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Abstract: In the pursuit of designing a reusable catalyst with enhanced catalytic activity, recent
studies indicate that electrochemical grafting of diazonium salts is an efficient method of forming
heterogeneous catalysts. The aim of this review is to assess the industrial applicability of diazonium-
based catalysts with particular emphasis on their mechanical, chemical, and thermal stability. To this
end, different approaches to catalyst production via diazonium salt chemistry have been compared, in-
cluding the immobilization of catalysts by a chemical reaction with a diazonium moiety, the direct use
of diazonium salts and nanoparticles as catalysts, the use of diazonium layers to modulate wettability
of a carrier, as well as the possibility of transforming the catalyst into the corresponding diazonium
salt. After providing descriptions of the most suitable carriers, the most common deactivation routes
of catalysts have been discussed. Although diazonium-based catalysts are expected to exhibit good
stability owing to the covalent bond created between a catalyst and a post-diazonium layer, this
review indicates the paucity of studies that experimentally verify this hypothesis. Therefore, use of
diazonium salts appears a promising approach in catalysts formation if more research efforts can
focus on assessing their stability and long-term catalytic performance.
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1. Introduction

Owing to their ability to decrease the activation energy of chemical reactions, catalysts
are essential in the chemical industry. It is estimated that over 75% of all industrial chemical
transformations use catalysts. Homogeneous catalysts are known to have higher activity
and selectivity than heterogeneous ones [1]; however, the major limitation in their use is
the difficult and costly separation process [2]. Therefore, many recent studies are focused
on the immobilization of catalysts leading to the fabrication of easy to reuse materials with
enhanced catalytic activity, i.e., heterogeneous catalysts [3–5]. One of the most promising
routes to the design of heterogeneous catalysts involves the process of electrochemical
grafting of diazonium salts.

Electrografting of diazonium salts is an electrochemical reaction that leads to the reduc-
tion of the organic compound by forming a radical on the aromatic ring which can further
react with the electrode surface to create an organic layer [6]. So-formed electrodeposited
layers are suitable to serve as anchoring points to immobilize catalytic compounds, e.g., en-
zymes [7] or metal nanoparticles [8], allowing the formation of heterogeneous catalysts
applicable in sensors/biosensors [9,10], as well as electrochemical [8,11,12] or chemical
reactions [13]. In recent years, several review articles describing the use of electrografting
processes for the immobilization of catalysts have been published [14,15]. However, to
the best of our knowledge, no one before has attempted to estimate the stability of those
catalysts in practice. The aim of this critical review is to describe the electrografting process
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highlighting various methods to immobilize and modify catalysts, and to extensively dis-
cuss vulnerabilities in deactivating catalysts formed through the process of electrografting.

2. Diazonium Salts

Diazonium salts are organic compounds having a diazonium group (-N2-) in their
structure, with the general formula x- N ≡ N+¯R1. The first diazonium salt was synthesized
by Johann Peter Griess in 1858 [16,17]. Since then, many chemists have sought to synthesize
new diazonium salts because of their wide applicability, e.g., in dye industry or organic
synthesis [18]. From the perspective of this article, the most advantageous feature of
diazonium salts is their ease in being reduced and grafted to the surface with the formation
of a covalent bond between the compound and a surface [19]. Grafting processes can occur
in several different ways including a spontaneous reduction in an aqueous solution with
high pH, grafting by the reducing surface such as copper and iron, grafting by reducing
agent (e.g., ascorbic acid), or by UV light or localized surface plasmon excitation [20]. Still,
the most popular method of grafting is electrochemical grafting (Figure 1) [6]. In this
method, an electrical potential applied to the electrode causes the reduction of a diazonium
compound, with the formation of a nitrogen molecule and an aryl radical. If the radical is
created close to the electrode, it can “attack” the surface and create a covalent bond. The
process of electrografting may be monitored in situ with the use of cyclic voltammetry,
chronoamperometry, or electrochemical quartz crystal microbalance, for instance, giving
direct feedback about its efficiency.
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3. Different Approaches to Catalyst Production via Diazonium Salt Chemistry

The main aim in the use of diazonium salts for catalyst design is the formation of
a thin organic layer on the surface of a carrier that is able to attach to other compounds
with catalytic properties or to act as a catalyst itself. So far, there are four ways to achieve
this goal, named as follows: (1) immobilization of a catalyst by a chemical reaction with a
diazonium moiety, (2) deposition of nanoparticles on a diazonium layer, (3) modulation
of the wettability of a carrier to induce hydrophobic/hydrophilic interactions with a
catalyst, and (4) transformation of a catalyst into a corresponding diazonium salt and its
electrodeposition on the surface of a carrier.

