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Abstract: Asthma is a chronic inflammatory disease of the pulmonary system associated with many
wheeze-to-sleep apnea complications that may lead to death. In 2019, approximately 262 million
patients suffered from asthma, and 455 thousand died from the disease worldwide. It is a more severe
health problem in children and older adults, and as the aging of society intensifies, the problem will
continue to worsen. Asthma inducers can be classified as indoor and outdoor allergens and can cause
asthma due to their repeated invasion. There are several theories about asthma occurrence, such
as the imbalance between Th1 and Th2, inflammation in the pulmonary system, and the abnormal
apoptosis/cell proliferation of cells related to asthma. Although there are many medications for
asthma, as it is an incurable disease, the purpose of the drugs is only to suppress the symptoms. The
current drugs can be divided into relievers and controllers; however, as they have many adverse
effects, such as immune suppression, growth retardation, promotion of cataracts, hyperactivity, and
convulsions, developing new asthma drugs is necessary. Although natural products can have adverse
effects, the development of asthma drugs from natural products may be beneficial, as some have
anti-asthmatic effects such as immune modulation, anti-inflammation, and/or apoptosis modulation.

Keywords: asthma; drug development; natural products; adverse effects

1. Introduction
1.1. Definition

Asthma is an incurable chronic inflammatory disease with a hyper-responsive reaction
in the pulmonary system [1]. In particular, the Global Initiative for Asthma defines asthma
as “a heterogeneous disease, usually characterized by chronic airway inflammation”. It
is defined by a history of respiratory symptoms, such as wheezing, shortness of breath,
chest tightness, and cough. Various signs are observed according to the suffering time and
intensity, as they are caused by variable expiratory airflow limitation [2]. Many patients
simultaneously experience asthma, chronic obstructive pulmonary disease (COPD), and
obstructive sleep apnea. This coexistence can lead to patient death; therefore, an advanced
therapeutic protocol should be developed [3].
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1.2. Epidemiology

Worldwide, 262 million patients had asthma, and 455,000 people died owing to
the disease in 2019. Asthma is more severe in children and older adults than in young
people [4]. In 2019, the average life expectancy (LE) of males and females with asthma
was 70.9 and 75.9 years, respectively. In addition, the prospect is that asthma patients will
increase rapidly [5]. Although asthma is globally prevalent, its morbidity and mortality
rates are much higher in low- and middle-income countries than in developed countries.
Considering the differences among continents and countries in Africa, it is most common
in children and adolescents. Although many efforts have been made to control asthma in
Latin America, it is not easy to effectively prevent it because of barriers such as insufficient
public health insurance, social factors, economic factors, and political factors. In Argentina,
the prevalence of asthma in older adults was 21.4% in 2019. In Brazil, the rates of severe
asthma and mortality have decreased. In the Eastern Mediterranean Region, the prevalence
of severe asthma is high; although some countries have a stable healthcare system, others
do not. In Europe, the prevalence and mortality rates in some countries are much lower
than in others, and this difference depends on each country’s situation. In Southeast Asia,
there has been no considerable change in the occurrence of asthma. In the Western Pacific
region, diverse aspects are observed based on culture, economy, politics, and geography [2].
The prevalence of asthma increases the burden of hospitalization in children, especially
those who are 5 years old or younger [6].

In this review, we describe the pathogenesis of asthma, the problems with cur-
rent asthma drugs, and the development of natural drugs and their advantages for
asthma treatment.

2. Pathogenesis of Asthma
2.1. Asthma Inducers

The major causes of asthma are complex factors that contribute to confuse the immune
system in bio-organisms. There are many asthma inducers, such as allergens, pollutants,
tobacco smoking, cold temperature, and genetic background [7]. Patients with non-allergic
asthma (NA) may comprise 10–33% of the asthma cases. Intrinsic factors, such as genetic
background, are the cause of NA; however, in the related study, only allergic asthma was
described [8]. Although many allergens exist, they can be classified into two categories:
indoor and outdoor. Indoor allergens include house dust mites (Der p 1 and Der p 2, from
Dermatophagoides pteronyssinus), cockroaches (Bla g 1, Bla g 2, and Per a 1), pet dander (Fel d
1 from cat and Can f 1 from dog), and outdoor allergens include mice (Mus m 1), pollen (Phl
p1 and Phl p5, from Timothy and Amb a 1, 2, 3, 5, and 6, from ragweed), peanut proteins
(Ara h 1, 2, and 3), and mold (Alternaria, Cladosporium, and Epicoccum) [9,10]. Recently,
the relationship between asthma occurrence and air pollutants, such as traffic-related
air pollution, sulfur dioxide, carbon monoxide, heavy metals, and polycyclic aromatic
hydrocarbons, has also been reported [11]. The prevalence and incidence of asthma in
smokers are higher than in non-smokers, but the more severe aspect is non-smoker-related
second-hand smoking, which is especially dangerous for children [12]. Cold weather can
induce asthma symptoms that are more severe in patients with uncontrolled asthma than
in those with well-controlled asthma [13]. Further, more than 100 genes have been shown
to cause asthma, such as the BsmI (rs1544410) and ApaI (rs7975232) polymorphisms of
the vitamin D receptor gene, the rs20541 and rs1800925 polymorphisms of IL13, and the
rs4950928, rs10399931, and rs8883125 polymorphisms of chitinase 3-like 1 [14–16].

