyl cysteine. n = 3 in 
each group; a: p < 0.05 and b: p < 0.001 compared with control group in 24 h; c: p < 0.05 and d: p < 
0.001 compared with control group in 48 h; #: p < 0.05 and &: p < 0.01 comparison between groups 
in 24 and 48 h with the same CUR concentration; *: p < 0.05 comparison between CUR alone groups 
and NAC with same CUR concentration groups in 24 h; $: p < 0.05 and $$$: p < 0.001 comparison 
between CUR alone groups and NAC with same CUR concentration groups in 48 h. CUR: curcumin. 

 
Figure 2. ROS level in MG-63 cells. (A) ROS staining in CUR alone or with NAC-treated MG-63 cells; 
(B) mean fluorescence intensity of ROS in each group. n = 5 in each group, a: p < 0.01 compared with 
control group, ***: p < 0.001. 

Figure 1. Viability of MG-63 cells treated by curcumin with or without N-acetyl cysteine. n = 3 in each
group; a: p < 0.05 and b: p < 0.001 compared with control group in 24 h; c: p < 0.05 and d: p < 0.001
compared with control group in 48 h; #: p < 0.05 and &: p < 0.01 comparison between groups in 24
and 48 h with the same CUR concentration; *: p < 0.05 comparison between CUR alone groups and
NAC with same CUR concentration groups in 24 h; $: p < 0.05 and $$$: p < 0.001 comparison between
CUR alone groups and NAC with same CUR concentration groups in 48 h. CUR: curcumin.
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(B) mean fluorescence intensity of ROS in each group. n = 5 in each group, a: p < 0.01 compared with
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2.3. CUR-Induced Oxidative DNA Damage

The oxidative damage of DNA was examined by the 8-OXOG staining. Enhanced
8-OXOG positive fluorescence was discovered in the 10 and 20 µM CUR groups after 48 h
(Figure 3).
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2.4. CUR Promoted the Apoptosis of MG-63 Cells

The results from the apoptosis assay also revealed that the toxic effect of CUR on
MG-63 cells is time- and dose-dependent (Figure 4). Here, 20 µM CUR demonstrated
outstanding toxicity to MG-63 cells when compared with other concentrations.
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Figure 4. Curcumin induced the apoptosis of MG-63 cells.

2.5. Effect of CUR on NRF2 Nuclear Translocation in MG-63 Cells

CUR-induced NRF2 nuclear translocation was detected using immunofluorescence
staining (Figure 5). The result showed that 10 and 20 µM CUR dramatically stimulated
NRF2 nuclear translocation in MG-63 cells after 48 h treatment.
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Figure 5. Curcumin stimulated NRF2 nuclear translocation in MG-63 cells. Immunofluorescence
staining of NRF2 in MG-63 cells after treatment with curcumin with different concentrations for 48 h
(magnification 100×).

2.6. CUR Modulated the Expression of Some NRF2-Related Genes

With the increase in NRF2, the expression of its downstream genes that regulate ROS
production was also examined. The expression of NQO1, SOD1, and HMOX1 showed an
uptrend, although only HMOX1 had a statistical difference (Figure 6, p < 0.001). However,
the expression of TXNRD2 was decreased (no significant difference). Moreover, 5, 10, and
20 µM CUR all activated the expression of KLF9 (Figure 6, p < 0.001). However, this increase
was inconsistent with ROS and NRF2 protein levels in these three groups.
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3. Discussion

CUR has been reported to suppress OS development, but the mechanism remains
unclear. This research was designed to explore this potential mechanism. Since CUR is a
well-known natural antioxidant, and ROS plays an important role in cancer progression, it
is reasonable to speculate CUR’s anti-OS ability relies on the decreased ROS in OS cells.

