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Abstract: The cytosine–phosphate–guanine (CpG) island methylator phenotype (CIMP) represents
one of the pathways involved in the development of colorectal cancer, characterized by genome-
wide hypermethylation. To identify samples exhibiting hypermethylation, we used unsupervised
hierarchical clustering on genome-wide methylation data. This clustering analysis revealed the
presence of four distinct subtypes within the tumor samples, namely, CIMP-H, CIMP-L, cluster
3, and cluster 4. These subtypes demonstrated varying levels of methylation, categorized as high,
intermediate, and very low. To gain further insights, we mapped significant probes from all clusters to
Ensembl Regulatory build 89, with a specific focus on those located within promoter regions or bound
regions. By intersecting the methylated promoter and bound regions across all methylation subtypes,
we identified a total of 253 genes exhibiting aberrant methylation patterns in the promoter regions
across all four subtypes of colorectal cancer. Among these genes, our comprehensive genome-wide
analysis highlights bone morphogenic protein 4 (BMP4) as the most prominent candidate. This
significant finding was derived through the utilization of various bioinformatics tools, emphasizing
the potential role of BMP4 in colorectal cancer development and progression.

Keywords: DNA methylation; promoter region; bound region; colorectal cancer; CIMP

1. Introduction

DNA methylation is a fundamental epigenetic mechanism that plays a crucial role in
the regulation of gene expression [1]. It involves the binding of methyl groups by DNA
methyltransferases to cytosine residues, resulting in the formation of 5-methylcytosine
(5-mC) at cytosine–phosphate–guanine (CpG) dinucleotides [1,2]. In most somatic cells,
the majority of CpG sites are methylated, with the exception of CpG islands located in
promoter regions [1]. Notably, hypermethylation of these promoter regions often leads to
the silencing of gene transcription [3]. Given that hypermethylation in promoter regions
is an early event in colorectal cancer (CRC), it serves as a promising starting point for the
identification of diagnostic methylation markers.

CRC is a prevalent malignancy worldwide and a significant contributor to global
mortality rates [4]. The development of CRC involves a combination of genetic and
epigenetic alterations in epithelial cells. Genetic abnormalities often include mutations
in DNA mismatch repair genes and the APC regulator of WNT signaling pathway (APC)
gene, which regulates the WNT signaling pathway [5–7]. In addition to genetic changes,
CRC is characterized by widespread DNA promoter hypermethylation, leading to the
silencing of tumor suppressor genes [5–7]. From a biological predisposition, CRC can be
classified into two main subtypes: microsatellite instability (MSI) and microsatellite stable
and chromosomally unstable (CIN), based on their genomic characteristics [8].

In 1999, the concept of the “CpG island methylator phenotype” (CIMP) was introduced,
which characterizes the methylation of CpG islands in multiple genomic regions [9,10].
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Currently, there is no consensus on the gene panel used to determine the CIMP status of a
tumor. However, the most commonly utilized panel is the Wisenberger panel, consisting
of the following genes: calcium voltage-gated channel subunit alpha1 G (CACNA1G),
neurogenin 1 (NEUROG1), RUNX family transcription factor 3 (RUNX3), suppressor of
cytokine signaling 1 (SOCS1), and insulin-like growth factor 2 (IGF2) [11].

CIMP tumors can be further classified into two subtypes: CIMP-H (CIMP high) and
CIMP-L (CIMP low). CIMP-L tumors exhibit intermediate methylation levels and are often
associated with mutations in the KRAS proto-oncogene, GTPase (KRAS) gene, with one
to three genes from the aforementioned panel showing methylation [12]. On the other
hand, CIMP-H tumors display high methylation levels, are significantly associated with
mutations in the B-Raf proto-oncogene, serine/threonine kinase (BRAF) gene, and are
predominantly located in the proximal colon. These tumors show methylation of more
than three genes from the panel [11,12].