2.2. Histopathological Changes in Asthma Occurrence

Patients with asthma have problems ranging from wheezing to death due to apnea,
and these problems are caused by obstacles to the pulmonary system. Airway remodeling,
a representative change in the respiratory system, occurs from histopathological deforma-
tions such as respiratory epithelial cell hyperplasia, mucous hypersecretion by goblet cell
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hyperplasia, metaplasia, submucosal gland hypertrophy, inflammatory cell infiltration of
eosinophils and neutrophils, and airway smooth muscle contraction [17–20].

2.3. Mechanisms of Asthma Pathogenesis
2.3.1. Imbalance of Th1, Th17, and Th2

The immune system is important in maintaining homeostasis in organisms, and its
function can be classified into two categories: innate and acquired immunity [21]. In
particular, acquired immunity is important in relation to a pathogen’s reinvasion, as it
has a memory of the pathogen’s characteristics and can rapidly eliminate the reinvading
pathogens. Although it is important to maintain the balance of helper T cell subfamilies
such as Th1, Th2, and Th17 cells in bio-organisms, in diseases such as asthma, atopic
dermatitis, and viral infection, the upregulation of Th2 cells is important and results in
an imbalance of helper T cell subfamilies, leading to an imbalance of Th1, Th17, and Th2
cells [22]. In particular, Th17 cell abnormalities can induce neutrophilic asthma [20].

Regulatory T (Treg) cells are very important modulators of the balance between Th1
and Th2 cells, as they play a critical role in maintaining immune tolerance to allergens;
however, when asthma occurs, the level of Treg cells changes (Figure 1) [23]. Notably, Th2
cell-related cytokines such as IL-4, IL-5, and IL-13 and Th17 cell-related cytokines such
as IL-6 and TNF-α increase in patients with asthma [24]. IL-4 stimulates the activation of
GATA-3, which is a Th2 cell transcription factor, through a positive feedback loop, leading
to the secretion of IgE by activating B cells, inducing eosinophilia, and stimulating airway
hyperreactivity [25]. IL-5 activates B cells and increases the eosinophil population [26].
IL-13 causes goblet cell metaplasia, bronchial hyperreactivity, and eosinophil extravasation
by stimulating the expression of intercellular adhesion molecule 1 (ICAM-1) and vascular
cell adhesion molecule 1 (VCAM-1) [27]. IL-6 stimulates inflammation, promotes IL-4
production, and suppresses Th1 and Th17 cell differentiation, whereas TGF-β stimulates
Th17 cell differentiation [22,28]. TNF-α is related to airway hyperresponsiveness [29]. In
contrast to the increments of Th2 cell- and Th17 cell-related cytokines, the level of Th1
cell-related cytokines, such as IFN-γ and IL-12, decreases in patients with asthma [30].
IFN-γ has incompatible functions; it acts as a stimulator and activates Th1 cell transcription
factor (T-bet), and as a suppressor, it activates Th2 cell transcription factor (GATA-3),
preventing eosinophilia and inhibiting asthmatic changes such as airway hyperreactivity,
inflammation, and mucous hypersecretion in the respiratory system [31,32]. IL-12 is related
to Th1 cell differentiation and the suppression of Th2 cell propagation [33].
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2.3.2. Inflammation in the Pulmonary System 

Figure 1. Asthma occurrence. In healthy conditions, the balance of Th1, Th17, and Th2 cells can be
maintained, but asthma inducers stimulate their imbalance. Treg cells modulate the immune balance
between Th1, Th17, and Th2 cells, as they can regulate the development of naïve T cells to Th1, Th17,
or Th2 cells. Th1, helper 1 T cell; Th2, helper 2 T cell; Th17, helper 17 T cell; Treg, regulatory T cell.