However, in this study, CUR-treated MG-63 cells had an increased ROS level, and the
toxic effect of CUR was reversed by another antioxidant, NAC. This result implies that
CUR suppresses OS cells via enhanced oxidative stress. This is contrary to our previous
hypothesis. To determine whether CUR promoted or reduced the ROS accumulation, we
detected the intracellular ROS level of MG-63 cells in this study. Results from the ROS
assay demonstrated that CUR elevated ROS levels in MG-63 cells, and NAC mitigated
this CUR-caused oxidative condition. The ROS assay results confirmed that CUR inhibits
MG-63 cells through the enhanced ROS level, which is contrary to its role as an antioxidant.
However, this result is consistent with some reported studies [35–37]. In these studies, CUR
induced ROS production in different cancer cells. The inverse effect of CUR on ROS in
cancer cells may be explained by the different CUR uptake between normal cells and cancer
cells [38]. Since cancer cells contain more lipids on the cytomembrane, they can absorb
more CUR, a natural polyphenolic compound, causing a higher concentration of CUR
than in normal cells. Meanwhile, this partly explains why CUR used in cancer treatment
is always modified with liposomes [39]. In addition, in this study, 5 µM CUR did not
lead to ROS accumulation, which was also able to reflect that the effect of CUR on ROS is
concentration-dependent: a high concentration could cause the overproduction of ROS.
However, a low concentration may quench ROS.

NRF2 is a crucial protein for removing excess intracellular ROS. As an agonist of NRF2,
CUR can promote nuclear translocation and avoid the ubiquitination of NRF2. Due to
the CUR-caused ROS increment, we suspected that CUR did not induce NRF2 nuclear
translocation in this research. Given this, we located NRF2 in CUR treated MG-63 cells
using immunofluorescence. Nonetheless, 10 and 20 µM CUR stimulated NRF2 nuclear
translocation in MG-63 cells. Then, we also analyzed the mRNA expression of some NRF2-
target genes that are involved in ROS generation. The RT-qPCR results demonstrated the
expression of some antioxidases genes was also enhanced. On the other hand, although
KLF9 expression was enhanced by CUR, the expression trend is inconsistent with that
of ROS and the concentrations of CUR. These results suggest CUR may be involved in
more complex and comprehensive cascades that modulate ROS production, not only the
NRF2–ROS axis.

This study identified the oxidative DNA damage and apoptosis of MG-63 caused
by CUR-induced ROS accumulation using 8-OXOG and annexin V/PI staining assay.
The 8-OXOG was increased in MG-63 cells treated with 10 and 20 µM for 48 h. This
means the abundant ROS caused by CUR has damaged the DNA of MG-63 cells. The
annexin V/PI assay shows that the apoptosis of MG-63 cells is concentration-dependent and
time-dependent. These outcomes confirmed that ROS-based cancer treatment is efficient.
Based on this, photodynamic therapy (PDT) that inhibits cancer progression by drastically
elevating ROS levels has been tested in various cancer models and shows promising
results [40–42]. Meanwhile, CUR has been identified to be a photosensitizer [43,44] that
can be used in the OS PDT treatment [31] to potent its anti-OS effect.

Although CUR can promote the apoptosis of MG-63 cells, its efficiency is unreasonable
compared with some common chemotherapeutics. Walters et al. [45] treated seven OS
lines with CUR for 72 h. The results showed the IC50 of CUR ranged from 14.4 to 24.6 µM.
Nevertheless, the IC50 of cisplatin was only 1.24 and 3.65 µM for MG-63 and SaoS-2 cells,
respectively, after 48 h treatment [46]. The high IC50 of CUR may be a result of its unstable
bioactivity and low bioavailability. Despite that, CUR can suppress OS cells and promote
bone regeneration, making it a promising candidate for the treatment of OS. Moreover,
CUR in cancer treatment can reverse chemotherapy resistance and reduce the cytotoxicity
of chemotherapeutics to normal cells [47–49]. Hence, a strategy that combines CUR with
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other treatments in OS treatment has been proposed and achieves prospective results [21].
Another advantage of CUR in OS treatment is its cancerphilia, which has been testified to
in this research. With the same concentration, CUR is more specific to cancer cells. This
means CUR is safer than chemotherapeutics and radiotherapy.

In this study, CUR promoted the apoptosis of MG-63 cells by amplifying intracellular
ROS, rather than eliminating ROS in vitro, and the CUR–NRF2–antioxidases axis did not
reverse the oxidative condition in MG-63 cells. As mitochondria are the main organ where
ROS are generated, we will further expand our research on the effect of CUR on alterations
in mitochondria’s functions and structures.