3.1. Immobilization of Catalysts by a Chemical Reaction with a Diazonium Moiety

In this approach, an organic layer formed during the process of electrografting of
diazonium salts should possess functional groups providing the ability to form a chem-
ical bond with a catalyst, e.g., amide bonds, diazo bonds, or the bonds formed during
click reactions.

To form amide bonds, both the organic layer and catalyst should possess -NH2 or
-COOH groups [21–23]. For example, a catalytic compound with a carboxylic group can re-
act with an organic layer attached to the surface possessing amino groups in para position to
the surface. This reaction leads to the formation of an amide bond between an organic layer
and a catalyst. In this case, the most often used diazonium salt is 4-nitrobenzodiazonium
tetrafluoroborate. The nitro group present in a para position can be reduced to amino group
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after grafting by using further electrochemical reduction, as shown in Figure 2 [11,24].
This route was used in several studies, e.g., for the immobilization of hydrogenase [11],
ferrocene carboxylic acid [21], or pyrroloquinoline quinone [24]. It is possible to immo-
bilize compounds possessing -NH2 group by using 4-carboxyphenyl groups grafted on
surfaces as well [21], e.g., for the immobilization of glucose oxidase [25] and horseradish
peroxidase [26].
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organic layer and a catalyst. Created with BioRender.com.

To form a diazo bond, 4-nitrobenzodiazonium salt can be used as well as p-bisdiazonium
salt [7,27]. In this case, diazonium groups (which can be obtained by a reduction of nitro
group to amino group and subsequently treated by HCl + NaNO2 or by simple grafting of
p-bisdiazonium salt) can react in azo-coupling with electron-rich aromatic compounds and
form a diazo bond (Figure 3). Diazonium group in para position can also react in Gomberg–
Bachmann arylation, as shown in a horseradish peroxidase enzyme that was immobilized on
a gold electrode to create a biosensor detecting H2O2 [7].
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Click chemistry, on the other hand, has been widely examined in recent years since
this type of an irreversible chemical reaction occurs under mild conditions with remark-
able efficiency. The importance of click chemistry is evident as the Nobel Prize 2022 in
Chemistry was given to Carolyn Bertozzi, Morten Meldal, and Barry Sharpless for its
development [28]. This reaction is frequently used for the immobilization of molecules,
e.g., Cu(I)-catalyzed azide/alkyne cycloaddition (CuAAC) can be used to immobilize an
aptamer able to detect ochratoxin A [10]. In this study, the surface of a screen-printed
carbon electrode was modified with two types of diazonium salts (TMSi-Eth-Ar-N2

+ and
p-NO2-Ar-N2

+), where TMSi-Eth-Ar-N2
+ was able to combine with an aptamer which was

responsible for Ochratoxin A detection. In this reaction, the 1,2,3-triazole ring is formed,
similar to a peptide bond [10], which is desirable in biosensors applications owing to the
enhanced biological activity of the immobilized molecule. The same type of click chemistry
was used in other studies [29,30]. In one study, two types of catalyst were immobilized on
surfaces through CuAAC and thiol-ene click reactions using the reduction of two types of
diazonium salts [31]. These catalysts were used in electroenzymatic reduction of D-fructose
to D-sorbitol. To use click chemistry for the immobilization of catalysts, corresponding
diazonium salts should have moieties capable of forming a desirable bond. For example, in
a CuAAC reaction, diazonium salt should have azide or ethynyl groups in para position.
The corresponding diazonium salts are most often prepared in situ [10,31].