2.3.2. Inflammation in the Pulmonary System

Asthma is a heterogeneous inflammatory disease, and various inducers cause the
infiltration of immune cells, such as eosinophils and neutrophils, which release reactive
oxygen species (ROS) to eliminate them. After the elimination of foreign bodies, the redox
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imbalance maintains ROS overproduction, inducing oxidative stress in the respiratory
system. This stress, including inflammation, damages the respiratory system and induces
hyperresponsiveness, airway remodeling, and mucus hypersecretion (Figure 2) [34].
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airway smooth muscle contraction.
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According to the development time, respiratory inflammation-related asthma can be
classified into two categories, i.e., acute and chronic, with acute asthma presenting an early
a late phase (Table 1) [35]. The early phase of the acute inflammation stage occurs within
several minutes of allergen exposure due to the cross-linking of allergens with IgE, which
binds to immune cells such as mast cells and basophils. The cross-linked allergens can
then release immune mediators such as cytokines and chemokines to affect the functions
of several organs, including vasodilation, vascular permeability, bronchoconstriction, and
mucus hypersecretion. The late phase occurs within 2–6 h after allergen invasion; the peak
occurs 6–9 h later, and several symptoms can be observed, such as wheezing, shortness
of breath, and cough. These symptoms are caused by an increase in Th2 cell-related
cytokines, such as IL-4, IL-5, and IL-13, via Th2 cell activation and an increase in white
blood cell populations, such as eosinophils, basophils, and other leukocytes. The chronic
inflammation stage of the respiratory system is caused by repeated allergen contact, which
can change organ function via a continuous alteration of the extracellular matrix and
constitutive cells, ultimately inducing asthma.

Table 1. Pulmonary system inflammation according to onset time. According to the onset time of
inflammation in the respiratory system, asthma can be classified into two stages, acute and chronic.
The acute stage consists of the early phase and the late phase. The data in this table are from
Reference [34].

Stage Acute
Chronic

Phase Early Late

Onset Time
after Allergens Contact Several minutes Onset time: 2~6 h

Peak time: 6~9 h A few months to years

Physiological
Symptoms

Vasodilation, vascular permeability,
bronchoconstriction, mucous

hypersecretion, etc.

Wheeze, shortness of
breath, cough

Wheeze, shortness of breath,
cough, mucus hypersecretion,

sleep apnea to death

Causes of
the Symptoms

Cytokine and chemokine release
after the cross linkage of IgE–mast

cell/basophil–allergens

Rise of Th2-related cytokines
and increment of WBCs

Alteration of the extracellular
matrix and of the constitutive

cells of the affected organ
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Toll-like receptors (TLRs) play an important role in innate and acquired immunity, and
TLR cascades in the respiratory system are closely associated with asthma and COPD [36].
The commensal microbiota in the gastrointestinal tract controls innate and acquired immune
responses and is related to the immune reaction at extraintestinal sites, such as in the
respiratory system. However, the immune response of the commensal microbiota in the
respiratory system is not caused by TLRs on pulmonary cells but is related to bacterial
Nod-like receptors (NLRs) in the digestive system [37]. This indicates that the NLR on
the microbiota binds to NLR ligands and induces alveolar macrophages to release oxygen
species to kill invading bacteria.

2.3.3. Apoptosis/Cell Proliferation of Respiratory Epithelial Cells

The epithelial cell layer is the most important barrier against foreign bodies and
invading bio-organisms, and foreign bodies, including asthma inducers, can damage this
area through inflammation [38]. Owing to their role as a barrier, the repeated damage and
recovery of pulmonary epithelial cells results in their apoptosis, and new cells emerge to
replace the functions of dead cells [39]. However, reports regarding the relationship between
apoptosis and asthma are contradictory. Some studies showed that epithelial cell apoptosis is a
representative change related to asthma occurrence [40,41]. However, other researchers found
that the population of apoptotic cells significantly increases in patients with steroid-untreated
asthma [42,43]. These contradictory results might be depend on the epithelial cell stage in
relation to the elimination of damaged/dying cells, which is induced by various stimulators,
as the neighboring epithelial cells of damaged/dying cells may engulf the apoptotic cells [44].

Apoptosis is a homeostatic process that is related to normal cell turnover, immune
system development and function, hormone release, and embryonic development [45].
Its mechanism is classified into three types, i.e., intrinsic (mitochondrial), extrinsic (death
receptor), and related to perforin/5ranzyme (Figure 3) [46], which are connected to the
execution pathway. The intrinsic pathway is not related to the receptor and is initiated by
increased mitochondrial permeability; its initiator is caspase-8 [47], and the Bcl-2 family
of proteins, which controls mitochondrial permeability, is strongly involved in this path-
way [48]. The Bcl-2 family of proteins can be divided into two categories: anti-apoptotic
proteins, including Bcl-2, Bcl-x, Bcl-XL, Bcl-XS, Bcl-w, and BAG, and pro-apoptotic proteins,
including Bcl-10, Bax, Bak, Bid, Bad, Bim, Bik, and Blk [45].
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The extrinsic pathway is initiated by the activation of apoptosis-related transmembrane
receptors, including FasL/FasR, TNF-α/TNFR1, Apo3L/DR3, Apo2L/DR4, Apo2L/DR5,
and its initiator, caspase-9 [49–53]. The perforin/granzyme pathway is deeply involved in
the release of perforin, which creates pores in the membrane using granzyme A or B [54,55].
The execution pathway is the final step of apoptosis, in all three above-mentioned path-
ways, i.e., intrinsic, extrinsic, and perforin/granzyme pathways. The execution pathway
completes the representative and various morphological and biochemical changes of apop-
tosis, such as protein/DNA degradation, DNA fragmentation, chromatin condensation,
apoptotic body formation, and apoptotic cell engulfing [45]. The initiator of the execu-
tion pathway is caspase-3, and there are several executioner caspases, such as caspase-6,
caspase-7, and caspase-3 [56].