4. Materials and Methods
4.1. Cell Lines and Culture

Dental pulp stem cells (DPSCs) were from our lab. The MG-63 cell line was pur-
chased from the American Type Culture Collection (ATCC, Manassas, VA, USA). After
thawing, these cells were maintained in Minimal Essential Medium α (Gibco, Billings, MT,
USA) supplemented with 10% fetal bovine serum (Gibco, Billings, MT, USA), 100 µg/mL
streptomycin, and 100 µg/mL penicillin (Sigma-Aldrich, St. Louis, MO, USA) in a 5%
CO2 incubator at 37 ◦C. A total of 100 mM CUR (Sigma-Aldrich, St. Louis, MO, USA)
in dimethyl sulfoxide (DMSO, Sigma-Aldrich, St. Louis, MO, USA) was prepared as a
store solution and stored in the dark in a −20 ◦C fridge. Finally, 5, 10, and 20 µM CUR
and 5 mM N-Acetyl-L-cysteine (NAC, Sigma Aldrich, St. Louis, MO, USA) with relative
concentrations of CUR were administrated to treat DPSCs and MG-63 cells.

4.2. Cell Viability Assay

PrestoBlue™ HS cell viability reagent (Thermo Fisher, Waltham, MA, USA) was
used to detect the viability of CUR-treated DPSCs and MG-63 cells. According to the
manufacturer’s instructions, cells were seeded in a 96-well culture plate at a density of
5000 cells/well (3 duplicates in each group). After attachment, these cells were treated with
5, 10, and 20 µM CUR with or without 5 mM NAC for 24 and 48 h. Afterwards, the medium
was discarded, and 100 mL mixture of PrestoBlue™ HS and the culture medium (1:9) was
added in each well. After incubation for 2 h at 37 ◦C, the supernatant was transferred to a
new 96-well plate, and the fluorescence of each well was measured using a SpectraMax
fluorescence multi-model plate reader (Molecular Devices, San Jose, CA, USA).

4.3. Quantitation of Introcellular ROS Level

To detect the intracellular ROS level, MG-63 cells were seeded in a dark-wall 96-well
plate (1.0 × 104 cells/well) at 37 ◦C with 5% CO2. After 12 h, cells were treated with
corresponding reagents for 24 and 48 h. The medium was replaced with 100µL of ROS
assay working solution (Abcam, Cambridge, UK). After incubation at 37 ◦C for 60 min, cells
were rinsed three times with PBS. A fluorescence microscope (Leica, Wetzlar, Germany)
collected the images. Fluorescence was quantified with the Fiji software (version 2.14, NIH,
Bethesda, MD, USA).

4.4. Immunofluorescence Staining of 8-OXOG

To detect ROS-caused oxidative DNA damage, MG-63 cells were cultured in a dark-
wall 96-well plate (1.0 × 104 cells/well). After attachment, cells were treated with 5, 10,
and 20 µM CUR for 48 h. Immunofluorescence staining was used to detect 8-oxoguanine
(8-OXOG), a marker of oxidative damage of DNA [50,51]. Briefly, after being rinsed
with cold PBS, cells were fixed by 4% formaldehyde for 10 min and permeabilized in
PBS containing 0.05% Triton X-100 for 5 min at room temperature. Cells were blocked by
BlockAid™ Blocking Solution (Invitrogen, Waltham, MA, USA) for 1 h at room temperature.
Thereafter, cells were incubated with the primary antibody diluted in blocking buffer (1:50)
at 4 ◦C overnight. On the second day, cells were washed with cold PBS for 3 × 10 min
and incubated for 1 h at room temperature in the dark with Alexa Fluor® 594 conjugated
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secondary antibody (Abcam, Cambridge, UK). Then, 1 µg/mL Hoechst 33342 was used to
stain the nuclei of MG-63 cells. Finally, cells were rinsed with cold PBS three times. Images
were acquired using a fluorescence microscope. Fluorescence intensity was assessed with
the Fiji software (version 2.14, NIH, Bethesda, MD, USA).

4.5. Quantitation of Cell Apoptosis

The apoptosis of CUR-treated MG-63 cells was detected by an annexin V and pro-
pidium iodide (PI) assay kit (BD Bioscience, Franklin Lakes, NJ, USA). MG-63 cells were
treated with CUR for 24 and 48 h. Then, cells were trypsinized and washed twice with
cold staining buffer to remove the remaining trypsin. Afterwards, 1.0 × 107 cells were
resuspended in 100 µL annexin V binding buffer followed by the addition of annexin V
and PI (5 µL, respectively). These cells were generally vortexed and cultured for 15 min at
room temperature in the dark. Before detection using a flow cytometry (BD FACSCalibur,
San Jose, CA, USA), 400 µL of binding buffer was supplied in each group.