3.2. Diazonium Salts and Nanoparticles as Catalysts

Diazonium salts can be used to improve the deposition of metal nanoparticles (NPs)
with catalytic properties. In most cases, gold and silver NPs are used [8,13,32–35], yet there
are no limits in the use of other metals, such as copper [12,36], rhodium [36], palladium [35],
and ruthenium [12]. Diazonium salts are used for the modification of catalyst carriers
for several reasons. First, an organic layer formed during the grafting process prevents
the nucleation of metal particles [8]. Moreover, the presence of a functional group in para
position to the surface can electrostatically attract metal ions to the surface, which are
subsequently chemically reduced [12]. In another approach to forming catalytically active
NPs, diazonium salts are used to enable their dispersion in aqueous suspensions. For
example, Aghajani et al. [33] studied the arylation of gold NPs for ethanol oxidation. The
surface of NPs was modified by the deposition of 4-carboxybenzodiazonium salt whose
-COOH groups allowed for a stable water suspension of gold NPs. Aryl groups can form
oligomers, leading to the passivation of the surface of particles. Therefore, the concentra-
tion of a diazonium compound needs to be controlled to obtain the desired thickness of
coating. Another method, also described in [33], used 3,5-dimethylobenzodiazonium salt
to block the oligomerization reaction of 4-carboxybenzodiazonium salt. The presence of the
carboxylic group allowed for the formation of a stable water suspension, whereas dimethyl
derivatives blocked the oligomerization of aryl compounds on the particle’s surface. The
summary of techniques used for the formation of catalysts with metal NPs is presented
in Figure 4.

3.3. Modulating Wettability of a Carrier

Coating the surface with a diazonium moiety allows for changed surface wettability
to enhance the surface adhesion of particular molecules, e.g., fructose dehydrogenase
(FDH) [37]. In a recent study, SWCNTs on a GCE surface were modified by diazonium
salt prepared from 2-aminoanthracene. Subsequently, FDH was adsorbed on a modified
surface. So-formed catalysts showed two separated electrocatalytic waves in the presence
of fructose, while a non-modified electrode (without diazonium salt and FDH) showed
only one electrocatalytic wave. Adsorbing FDH directly on a GCE electrode showed only a
slight catalytic effect. Stability of the catalyst was measured over 60 days. After this time,
the catalyst was found to maintain 90% of the initial amperometric signal. The authors
explained the enhanced adhesion by π-π interactions between aromatic side chains present
in FDH and anthracenyl aromatic molecules.
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A different approach was proposed by Park et al. [38], who explored catalysts used
in fuel cells. Polymer electrode membrane fuel cells catalysts are characterized by a rapid
decrease in efficiency owing to the dissolution of the platinum layer and carbon corrosion
caused by water. The proposed solution suggested modifying the surface of the catalyst
with diazonium salts possessing fluorine, acid, and nitrile functional groups to increase
the hydrophobicity of the surface and thus limit the access of water to the catalyst. In this
case, the diazonium layer did not possess catalytic properties, but was used to increase the
stability of a catalyst.

3.4. Transforming a Catalyst into a Corresponding Diazonium Salt

In several studies, the corresponding salts with catalytic activity were deposited di-
rectly on electrode surface [39–41]. In these cases, no special moieties in para position were
required. Theoretically, every organic compound with activated aromatic ring can react
with a nitrating mixture (HNO3 + H2SO4) to form nitro derivatives. Subsequently, the nitro
group could be reduced to an amino group, which can be easily modified to a diazonium
group using HNO2 prepared, for example, in situ from HCl and NaNO2. The reaction
between HNO2 and amine groups occurs in low temperatures (below 5 ◦C) because of the
thermal instability of diazonium salts and their explosive character. Firstly, amine and acid
should be added. NaNO2 is subsequently added, avoiding excess [42]. In practice, it could
be difficult to carry out these steps with high yield, which limits this application to few com-
pounds (azure A [40], toluidine blue [43], and trans-4-cinnamic acid [44]). Consequently,
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transforming a catalyst into a corresponding diazonium salt is a relatively rare method for
designing heterogeneous catalysts (Figure 5). The applications of these catalysts included a
mediated oxidation of glucose [39] and sensing of β-nicotinamide adenine dinucleotide [40]
with surfaces modified with Azure A, determination of NADH and ethanol sensing for
glassy carbon modified by toluidine blue [43], glucose biosensing for trans-4-cinnamic acid
grafted on glassy carbon [44], and oxidation of water by pentamethylcyclopentadienyl
iridium complexes grafted onto glassy carbon [45].
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Figure 5. A formation of a diazonium-based catalyst from a catalyst compound. Created
with BioRender.com.