The apoptotic pathway is summarized as follows. The apoptotic pathway consists
of two steps; the first step can be divided into three categories: intrinsic, extrinsic, and
perforin/granzyme pathways. The intrinsic pathway is not related to transmembrane
receptors but is strongly related to mitochondrial changes, and the initiator is caspase-3. The
extrinsic pathway requires apoptosis-related receptors and ligand binding, and the initiator
is caspase-8. The perforin/granzyme pathway is activated by perforin and granzymes
A/B activation. The second step is the execution pathway, in which representative changes
related to apoptosis are observed [45–56].

Although the relationship between apoptosis and proliferation is controversial, it is
strongly related to cellular homeostasis, as it can block cellular proliferation and promote
apoptotic events. The inhibition of pulmonary epithelial cell proliferation in patients with
asthma might be similar to that observed in steroid-treated patients, in which the number
of apoptotic cells increases [42,43]. The NF-κB/COX-2 pathway is related to both cell
proliferation and inflammation, and NF-κB, as a transcription factor, induces the expression
of COX-2. Finally, this pathway suppresses apoptosis when the number of tumor cells
increases [57] and increases inflammation in patients with asthma [58]. Based on these
studies, the search for inhibitors of the NF-κB/COX-2 pathway is one of the strategies to
develop asthma drug candidates.

The pathogenesis of asthma can be attributed to various inducers and can be estab-
lished by an imbalance between Th1 and Th2 cells, inflammation in the pulmonary system,
and anti-apoptosis/cell proliferation of respiratory epithelial cells.

3. Asthma Medications
3.1. Asthma Drug Classification

Asthma drugs are classified as relievers (bronchodilators) or controllers. The relievers
include anticholinergics (atrovent and tiotropium bromide), β-adrenergic drugs (salmeterol
and formoterol), and methylxanthines (theophylline and aminophylline). These molecules
are categorized as anti-inflammatory drugs or immunomodulators. Anti-inflammatory
drugs include corticosteroids (dexamethasone, fluticasone, budesonide, mometasone, be-
clomethasone, and ciclesonide), leukotriene modifiers (montelukast, zafirlukast, and zileu-
ton), and mast cell stabilizers (disodium cromoglycate, cromolyn, nedocromil, olopatadine,
and ketotifen). Immune modulators can be classified into two groups: immunosuppressors
(methotrexate and cyclosporin A) and immunomodulators, including immune potentiators
(glucocorticoids, 1,25-dihydroxy vitamin D3, and TLR 2/4/9 ligands) [59]. The strategy of
asthma treatment includes combining the above two categories of drugs, i.e., relievers and
controllers (Table 2) [60]. Acetylcholine, a neurotransmitter in the parasympathetic nervous
system, activates M3 muscarinic acetylcholine receptors that induce bronchoconstriction,
and anticholinergics can inhibit the constriction of small airways [61]. β2-Adrenergic recep-
tors abundantly exist on the airway smooth muscle (ASM), and the inspiratory–expiratory
cycle in the pulmonary system is controlled by the binding of β-adrenergic compounds
to β2-adrenergic receptors. β2-Adrenergic drugs are related to ASM relaxation [62].
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The use of methylxanthines has gradually decreased because of their side effects. However,
some methylxanthines, such as theophylline, are recommended as anti-asthmatic drugs
because they have bronchodilatory and anti-inflammatory effects [63,64]. Inflammation
begins with cell membrane destruction and ends with the production of leukotrienes or
prostaglandins. Corticosteroids block the conversion of phospholipase A2 from the plasma
membrane to arachidonic acid and can completely prevent inflammation. Inhalable cor-
ticosteroids are mainly used as anti-asthmatic agents [65,66]. Leukotrienes (LTs), which
can be classified as cysteinyl-TLs (LTC4, LTD4, and LTE4) and LTB4, are pivotal for the
occurrence of asthma. Cysteinyl-TLs induce airway remodeling and asthma exacerbation
via inflammation [67,68]. The allergic response by mast cells is initiated by the interaction
of the allergen with the IgE–FcεRI complex and maintained by chemical mediators such
as histamine released by mast cells [69]. Mast cell stabilizers inhibit their activation and
decrease asthma exacerbation [70].