Recent studies have further expanded the classification of colorectal tumors based
on their methylation subtypes. The Cancer Genome Atlas (TCGA) group identified four
epigenetic subtypes: CIMP-H, CIMP-L, cluster 3, and cluster 4. The union of cluster 3 and
cluster 4 is referred to as Non-CIMP [13]. Other studies, such as those conducted by
Shen et al. [14] and Yagi et al. [10], identified three epigenetic subtypes and identified
specific hypermethylated genes as markers. Additionally, Hinoue et al. identified four
subtypes based on hierarchical clustering of DNA methylation, which exhibited high inter-
tumor variability [15]. Among these subtypes, CIMP-H and CIMP-L were associated with
BRAF and KRAS mutations, respectively. Tumors in the third cluster were associated with
tumor protein p53 (TP53) mutations and were predominantly found in the distal colon,
while the fourth cluster was enriched for rectal tumors with low rates of KRAS and TP53
mutations. These subtyping approaches provide valuable insights into the heterogeneity
of colorectal tumors based on their DNA methylation patterns and associated genetic
alterations. Understanding these subtypes can have implications for prognosis, treatment
selection, and the identification of potential therapeutic targets.

DNA methylation alterations have been found to primarily occur in the early stages
of cancer, making them valuable early risk indicators for cancer development [16]. In the
context of CRC screening, researchers have investigated aberrant methylation patterns
in various genes within tissues and body fluids of CRC patients, identifying potential
biomarkers for early detection. Notably, several genes associated with crucial signaling
pathways have been studied as potential candidates. These pathways include the WNT
signaling pathway, represented by APC, axin 2 (AXIN2), dickkopf WNT signaling pathway
inhibitor 1 (DKK1), secreted frizzled related protein 1 (SFRP1), secreted frizzled related
protein 2 (SFRP2), and Wnt family member 5A (WNT5A). Additionally, DNA repair pro-
cesses have been investigated, with a focus on O-6-methylguanine-DNA methyltransferase
(MGMT) and mutS homolog 2 (MSH2). Furthermore, cell cycle regulation has been a target
of study, with cyclin-dependent kinase inhibitor 2A (CDKN2A) and cyclin-dependent ki-
nase inhibitor 2B (CDKN2B) being of particular interest. Finally, the RAS signaling cascade
has been explored, with emphasis on Ras association domain family member 1 isoform
A and isoform B (RASSF1A and RASSF1B) as potential biomarkers in colorectal cancer
research. These genes’ roles in these pathways make them promising candidates for un-
derstanding the mechanisms underlying colorectal cancer development and progression.
Among these, promoter hypermethylation of cadherin 1 (CDH1) has been linked to CRC
progression, suggesting its potential as a diagnostic tool for this malignancy [17].

Several DNA methylation biomarkers have shown promise for early CRC screening.
Notably, N-Myc, downstream-regulated gene-4 (NDRG4), and bone morphogenetic protein-
3 (BMP3) are tumor suppressor genes that can be utilized for early detection of CRC [18].
In different sample types, NDRG4 methylation has been positively associated with CRC
and adenoma, with sensitivity ranging from 27.8% to 81% and specificity from 78.1% to
91.7% [19,20]. BMP3 promoter methylation analysis in blood, stool, and tissue samples
has shown sensitivity ranging from 33.3% to 56.66% and specificity from 85% to 94% for
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diagnosing CRC and advanced adenoma [19,21]. Notably, three DNA methylation markers,
including NDRG4, BMP3, and SEPT9, have been incorporated into FDA-approved tests for
CRC screening [22].

In an attempt to identify a novel methylation marker by which to identify most CRC
samples regardless of methylation cluster, we focused our analysis on DNA methylation
data obtained from 332 colorectal cancer (CRC) tumor samples and 45 normal samples.
Using unsupervised clustering, we identified distinct methylation subtypes within the CRC
samples. Next, we found common methylation alterations across all four subtypes and
assigned them to promoter regions, which belonged to 253 genes.

Among these genes, bone morphogenic protein 4 (BMP4) emerged as a particularly
promising candidate based on further functional analysis. BMP4 has been implicated in
various biological processes, including cell differentiation, proliferation, and apoptosis. Its
dysregulation has been associated with multiple diseases, including cancer. Our findings
suggest that aberrant methylation of the BMP4 gene promoter may play a significant role
in CRC development and progression.

By identifying common methylation alterations in gene promoters across different CRC
subtypes, our study provides valuable insights into the potential epigenetic markers and
mechanisms involved in CRC. Further investigation of the functional implications of these
aberrantly methylated genes, particularly BMP4, may contribute to a better understanding
of CRC pathogenesis and potentially lead to the development of novel diagnostic and
therapeutic strategies.