4. Choice of a Carrier

As diazonium salts can be grafted electrochemically, spontaneously, photochemically,
or by reducing surfaces, the choice of substrate does not seem to limit the formation
of catalysts (Figure 6). In the literature, catalysts were formed or immobilized on the
surface of gold [7,9], multi-walled carbon nanotubes [11], glassy carbon [12,46,47], graphite
powder [36], and even olive pits [13]. Although the choice of potential carriers is wide, the
selection should be well-thought out to achieve the expected results. For example, carbon
nanotubes are well known for their large specific surface which is desirable and useful for
catalyst production because it allows the reduction of space occupied by the catalyst [11].
On the other hand, catalysts deposited on biodegradable surface, like olive pits, can be
used to produce green catalysts. The correct choice of carrier can be also critical for the
stability of the diazonium-based catalyst. This will be described in the next sections.
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5. Deactivation Routes of Diazonium-Based Catalysts

It is a well-known fact that the lifetime of the catalysts is limited by various deactivation
routes, and diazonium-based catalysts are no exception. The typical deactivation routes
for a catalyst include mechanical, chemical, and thermal deactivation (Figure 7) [48]. The
mechanical types of catalyst deactivation can be divided into attrition, crushing, and
physical adhesion of species present in the reactor. A common example of a chemical
deactivation route is poisoning by chemical compounds which can react with the active
center of a catalyst and block it to disable catalytic activity. Deactivation by thermal vectors
can result in the loss of active surface area (sintering) or by the thermal degradation of the
catalyst. Different mechanisms of deactivation should be considered for catalysts intended
for electrochemical and chemical reactions and for biosensors purposes.
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5.1. Mechanical Stability

In the case of diazonium-based catalysts, the most important factor governing the
catalyst’s performance is the stability of the organic layer attached to the surface and the
stability of bonds formed between an organic layer and a catalyst. Catalysts employing
grafted diazonium salts are vulnerable to mechanical deactivation, especially attrition. The
organic layer formed during grafting is attached to the surface by a strong covalent bond
but can still be removed by a mechanical action, e.g., scratching. For electrocatalysts, this
problem is negligible because electrodes are modified with diazonium salts and catalyst
moieties during the reaction and there is no risk of attrition. For catalysts intended for
chemical reactions, mechanical deactivation could be a serious problem. It can be assumed
that the catalyst will be as resistant to attrition as is the surface on which the organic
layers are deposited. Catalysts employing diazonium salts should show similar or greater
vulnerability to attrition in comparison to typical catalysts, because, unlike most of them,
diazonium-based catalysts have an active center only on the surface; therefore, every
scratch decreases their catalytic performance. In a study by Anariba et al. [49], atomic
force microscopy was used to scratch an organic monolayer formed from the pyrolyzed
photoresist film (PPF). The force was determined empirically to scratch only the post-
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diazonium layer, without scratching the PPF surface. Although the main aim of this
study was to determine the thickness of organic layer, it may only useful to estimate the
vulnerability of layers for scratches. As recognized by the authors, the force needed to
scratch the organic layer from surfaces was ~1 µN, a seemingly small value; however, it
should be mentioned that the force needed to scratch is dependent on many factors such as
thickness of the layer and scratch speed.