3.2. Adverse Effects of the Current Drugs

Xie et al. reported that, in the USA from 2000 to 2016, 12,640 of 698,501 patients with
asthma from 0 to 20 years of age (1.7%) experienced adverse effects of asthma drugs, and
0.83% of the adverse events were related to corticosteroids [71]. In particular, in patients
aged 0–4 years, the incidence rate of asthma drugs’ adverse effects significantly increased
from 0.2% to 19.3%. In the early stages of bronchodilator use, excessive doses of compounds
such as isoprenaline cause toxicity in users [72]. The side effects of anticholinergics include
a dry mouth, constipation, cough, headaches, and nausea; those of β2-adrenergic receptor
agonists include trembling, nervous tension, headaches, muscle cramps, and heart attack;
theophylline, a methylxanthine, causes nausea/vomiting, diarrhea, palpitation, tachycardia,
arrhythmia, headaches, and insomnia [73]. The adverse effects of corticosteroids include
cataract/glaucoma in the eye, hypertension/hyperlipidemia in the cardiovascular system,
peptic ulcer/pancreatitis in the gastrointestinal tract, myopathy/osteoporosis in the skeletal
muscle, dermal atrophy in the skin, immunological suppression, and growth retardation,
especially in children [74,75]. The adverse effects of leukotriene modifiers are more common
in children than in adults and are classified into psychiatric and non-psychiatric types. The
psychiatric effects include hyperactivity, excessive sleepiness, nyctophobia, nervousness,
agitation, hallucinations, and sleep disorders. The nonpsychiatric effects include abdominal
pain, rash, aphthous ulcers, increased appetite, headache, and convulsions [76]. Mast cell
stabilizers have several adverse effects, such as throat irritation, cough, anaphylaxis, and
headache [77,78]. Immune modulators can help control asthma symptoms including
nausea, increased serum aminotransferase, diarrhea, and hair problems [79].

The current drugs for asthma treatment are used only for preventing/relieving asthma
symptoms, not for curing the disease, and they have many adverse effects; therefore, the
development of new drugs is necessary.

Table 2. The adverse effects of asthma drugs.

Classification Drugs Adverse Effects Refs.

Relievers
(bronchodilators)

Anticholinergics Atrovent, Tiotropium
bromide, etc.

Dry mouth, constipation, cough,
headache, nausea, etc.

[73]β-adrenergic drugs Salmeterol,
Formoterol, etc.

Trembling, nervous tension,
headaches, muscle cramps, heart

attack, etc.

Methylxanthines Theophylline,
Aminophylline, etc.

Nausea/vomiting, diarrhea,
palpitation, tachycardia, arrythmia,

headaches, insomnia, etc.
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Table 2. Cont.

Classification Drugs Adverse Effects Refs.

Controllers

Anti-inflammatory
drugs

Corticosteroids
(Dexamethasone,
Fluticasone, etc.)

Cataract/glaucoma,
hypertension/hyperlipidemia, peptic

ulcer/pancreatitis,
myopathy/osteoporosis, dermal

atrophy, immunological suppression,
growth retardation, etc.

[74,75]

Leukotrienes modifiers
(Montelukast,

Zafirlukast, etc.)

Hyperactivity, excessive sleepiness,
nyctophobia, nervousness, agitation,

hallucination, sleep disorder,
abdominal pain, rash, aphthous ulcer,

appetite increase, headache,
convulsion, etc.

[76]

Mast cell stabilizers
(Cromolyn,

Nedocromil, etc.)

Throat irritation, cough, anaphylaxis,
headache, etc. [77,78]

Immunomodulators
Glucocorticoids,

1,25-dihydroxy vitamin
D3, etc.

Nausea, increment of serum
aminotransferase, diarrhea, hair

problem, etc.
[79]

4. Natural Drugs for Asthma Treatment

As the current asthma drugs have many adverse effects, natural drug development
might be an advisable method. In this section, studies on natural asthma drug development
are classified according to the mechanism of asthma occurrence (Table 3).