2. Results
2.1. Classification of CIMP Status

To examine the differences in patterns of CpG methylation between tumor samples
from different molecular subtypes, we performed hierarchical clustering of samples. We
performed clustering based on the methylation data from HM27 using the recursively
partitioned mixture model (RPMM) algorithm. Our goal was to identify subgroups within
the dataset that closely matched the previously assigned clusters. To achieve this, we
focused on 2757 probes that exhibited the highest variability in beta values among the
tumor samples. By utilizing these probes, we obtained the best fit of clusters compared to
the already assigned ones. This clustering model was then applied to HM450 methylation
data to identify subgroups in the dataset. The hierarchical clustering dendrograms of
HM450 methylation data (Figure 1) supported four distinct tumor groups: a heavily
methylated cluster designated CIMP-H (n = 58), intermediate methylation levels cluster
designated CIMP-L (n = 81), cluster 3 (n = 77), and cluster 4 (n = 116), with both clusters
exhibiting low methylation levels. The clinical data from our clusters support previous
studies wherein the CIMP-H subtype is enriched for BRAF mutation and MLH1 methylation
and is more commonly found in the ascending colon [23]. The cluster 3 and cluster
4 subtypes are more commonly found in the sigmoid colon and rectum.

The clinical and pathologic features of the patients and their tumors were summarized
for further analysis. All 332 patients had information on age, gender, tumor location, MSI
status, and methylation status on MLH1 gene, and some also had mutational data available.
For the purpose of classification, the mutational status of BRAF and KRAS mutations
were used where available (Table 1). Consistent with previous studies, CIMP-H cluster is
enriched in the ascending colon (38/58, 70%) and is associated with BRAF (V600E) mutation
(21/49, 43%) and MLH1 methylation (28/58, 48%) [16]. The sigmoid colon and rectum
locations are commonly associated with cluster 3 (72%) and cluster 4 (65%).
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ylator phenotype—high; CIMP.L, CpG island methylator phenotype—low; msi-h, microsatellite in-
stability—high; msi-l, microsatellite instability—low; mss, microsatellite stability; MLH1, mutL 
homolog 1; BRAF, B-Raf proto-oncogene, serine/threonine kinase; KRAS, KRAS proto-oncogene, 
GTPase; MSI, microsatellite instability; MSS, microsatellite stability. 
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clustering classification.  

Figure 1. Heatmap of unsupervised hierarchical clustering of HM450 DNA methylation data of
332 tumor samples from colon adenocarcinoma (COAD) and rectum adenocarcinoma (READ) project
in TCGA with some clinical and some genetic information. The color scale indicates the level
of methylation: hypomethylation is blue and hypermethylation is yellow. CIMP.H, CpG island
methylator phenotype—high; CIMP.L, CpG island methylator phenotype—low; msi-h, microsatellite
instability—high; msi-l, microsatellite instability—low; mss, microsatellite stability; MLH1, mutL
homolog 1; BRAF, B-Raf proto-oncogene, serine/threonine kinase; KRAS, KRAS proto-oncogene,
GTPase; MSI, microsatellite instability; MSS, microsatellite stability.

Table 1. Clinical and genetic data of patients included in the study.

Overall
n = 332

CIMP-H
n = 58

CIMP-L
n = 81

Cluster 3
n = 77

Cluster 4
n = 116

Gender
Female 146 (44%) 25 (43%) 35 (43%) 36 (47%) 50 (43%)
Male 186 (56%) 33 (57%) 46 (57%) 41 (53%) 66 (57%)

Age Median 66 69 68 63 63
Range (31–90) (33–88) (37–90) (37–90) (31–90)

Subsite

Ascending 111 (34%) 38 (70%) 40 (51%) 15 (19%) 18 (16%)
Transverse 41 (13%) 10 (19%) 11 (14%) 5 (6%) 15 (13%)
Descending 13 (4%) 3 (6%) 4 (5%) 2 (3%) 4 (4%)

Sigmoid 77 (24%) 1 (2%) 11 (14%) 23 (30%) 42 (36%)
Rectum 80 (25%) 2 (4%) 12 (15%) 32 (42%) 34 (29%)
No data 10 4 3 0 3

MSI status

MSI-H 48 (14%) 29 (50%) 10 (12%) 1 (1%) 8 (7%)
MSI-L 54 (16%) 8 (14%) 16 (20%) 16 (21%) 14 (12%)

Intermediate 2 (1%) 0 1 (1%) 1 (1%) 0
MSS 228 (69%) 21 (36%) 54 (67%) 59 (77%) 94 (81%)

BRAF
Mutant 24 (10%) 21 (43%) 2 (4%) 0 (0%) 1 (1%)

Wild-type 208 (90%) 28 (57%) 52 (96%) 46 (100%) 82 (99%)
No data 100 9 27 31 33
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Table 1. Cont.