5.2. Thermal Stability

In the case of diazonium-based catalysts, thermal deactivation could proceed in these
three ways: (1) sintering, (2) delamination of the organic layer by breaking the bond
between the surface and an organic compound, and (3) degradation of the bonds between
the organic layer and the catalyst (Figure 8). The bonds between the surface and the organic
layer are thermally stable [50–52], and the degradation of the layer can be recorded in
temperatures above 200 ◦C. Therefore, the stability of interactions between the surface and
organic layer does not seem to be a limitation in the use of diazonium-based catalysts as
most chemical reactions are carried out at temperatures below 200 ◦C.
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The degradation of bonds between an organic layer and a catalyst compound is
different for each type of linkage: amide bonds, diazo bonds, and triazole linkage.

Amide bonds have the ability to create resonance structures [53,54] so their stability
should be sufficient for most applications. Thermal stability of some amide compounds,
including aromatic amides, was studied with the use of high-resolution pyrolysis gas
chromatography–mass spectrometry and thermogravimetry [55,56]. In general, amide com-
pounds are thermally stable up to 160 ◦C, but the exact decomposition temperature depends
on the structure of the molecule. For example, morpholine amide and N-methylaniline
amide derivatives of maleated polyethylene decompose in 160 ◦C [55] and 3,7-dihydroxy-N-
(2-hydroxy-4-methylphenyl)-2-naphthamide degrades 25% by masses around 300 ◦C [56].
Nevertheless, thermal stability does not seem to be a limitation in those catalyst types, in
contrast to chemical stability.

Thermal stability of diazo bonds was studied by thermogravimetry [57,58], and the
results indicated their thermal stability below 200 ◦C, a value that allows their use in
most applications, including chemical reactions. Nevertheless, some azo compounds,
like the popular radical polymerization initiator AIBN (2,2′-azobisisobutyronitrile), are
highly unstable [59,60] because of the presence of electron withdrawing -CN substituents.
Moreover, thermal stability of azo compounds can be decreased not only by the presence
of substituents, but also by a tautomeric effect [61]. Therefore, it can be predicted that
catalysts immobilized by this type of bond will be stable at temperatures under 200 ◦C,
providing that catalyst molecules are devoid of electron withdrawing substituents. This
assumption is easy to fulfill, as molecules with deactivated aromatic rings do not react in
azo-coupling reactions.

Triazole linkages were used to produce some polytriazoleimides [62] which were
subsequently studied by thermogravimetric analysis. The results showed that decom-
position temperature of these polymers is under 350 ◦C. Moreover, triazole linkages is
present in many organic compounds requiring high temperatures for decomposition, such
as 3,3′-dinitro-5,5′-diamino-bi-1,2,4-triazole, which decomposes at 275.5 ◦C with a heating
rate of 5 K·min−1 [63]. In general, 1,2,3-triazole moiety decomposes at 300–400 ◦C [64], but
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the exact temperature of decomposition is always dependent on the structure of attached
molecules because some moieties can decrease their stability. To sum up, we can speculate
that 1,2,3-triazole linkages are thermally stable and predict that this type of bond should be
one of the best choices for immobilization of catalyst compounds, especially for a chemical
reaction catalysts.

Fe3O4 nanoparticles grafted by 2-hydroxyethylphenyldiazonium tetrafluoroborate
were synthesized to obtain a water-soluble nanoparticle [65]. Thermal stability of syn-
thesized particles was measured by thermogravimetric analysis in the temperature range
20–800 ◦C (heating rate = 10 ◦C/min). The diazonium-modified particles decomposed with
20% weight loss after heating to 800 ◦C, while unmodified Fe2O3 NPs showed a weight
loss of 4%. This suggests that the density of the aryl layer was high. Unfortunately, the
authors did not attach information about the temperature at which decomposition started.
In another study, thermogravimetric curves were recorded to study the behavior of the
graft layer on the catalyst surface. As the study showed, the temperature at which the
weight loss process began was 140 ◦C for the benzotrifluoride layer, which was associated
with the process of degradation of the functional groups of the grafted salt [38].