4.1. Immune Modulators

Chrysin, which is 5,7-dihydroxyflavone and originates from propolis and passion
flowers, controls asthmatic changes in a murine model by decreasing the levels of IgE,
IL-4, and IL-13 [80]. 1′-Acetoxychavicol acetate isolated from Alpinia galanga, which is used
as a traditional drug for gastric ulceritis, inhibits the release of Th2 cell-related cytokines,
such as IL-4, IL-5, and IL-13, and Th1 cell-related cytokines, such as IL-12 and IFN-γ [81].
Alginate oligosaccharide, fermented by Bacillus subtilis KCTC 11782BP, inhibits the release
of IL-5 and IL-13 [82]. Allium cepa L., which has long been used as an anti-inflammatory
drug, downregulates Blomia tropicalis-induced Th2 cell-related cytokines, such as IL-4
and IL-13 [83]. Allium hookeri, which is used as a culinary material, significantly inhibits
the release of Th2 cell-related cytokines, such as IL-4, IL-5, and IL-13 [84]. Anoectochilus
formosanus HAYATA, a traditional drug, suppressed IgE, IL-4, and IL-5 levels in an asthma
model [85]. Caenorhabditis elegans extracts decreased IgE, IL-5, and IL-13 and increased
IFN-γ levels [86]. Camellia japonica oil, which is used as a hair cosmetic, controls ovalbumin-
induced asthma via the GATA-3 and IL-4 pathways, and the active compound is oleic
acid [87]. Citrus tachibana, a fruit, restored the balance of Th1/Th2 via the downregulation
of Th2 cell-related cytokines such as IL-4 and IL-5 and the upregulation of Th1 cell-related
cytokines such as IL-12 and IFN-γ, the imbalance of which was induced by ovalbumin [88].
Curcumin from Curcuma longa, which has long been used as an anti-inflammatory drug,
significantly decreased asthmatic changes in the pulmonary system by downregulating the
levels of GATA-3, a Th2 cell transcription factor [89]. Erythronium japonicum, a culinary
material, suppressed Th1-related cytokines, such as IL-12p35 and IFN-γ, and Th2-related
cytokines, such as IL-4, IL-5, and IL-13 [90]. Korean red ginseng exerted anti-asthmatic
effects by modulating IL-12, IL-4, and IL-6 [91], and Mycoleptodonoides aitchisonii, a culinary
material, significantly downregulated the levels of IL-4, IL-5, and IL-13 [92]. Opuntia
humifusa, a culinary ingredient, suppressed ovalbumin-induced asthmatic changes by
regulating Th1-/Th2-/Th17-related cytokines [93].
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Table 3. Anti-asthmatic effects of natural products based on the therapeutic pathway. The source indicates the origin of the applied material. The applied type is the
treatment form described in this study: if the applied form is the isolated compound, it is described as “Isolated compound/active substance”. However, if the active
substance is known but is different from the applied form, they are indicated as “applied type and active substance”. P.O., oral administration; Refs., references.

Classification Source Applied Type/
Active Substance Study Dose (Max) & Route

(mg/kg) Mode of Action Refs.

Immune
modulators

Chrysin Propolis,
passionflower, etc.

Isolated compound/
chrysin Animal 100, P.O. Decreasing the levels of

IgE, IL-4, and IL-13 [80]

1′-acetoxychavicol
acetate Alpinia galanga Isolated compound/

1′-acetoxychavicol acetate Animal 50, P.O.

Decreasing the levels of
Th1 cell-related cytokines
such as IL-12 and IFN-γ
and of Th2-related
cytokines such as IL-4,
IL-5, and IL-13

[81]

Alginate
oligosaccharide Fermented alginate Fermented form Animal 400, P.O. Inhibiting the releases of

IL-15 and IL-13 [82]

Allium cepa L. and
quercetin

Allium cepa L. and
quercetin

Methanol extract and
isolated
compound/quercetin

Cell & Animal
1000 + 15 µg/mL,
1000 + 30 mg/kg,
P.O.

Decreasing the levels of
IL-4 and IL-13 [83]

Allium hookeri Allium hookeri Ethanol extract Animal 300, P.O. Inhibiting the releases of
IL-4, IL-5, and IL-13 [84]

Anoectochilus
formosanus HAYATA

Anoectochilus
formosanus HAYATA Water extract Animal 1000, P.O. Decreasing the levels of

IgE, IL-4, and IL-5 [85]

Caenorhabditis elegans Caenorhabditis elegans Crude extract Animal 50 µg/head

Decreasing the levels of
IgE, IL-5, and IL-13 but
increasing the levels of
IFN-γ

[86]

Camellia japonica Camellia japonica Extract oil and isolated
compound/oleic acid Animal 500, P.O.

Decreasing the levels of
IL-4 via GATA-3
inactivation

[87]

Citrus tachibana Citrus tachibana Ethanol extract
narirutin, hesperidin Animal 400, P.O.

Decreasing the levels of
IL-4 and IL-5 but
increasing the levels of
IL-12 and IFN-γ

[88]



Int. J. Mol. Sci. 2023, 24, 12469 10 of 17

Table 3. Cont.

Classification Source Applied Type/
Active Substance Study Dose (Max) & Route

(mg/kg) Mode of Action Refs.