4.6. Immunofluorescence Staining of NRF2

To examine the efficiency of CUR on NRF2 nuclear translocation, MG-63 cells were
treated with CUR in a dark-wall 96-well plate (1.0 × 104 cells/well) for 48 h. After that, cells
were gently washed with cold PBS and fixed by 4% formaldehyde for 10 min. The fixed
cells were permeabilized by 0.05% Triton X-100 for 5 min at room temperature. Thereafter,
BlockAid™ Blocking Solution was used to minimize the unspecific binding of the anti-
body. Afterwards, NRF2 primary antibody (Abcam, Cambridge, UK) was diluted (1:50) in
blocking buffer and added into the well at 4 ◦C overnight. On the second day, the primary
antibody was washed away with cold PBS for 3 × 10 min and cells were incubated for 1 h
at room temperature in the dark with the secondary antibodies (Abcam, Cambridge, UK).
A total of 1 µg/mL Hoechst 33342 was used to stain the nuclei of MG-63 cells. Finally, cells
were rinsed with cold PBS. Images were acquired using a fluorescence microscope.

4.7. Reverse Transcription and Quantitative Real-Time Polymerase Chain Reaction (RT-qPCR)

The total RNA of MG-63 cells was extracted using TRIzol™ (Invitrogen, Waltham,
MA, USA) according to the protocol of the total RNA extraction. A total of 2 µg RNA was
reversed to cDNA with a First Strand cDNA Synthesis kit (Thermo Fisher, Waltham, MA,
USA). RT-qPCR was performed on the Real-Time PCR Detection System (Roche, Basel,
Switzerland) using LightCycler® 480 SYBR Green I Master (Roche, Basel, Switzerland)
following the manufacturer’s instructions. A standard curve-based method was applied to
detect gene expressions, and three housekeeping genes (HPRT, GUSB, and PBGD) were
used for expression normalization. Amplification was performed under the following
conditions: denaturation at 95 ◦C for 10 s, renaturation at 55 ◦C for 30 s, and elongation at
72 ◦C for 30 s (40 cycles). The fluorescence signal of SYBR Green I was recorded after initial
denaturation. After amplification, a melting curve program was executed. The primers
used for RT-qPCR are provided in Table 1.

Table 1. List of primers used for gene expression analysis by RT-qPCR.

Target Gene Primer Nucleotide Sequences Amplicon Size Accession No. NCBI
Genebank

HPRT FW GCTGACCTGCTGGATTACAT
REV CTTGCGACCTTGACCATCT 260 NM_000194

GUSB FW CGCACAAGAGTGGTGCTGAG
REV GGAGGTGTCAGTCAGGTA TT 234 NM_000181
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Table 1. Cont.

Target Gene Primer Nucleotide Sequences Amplicon Size Accession No. NCBI
Genebank

PBGD FW TCCAAGCGGAGCCATGTCTG
REV CCTGTGGTGGACATAGCAAT 192 NM_000190

NQO1 FW CACTGATCGT ACTGGCTCACTC
REV ACAGACTCGGCAGGATACTGAA 202 NM_000903

SOD1 FW GACTGACTGAAGGCCTGCAT
REV TAGACACATCGGCCACACCA 186 NM_000454

HMOX1 FW TGCGTTCCTGCTCAACATCC
REV CAGCAACTGTCGCCACCAG 233 NM_002133

TXNRD2 FW GGAGCATGTTGAGGTCT ATC
REV ATCACCTGCGCATAGGAAG 210 NM_006440

KLF9 FW CTCCCATCTCAAAGCCCA TT
REV AGGTGGTCACTCCTCATGAAG 183 NM_001206

4.8. Statistical Analysis

All data were presented as mean ± SD, and GraphPad Prism 9.0 software (GraphPad
Inc., San Diego, CA, USA) was used to analyze the data. One-way ANOVA was used for
comparison between multiple groups. Tukey’s multiple comparisons test was used for
pairwise comparison after ANOVA analysis. p < 0.05 was considered statistically significant.
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