Overall
n = 332

CIMP-H
n = 58

CIMP-L
n = 81

Cluster 3
n = 77

Cluster 4
n = 116

KRAS
Mutant 83 (36%) 16 (33%) 23 (43%) 17 (37%) 27 (33%)

Wild-type 149 (64%) 33 (67%) 31 (57%) 29 (63%) 56 (67%)
No data 100 9 27 31 33

MLH1
Methylated 36 (11%) 28 (48%) 4 (5%) 0 (0%) 4 (3%)

Unmethylated 296 (89%) 30 (52%) 77 (95%) 77 (100%) 112 (97%)

MSI, microsatellite instability; MSI-H, microsatellite instability—high; MSI-L, microsatellite instability—low; MSS,
microsatellite stability; BRAF, B-Raf proto-oncogene, serine/threonine kinase; KRAS, KRAS proto-oncogene,
GTPase; MLH1, mutL homolog 1.

The assignment of methylation cluster and all the clinical data used for each tumor
sample and normal sample used in this study can be obtained from Supplementary Table S1.
All further references to the CIMP status of our samples are based on our hierarchical
clustering classification.

2.2. Promoters Methylated in All Clusters

After performing the cluster analysis, we compared the beta values of each cluster to
the normal samples in order to identify probes with aberrant methylation. Due to the high
density of the HM450k arrays, we were able to apply the Bonferroni correction method to
assess methylation at all CpG sites within each cluster. To establish a higher confidence
level for validating candidate methylation sites using experimental methods, we set two
criteria for each site. First, the differential methylation threshold was set to 0.3; second, the
Bonferroni-adjusted p-value was required to be less than 0.01. The final list of differentially
methylated CpG sites were both statistically significant under the Bonferroni correction
method and had a difference in the mean beta value greater than 0.3. The intersection of
the significant CpG probes across all clusters yielded a list of 614 probes, and the results of
this analysis can be found in Supplementary Table S2.

The probes significant among all clusters were subsequently mapped to 426 regulatory
regions, including promoter and bound regions, associated with 253 genes. The observed
variation in the number of regions and genes can be attributed to two factors. First, we
considered both promoter-bound regions and predicted promoter regions, which can both
be associated with the same gene. This overlap accounts for some redundancy in the
gene count. Second, there are cases where multiple genes share common gene promoters,
leading to a smaller number of unique genes despite a larger number of associated regions.
These factors contribute to the observed differences in the number of regions and genes
identified in our study.

To derive a comprehensive view, the significant probes were extracted from the beta
methylation value matrix and averaged based on their respective regulatory regions. In
most cases, these values aligned with the criteria used in the differential methylation
analysis, indicating a mean difference in beta values greater than 0.3. However, there were
instances where this criterion was not met, primarily due to the presence of both hypo-
and hypermethylated probes within the same regulatory region (Supplementary Table S3).
These values have been illustrated in Figure 2, where the average methylation levels are
depicted as increased (hyper) or decreased (hypo) compared to the average beta value in
normal samples. Notably, we observed cluster-specific patterns of methylation events, with
the CIMP-H cluster demonstrating the highest levels of hypermethylation.

The analysis revealed several gene promoters that had a high number of probes within
the regions, indicating their potential significance in colorectal cancer. These genes include
EYA transcriptional coactivator and phosphatase 4 (EYA4), alcohol dehydrogenase iron-
containing 1 (ADHFE1), mitogen-activated protein kinase kinase kinase 14 (MAP3K14),
and genes belonging to gene clusters: homeobox A cluster (HOXA) (HOXA2/3/6) and
protocadherin gamma subfamily C (PCDHGC) (PCDHGC4/5). These genes have been
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extensively studied and proven to be hypermethylated and differentially expressed in
various types of cancer [17–19]. Specifically, in colorectal cancer, EYA4 and ADHFE1 have
already been validated as hypermethylated and down-regulated genes [24]. Furthermore,
additional members of the same gene families have shown involvement in cancer. The
HOXA cluster (HOXA2/3/6) has been identified as hypermethylated in breast and colon
cancer [25]. MAP3K14 has been found to be differentially expressed and hypermethylated
in lung squamous cell carcinoma, where it regulates the NF-κB activity pathway and
participates in NF-κB-inducing signaling through receptors of the tumor-necrosis/nerve-
growth factor (TNF/NGF) family [26].
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Figure 2. Visualization of averaged methylation level of promoter regions in all clusters, with
corresponding gene names. Increased methylation is shown by the red background, while decreased
methylation is represented by the green background. The clusters are visualized as colored dots, with
the CIMP-H cluster displayed in black, CIMP-L in red, cluster 3 in blue, and cluster 4 in green. CIMP-
H, CpG island methylator phenotype—high; CIMP-L, CpG island methylator pheno-type—low.
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In total, there are 132 genes corresponding to 220 regulatory regions that have two
or more probes mapped to them. Table 2 presents the top 15 regulatory regions with the
highest number of significant probes mapped, which correspond to nine genes. Notably,
all these regions exhibit hypermethylation compared to normal tissue methylation levels.