Immune
modulators

Curcumin Curcuma longa Isolated com-
pound/diferuloylmethane Animal 2000, P.O.

Inactivating Th2 cell
transcription factor,
GATA-3

[89]

Erythronium
japonicum

Erythronium
japonicum

Ethanol extract
chlorogenic acid Animal 600, P.O.

Decreasing the levels of
IL-12p35, IFN-γ, IL-4, IL-5,
and IL-13

[90]

Korean red ginseng Panax ginseng Water extract
Active substances: Rb1, Rg1 Animal 50, P.O. Decreasing the levels of

IL-12, IL-4, and IL-6 [91]

Mycoleptodonoides
aitchisonii

Mycoleptodonoides
aitchisonii

Water extract
niacin, oleic acid, linoleic
acid

Animal 1000, P.O. Decreasing the levels of
IL-4, IL-5, and IL-13 [92]

Opuntia humifusa Opuntia humifusa Ethanol extract
rutin, quercetin Animal 500, P.O.

Decreasing the levels of
IL-12, IFN-γ, IL-4, IL-13,
IL-6, and TNF-α

[93]

Anti-inflammatory
effectors

Chrysin Propolis,
passionflower, etc. Isolated compound/chrysin Animal 100, P.O. Blocking inflammatory cell

infiltration [80]

3-methoxy-
catalposide

Psueolysimachion
rotundum var.
subintegrum

Isolated compound/3-
methoxy-catalposide Cell 20 µM

Decreasing the expression
of COX-2 and iNOS and
downregulating the levels
of IL-1β, IL-6, and TNF-α

[94]

Aster yomensa
(Kitam.) Honda

Aster yomensa
(Kitam.) Honda Ethanol extract Cell 300 ng/mL Decreasing the levels of

NO and IL-1β [95]

Codonopsis laceolata Codonopsis laceolata Water extract
Active substance: lobetyolin Animal 300, P.O.

Blocking the
NF-κB/COX-2 and PGE2
pathway

[96]

Echinodorus scaber
Rataj

Echinodorus scaber
Rataj Ethanol extract Animal 30, P.O. Suppressing inflammatory

cells’ migration [97]

Korean red ginseng Panax ginseng Water extract
Active substances: Rb1, Rg1 Animal 50, P.O.

Blocking the
NF-κB/COX-2 and PGE2
pathway

[91]
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Table 3. Cont.

Classification Source Applied Type/
Active Substance Study Dose (Max) & Route

(mg/kg) Mode of Action Refs.

Anti-inflammatory
effectors

Pericampylus glaucus Pericampylus glaucus Hexane, chloroform or
ethanol extract Cell 250 µg/mL Blocking the synthesis of

COX-1 and COX-2 [98]

Pinus maritime Pinus maritime Water extract Cell 100 pg/mL

Enhancing the HO-1
antioxidative system and
decreasing the levels of
IL-1β and IL-6

[99]

Saururus chinenesis Saururus chinenesis Water extract
rutin, quercitrin, quercetin Animal 300, P.O.

Blocking the
NF-κB/COX-2 and PGE2
pathway

[100]

Apoptosis
modulators

Chrysin Propolis,
passionflower, etc. Isolated compound/chrysin Animal/Cell 100, P.O./40 µM

Inducing the apoptosis of
airway smooth muscle
cells

[80,101]

Codonopsis laceolata Codonopsis laceolata Water extract
Active substance: lobetyolin Animal 300, P.O.

Inducing infiltrated
inflammatory cells’
apoptosis and pulmonary
epithelial cells’ death

[96]

Curcumin Curcuma longa Isolated com-
pound/diferuloylmethane Cell 20 µM

Decreasing the expression
of the anti-apoptotic
protein Bcl-2 and inducing
endoplasmic reticulum
stress

[102]
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4.2. Anti-Inflammatory Effectors

Chrysin exerts an immunomodulatory and anti-inflammatory effects by downregulat-
ing Th2 cell-related cytokines and blocking inflammatory cell infiltration in the pulmonary
system, respectively [80]. Three methoxy-catalpoides from Psueolysimachion rotundum var.
subintegrum suppressed inflammation by decreasing the expression of COX-2 and iNOS
and downregulating the levels of proinflammatory cytokines such as IL-1β, IL-6, and
TNF-α [94]. Aster yomensa (Kitam). Honda, a culinary material, ameliorated inflammation
through the downregulation of NO and IL-1β, which are related to TLR4 and NF-κB ac-
tions [95]. Codonopsis laceolata, which is used as a drug and as culinary material, suppressed
asthma severity through NF-κB/COX-2 and PEG2 pathways [96]. Echinodorus scaber rataj
controls inflammation by downregulating inflammatory cell migration [97]. Korean red
ginseng suppressed asthma occurrence through the dual effects of immune modulation via
IL-4 downregulation and inflammation inhibition through the NF-κB/COX-2 and PEG2
pathways [91]. Pericampylus glaucus inhibited inflammation by blocking the synthesis of
COX-1 and COX-2 [98]. Pinus maritime decreased inflammation by enhancing the HO-1
antioxidative system and suppressing the levels of proinflammatory cytokines such as
IL-1β and IL-6 [99]. Saururus chinensis, a culinary material, inhibited inflammation by
blocking NF-κB activation and the expression of COX-2 and PEG2 [100].