5.3. Chemical Stability

Chemical stability of diazonium-based catalysts depends on the type of bond between
the post-diazonium layer and catalyst. For instance, triazole bonds created during the
click reactions between catalyst and the modified surface are chemically stable [66,67]. The
1,2,3-triazole ring is resistant towards hydrolysis and oxidation [68]. Also, diazo bonds are
chemically stable. To the best of our knowledge, there is no evidence for sensitivity of diazo
bonds in acidic or alkaline environments. On the other hand, it is widely known that amide
compounds can hydrolyse in acidic or alkaline solutions under high temperature, partic-
ularly in acidic solutions. Therefore, amide bonds should be excluded from applications
requiring acids or bulks and high temperature. It should be noted that the temperature
and rate of hydrolysis depend on the structure of the molecule. For example, activation
energy of acidic and basic hydrolysis of benzamide derivatives is lower when a molecule
possesses electron-withdrawing groups [69]. Nevertheless, amide bonds are still a good
choice for biosensors and electrocatalysts that work under mild conditions.

5.4. Deactivation through Poisoning

Diazonium-based catalysts are vulnerable to poisoning. Potential poisoning for a
specific catalyst should be considered through the prism of an immobilized particle. For
example, gold nanoparticles are easily poisoned by Cl [70] and Br [71]; therefore, these
elements should be avoided in a reaction environment. In the study by Karthik et al. [41], p-
sulfobenzenediazonium salt was grafted on reduced graphene oxide. Owing to the presence
of -SO3H groups, the so-formed organic layer showed Bronsted acidic catalytic properties
which were used in the synthesis of benzimidazoles from diamines and aldehydes under
ambient conditions. The catalyst obtained a good yield, yet substrates with an aromatic ring
with a nitrogen atom were able to suppress the reaction because of the poisoning properties
of pyridine moities on the acidic sites; this proves that post-diazonium catalysts exhibit
vulnerability to poisoning. It is worth noting that there is no information that diazonium
salts could be responsible for the deactivation of the catalyst.

Interestingly, there is evidence for the stability-enhancing influence of diazonium
salts for catalysts. Ma et al. [72] used 4-aminodiazonium salt to graft graphene oxide
on the surface of a glassy carbon electrode. The post-diazonium layer was used owing
to the presence of amine groups which allowed for the deposition of gold nanoparticles
on the surface of graphene oxide. The so-formed post-diazonium catalyst was used in
methanol oxidation, and its performance was compared with a gold electrode in stability
tests. After 1000 CV cycles, the post-diazonium catalysts retained the 80.5% of initial
performance, while the catalytic efficiency of the gold electrode decreased to 76.1%. The
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higher efficiency of the post-diazonium catalyst was explained by the smaller number of
poisoning intermediates formed during the oxidation of methanol on this catalyst.

6. Stability of Diazonium-Based Catalysts: Experimental Studies

In many research studies, the stability of diazo-based catalysts is taken for granted,
without providing experimental data [73]. Nevertheless, in some studies the information
about a long-term catalytic performance is present. For instance, Alonso-Lomillo et al. [11]
designed an electrocatalyst for a hydrogen oxidation process and compared carbon nan-
otubes modified with a catalyst (hydrogenase) via either adsorption or attachment through
amide bonds. The amide bonds were created during the reaction between -COOH group
from hydrogenase and -NH2 group from diazonium layer, obtained through electrograft-
ing of 4-nitrobenzenediazonium salts and the subsequent reduction of -NO2 group in
water/ethanol solution (9:1). Both catalysts showed oxidative properties, yet adsorbed
hydrogenase was much less efficient and delaminated after six days of work. On the other
hand, catalysts with covalently bonded hydrogenase showed a slight decrease in efficiency
in the first few days (around 35%), which was correlated with the delamination of the
nonbonded hydrogenase; however, the efficiency of this catalyst was significantly higher
throughout the duration of the experiment. After the initial decrease in efficiency, the
catalyst showed an excellent stability for a month (Figure 9).
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Similarly, Radi et al. [7] prepared a biosensor for H2O2 detection by immobilizing
horseradish peroxidase on the surface of gold, which was able to retain its full activity
for two weeks. The 25% decrease in activity was noticed after three weeks of storage at
4 ◦C. In this case, 4-nitrobenzenediazonium salt was used as well. The reduction of a
nitro group was performed in 0.1 M KCl solution with a potential range between 0.4 and
−1.2 V (vs. pseudoreference electrode). Subsequently, amino groups were transformed
to diazonium groups using 1 mM sodium nitrate in 0.5 M HCl. The electrodes were
submerged in this solution for 5 min and then were flushed with distilled water and
washed with a phosphate buffer solution. After that, the enzyme was attached to the
substrate by spreading it on its surface.