Table 2. Genes with the highest number of significant probes in regulatory regions.

Gene
Name

Mean
Normal

Mean
CIMP-H

Mean
CIMP-L

Mean
Cluster 3

Mean
Cluster 4 Status Probe Location

Number
of Probes

in
Region

EYA4 0.09 0.62 0.59 0.59 0.48 Hypermethylated promoter bound region 29

EYA4 0.09 0.62 0.599 0.60 0.49 Hypermethylated predicted promoter region 25

HOXA3 0.33 0.73 0.72 0.74 0.69 Hypermethylated promoter bound region 19

PCDHGC5 0.20 0.65 0.63 0.70 0.60 Hypermethylated promoter bound region 16

PCDHGC4 0.20 0.65 0.63 0.70 0.60 Hypermethylated promoter bound region 16

HOXA2 0.38 0.80 0.79 0.81 0.76 Hypermethylated predicted promoter region 14

HOXA3 0.38 0.80 0.79 0.81 0.76 Hypermethylated predicted promoter region 14

HOXA6 0.31 0.65 0.71 0.71 0.69 Hypermethylated promoter bound region 12

RIPK3 0.10 0.67 0.52 0.51 0.45 Hypermethylated promoter bound region 10

PCDHGC5 0.18 0.66 0.64 0.71 0.62 Hypermethylated predicted promoter region 10

PCDHGC4 0.18 0.66 0.64 0.71 0.62 Hypermethylated predicted promoter region 10

RIPK3 0.10 0.67 0.52 0.51 0.45 Hypermethylated promoter bound region 10

MAP3K14 0.08 0.61 0.55 0.61 0.52 Hypermethylated promoter bound region 9

ADHFE1 0.11 0.69 0.67 0.73 0.64 Hypermethylated predicted promoter region 9

ADHFE1 0.11 0.69 0.67 0.73 0.64 Hypermethylated promoter bound region 9

2.3. Functional Analysis

To explore the functional properties and relations between the genes involved in the
colorectal cancer, we performed functional analysis with gene ontology (GO) annotations
including biological process (BP), molecular function (MF), and cellular component (CC),
as well as Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and protein–
protein interactions.

The analysis showed that a total of 253 genes play significant role in 209 biological
processes, 10 molecular functions, 4 cellular components, and 4 KEGG pathways (Table 3).
The table presents the top-20 most significant biological processes, ranked by their strength
scores. Among these processes, the one with the highest significance based on p-value is
“Anatomical structure morphogenesis” (p-value 5.78 × 10−11). Conversely, when consid-
ering the strength score (1.51), “Ureter morphogenesis” emerges as the most significant
biological process. Notably, a remarkable number of 200 genes are implicated in the process
of “biological regulation”. The complete term list of gene ontology biological processes and
all genes involved in each process can be found in Supplementary Table S4.

Table 3. Results of functional analysis for gene ontology and KEGG pathways (the biological process
is represented via the first 20 processes).

Pathway ID Pathway Description Observed
Gene Count

Background
Gene Count Strength False Discovery

Rate

Gene ontology: Biological process

GO:0072197 Ureter morphogenesis 3 7 1.51 0.02

GO:0072189 Ureter development 5 17 1.35 0.0013

GO:0010463 Mesenchymal cell proliferation 4 16 1.28 0.0114
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Table 3. Cont.