4.3. Apoptosis Modulators

Chrysin exerts anti-asthmatic effects via several therapeutic pathways, such as im-
mune modulation, anti-inflammation, and apoptosis induction. Further, it induced the
apoptosis of airway smooth muscle cells through the dephosphorylation of ERK1/2 [101].
Codonopsis laceolata significantly controls ovalbumin-induced inflammation and cell death,
such as apoptosis of infiltrated inflammatory cells and pulmonary epithelial cell death [96].
Curcumin induces cell death by decreasing the expression of the anti-apoptotic protein
Bcl-2 and induces endoplasmic reticulum stress [102].

The safety of natural products has been well demonstrated, as they have been used for
a long time, and it is easy to develop new drugs for asthma treatment using them because
of their anti-asthmatic effects. As drug development is based on the pathogenesis of the dis-
ease, natural products are classified into three categories by studies on their anti-asthmatic
properties: immune modulators, anti-inflammatory effectors, and apoptosis modulators.

5. Discussion

According to a WHO Fact Sheet of 2019, 262 million people suffered from asthma and
455 thousand persons died from the disease. Asthma is a severe health problem for children
and older adults [4], and as the aging of society intensifies [5], it is likely that the population
of patients with asthma will increase. Although allergic asthma inducers involve indoor
and outdoor allergens, air pollution and climate change have been intensively considered
as additional severe factors that accelerate the prevalence of asthma owing to the rapid
industrialization [11,103].

Asthma medications consist of a controller and a reliever [60]. The controller blocks
inflammation or modulates the immune reaction [59], and the reliever controls asthma by
dilating the pulmonary smooth muscle to expand the small airways [62].

When the allergen invades a bio-organism repeatedly, the immune system is activated,
resulting in the activation of immune cells, such as eosinophils and neutrophils, which in
turn eliminate the allergens by producing ROS. Although the synthesized ROS may elimi-
nate allergens, they can harm the bio-organism. Finally, repeated immune cell activation
causes damage to the pulmonary system, including inflammation and airway remodeling,
and can cause chronic asthma [34]. Potent anti-inflammatory drugs, such as corticosteroids,
leukotriene modifiers, and mast cell stabilizers, have long been used but have several
adverse effects [75–78].

The levels of Th2 cell-related factors are significantly increased in patients with
asthma [22], and Th2 cell-related cytokines, such as IL-4, IL-5, and IL-13, have many
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functions related to asthma occurrence, such as stimulating the secretion of IgE by acti-
vating B cells, inducing eosinophilia and airway hyper-responsiveness, and stimulating
goblet cell metaplasia [25–27]. Other asthma controllers include immune modulators such
as immune suppressors (methotrexate and cyclosporine A) and immune potentiators (glu-
cocorticoids, 1,25-dihydroxy vitamin D3, and toll-like receptor 2/4/9 ligands). However,
they have several adverse effects, such as nausea, an increase in serum aminotransferase,
diarrhea, and hair problems [59,79]. A combined therapy with a reliever and controller
is usually used to increase the anti-asthmatic effect of a drug and decrease its adverse
effects [60]. Many studies have been conducted to develop safer and more effective drugs
for asthma, including the investigation of natural products with anti-asthmatic effects.
However, although natural products have long been used, they have not been confirmed to
be safer than chemical drugs. For example, Guryanova et al. [104] reported that natural
products, including those from bacterial sources, have dual effects depending on the time
of administration. If they are used before the onset of asthma, which can be referred to as
sensitization in an experimental model system, the severity of asthma can be significantly
reduced; however, if used after the disease is established, they increase asthma severity.
Therefore, the timing of administering natural products, including those from bacterial
sources, to treat asthma is one of the most important factors to consider.

To develop asthma drugs from natural products, we should restrict the range of
candidates that have long been used but lack reports on toxicity. Consequently, their
toxicity should be evaluated before approval for market entry. In conclusion, natural
products have many biological effects and can be used as drugs for asthma to exert immune
modulation, anti-inflammation, and apoptosis modulation. Therefore, the development of
drugs from natural products for the treatment of asthma may be a useful strategy.
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