Water oxidation catalysts, more specifically iridium pentamethylcyclopentadienyl
complexes transferred to diazonium derivatives, were grafted onto a glassy carbon elec-
trode by deKrafft et al. [45]. The stability of created catalysts was examined during the
electrochemical water oxidation process by measuring numbers of molecules per unit area.
The initial value (4.83 molecules/nm2) dropped quickly to 1.97 molecules/nm2 owing
to the delamination of ungrafted molecules. The remaining covalently bound catalysts
molecules delaminated slower during the 3 h of electrolysis, reaching 0.1 molecules/nm2
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(Figure 10). SEM images collected after 40 min and 10 h of electrolysis indicated significant
differences between surface roughness, suggesting that the loss of catalyst molecules was
caused by a loss of carbon from the electrode that was oxidized during the experiment.
This demonstrates the importance of a correct choice of carrier. In another study [23], nickel
bisdiphosphine anchored to MWCNT through amide bonds showed excellent stability
during 100,000 turnovers.
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In a study by Bangle et al. [74], diazonium ruthenium terpyridine was grafted on
the surface of metals oxides with a wide band gap (mesoporous thin films of TiO2, SnO2,
ZrO2, ZnO, and indium-doped tin oxide deposited on fluorine-doped tin oxide glass), to
test their stability in alkaline pH, which is beneficial in a water oxidation process. The
diazonium-based catalyst was stable in an alkaline solution (pH 12) for a month, when
surfaces functionalized by sensitizers were observed to desorb after several days.

The stability of the catalyst based on silver NPs was examined by Guo et al. [8]. In
this study, a MWCNT surface was modified with 4-nitrobenzene diazonium salt, and nitro
groups were subsequently reduced to amino ones. After this, the surface was submerged
in a AgNO3 solution to adsorb Ag+ ions by electrostatic forces. Then, ions were reduced
to NPs using chronoamperometry (potential step from 0 V to −0.5 V vs. SCE for 120 ms).
In this way, a catalyst for methanol oxidation was formed in an alkaline solution. It was
noticed that electrocatalytic activity of the Ag/MWCNT electrode decreased over time, and
this correlated with the deposit of passivation products. Nevertheless, it was also noted
that these products can be oxidized in positive potential, which proves that this catalyst
can be regenerated.

The issue of catalyst stability was raised also in the case of -SO3H groups of p-
sulfobenzenediazonium salt, which were used as a Bronsted acidic catalyst for benzimi-
dazole synthesis [41]. A so-formed catalyst was recovered from the reaction mixture by
a simple filtration, washed, and then dried. Subsequently, the catalyst was reused in a
new reaction with the same parameters. The results established that the catalyst retains
its stability for five full cycles of reaction without decay of activity. Powder diffraction
XRD (PXRD), FT-IR, XPS, and HRTEM analysis were used to examine the changes in
morphology of the used catalyst. Both PXRD and FT-IR did not show changes between the
fresh and used catalyst. TEM images did not show any changes in the microstructure and
morphology of surface after five reaction cycles. Moreover, XPS analysis revealed that the
chemical composition of the catalyst was the same for the used and fresh one.

Gold NPs modified with 4-carboxyphenyl diazonium salt were synthesized to form
a catalyst for the reduction of 4-nitrophenol pollutants [75]. The stability of Au-C6H6-
COOH NPs was thoroughly examined in the solutions of different pH and under different
temperatures. NPs were submerged for a one day in different buffer solutions (pH range
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from 1 to 14) and subsequently were tested by UV-Vis spectrophotometry. In pHs higher
than 4, UV-Vis spectra were quite similar, but in pHs lower than 4 there was a red-shift and
a decrease in the absorbance caused by the formation of larger NPs owing to the decrease
in electrostatic forces, as more carboxylic groups were protonated in acidic conditions.
Nevertheless, even at pH 1, a characteristic peak at 542 nm was observed, suggesting that
diazonium-modified NPs show good environmental stability. The stability of synthesized
particles was examined in different temperatures as well (20, 30, 60, 90 ◦C) by collecting UV-
Vis spectra. With increasing temperature to 60 ◦C, absorbance slightly decreased, however
without major changes. However, at a temperature of 90 ◦C, the absorbance values clearly
decreased with a well-observed red shift. Despite this, it was concluded that synthesized
NPs show high stability of the gold-organic shell, related to the LSPR peak at 542 nm. In the
same study, the activity of catalysts was examined in subsequent cycles of reaction. UV-Vis
spectra were shifted to red wave and decreased in intensity at the LSPR band. Moreover,
TEM images showed an increase in aggregation of NPs with subsequent cycles, associated
with a decrease in catalyst activity.

The diazonium-based catalysts described in this section have been summarized in Table 1.

Table 1. A summary of diazonium-based catalysts, their applications and advantages. MWCNT—multi-
walled carbon nanotubes; GC—glassy carbon; NPs—nanoparticles; PQQ—pyrroloquinoline quinone;
HPP—horseradish peroxidase; SWCNT—single-walled carbon nanotubes; FDH—fructose dehydrogenase.

Catalysts Type of Bonds Application Advantages Ref.

Au/MWCNTs/4-
aminophenyl/hydrogenase amide bonds hydrogen oxidation impressive stability compared to

adsorbed hydrogenase [11]

MWCNT/4-aminophenyl/AgNPs C-C bonds methanol oxidation in
alkaline solution prevention of NPs nucleation [8]

GC/N,N-diethylaniline/Cu C-C bonds electrochemical reduction
of nitrate

much lower current response compared to
catalysts without Cu [12]

GC/4-sulfonatephenyl/Ru C-C bonds electrochemical oxidation
of H2O2

unmodified electrode showed no current
response, when modified showed strong peak
typical for H2O2 oxidation

[12]

Au/4-aminophenyl/PQQ amide bonds electrooxidation of NADH protection against non-specific adsorption and
mild chemical reactions [24]

Au/p-diazoniumphenyl/HPP azo-coupling electrochemical reduction
of H2O2

electrocatalytic activity towards the reduction of
H2O2 without any mediator; fast amperometric
response to H2O2; acceptable sensitivity, good
reproducibility and long-term stability

[7]

Carbon electrode/4-
((trimethylsilyl)ethynyl)benzene/p-
nitrobenzene/aptamer

Click chemistry detection of ochratoxin A wide detection range (from 1.25 ng/L to
500 ng/L), detection limit of 0.25 ng/L [10]

GC/SWCNT/2-aminoantraceneFDH π-π interactions detection of fructose efficient direct electron transfer reaction between
FDH and GC electrode [37]

Screen printed carbon
electrodes/Azure A C-C bonds NADH oxidation high and stable electrocatalytic response [40]

Olive pits/-NH2/AuNP
Olive pits/-SH/AuNP
Olive pits/-COOH/AgNP

C-C bonds reduction of nitrophenol remarkable catalytic activity [13]

7. Conclusions

Diazonium-based catalysts are widely used in the fields of electrocatalysis and biosensing.
Although applications in common chemical reactions are also possible, they are less frequently
used. In this paper, we reviewed the major applications of diazonium-based catalysts, de-
scribed various routes of formation, and assessed their stability. As proven, diazonium-based
catalysts are more stable compared to catalysts adsorbed to the surface without its modi-
fication owing to the strong bonds created between catalyst and the post-diazonium layer.
The stability of diazonium-based catalysts is strongly associated with the surface on which
a diazonium layer is grafted, as in some reports high stability was achieved for many days,
while in others the stability decreased abruptly. To conclude, the use of diazonium salts seems
to be a promising approach in catalyst formation, if more research efforts can focus on the
assessment of their stability and long-term catalytic performance.
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