Pathway ID Pathway Description Observed
Gene Count

Background
Gene Count Strength False Discovery

Rate

GO:0048557 Embryonic digestive tract
morphogenesis 4 18 1.23 0.0152

GO:0042474 Middle ear morphogenesis 4 20 1.18 0.02

GO:0003177 Pulmonary valve development 4 21 1.16 0.022

GO:0048485 Sympathetic nervous system
development 4 21 1.16 0.022

GO:0002053 Positive regulation of mesenchymal cell
proliferation 4 25 1.08 0.0333

GO:0045992 Negative regulation of embryonic
development 4 25 1.08 0.0333

GO:0061217 Regulation of mesonephros
development 4 25 1.08 0.0333

GO:0003176 Aortic valve development 5 32 1.07 0.0113

GO:0060037 Pharyngeal system development 4 26 1.07 0.0364

GO:0010464 Regulation of mesenchymal cell
proliferation 5 33 1.06 0.0124

GO:0048566 Embryonic digestive tract development 5 34 1.05 0.0137

GO:0042481 Regulation of odontogenesis 4 27 1.05 0.0385

GO:0048701 Embryonic cranial skeleton
morphogenesis 7 48 1.04 0.0011

GO:0003180 Aortic valve morphogenesis 4 28 1.03 0.043

GO:0031128 Developmental induction 4 28 1.03 0.043

GO:0048704 Embryonic skeletal system
morphogenesis 13 97 1.01 1.01 × 10−6

GO:0048483 Autonomic nervous system
development 6 44 1.01 0.0057

Gene ontology: Molecular function

GO:0000978 RNA polymerase II cis-regulatory
region sequence-specific DNA binding 25 672 0.45 0.0041

GO:0000987 Cis-regulatory region sequence-specific
DNA binding 26 701 0.45 0.0041

GO:0000977
RNA polymerase II transcription

regulatory region sequence-specific
DNA binding

30 878 0.41 0.0041

GO:0000981 DNA-binding transcription factor
activity, RNA polymerase II-specific 32 1022 0.38 0.0041

GO:0000976 Transcription regulatory region
sequence-specific DNA binding 32 1028 0.37 0.0041

GO:0003690 Double-stranded DNA binding 36 1156 0.37 0.0041

GO:1990837 Sequence-specific double-stranded
DNA binding 33 1068 0.37 0.0041

GO:0003700 DNA-binding transcription factor
activity 37 1238 0.36 0.0041
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Table 3. Cont.

Pathway ID Pathway Description Observed
Gene Count

Background
Gene Count Strength False Discovery

Rate

GO:0043565 Sequence-specific DNA binding 40 1331 0.36 0.0041

GO:0140110 Transcription regulator activity 43 1657 0.29 0.0054

GO:0000978 RNA polymerase II cis-regulatory
region sequence-specific DNA binding 25 672 0.45 0.0041

GO:0000987 Cis-regulatory region sequence-specific
DNA binding 26 701 0.45 0.0041

Gene ontology: Cellular component

GO:0062023 Collagen-containing extracellular
matrix 16 396 0.49 0.0453

GO:0098797 Plasma membrane protein complex 21 547 0.46 0.0196

GO:0031226 Intrinsic component of plasma
membrane 44 1703 0.29 0.0196

GO:0030054 Cell junction 51 2075 0.27 0.0196

KEGG pathways

hsa05144 Malaria 6 46 1 0.0095

hsa05217 Basal cell carcinoma 6 62 0.87 0.0286

hsa04514 Cell adhesion molecules 13 137 0.86 2.87 × 10−5

hsa04390 Hippo signaling pathway 9 153 0.65 0.0286

Regarding molecular functions, “Transcription regulator activity” exhibits the highest
significance based on the p-value (0.0054). However, in terms of the strength score, “Cis-
regulatory region sequence-specific DNA binding” is the molecular function that receives
the highest score. In the cellular component category, the highest-ranking term is “Collagen-
containing extracellular matrix” with a strength score of 0.49. The KEGG pathway analysis
showed that 13 of the analyzed genes are involved in “Cell adhesion molecules (CAMs)”
(p-value 2.87 × 10−5), and 6 in the “Basal cell carcinoma pathway” (p-value 0.0286).

2.4. Protein–Protein Interactions

To better understand the functional interactions between the identified genes with
aberrant promoter methylation, the gene list was input into the STRING database to
produce a functional association network based on their relationships, such as co-expression,
co-occurrence, gene fusion, experiments, text-mining, and databases. A protein–protein
interaction network (Figure 3) was constructed using our list of 253 genes. The network
was further analyzed using the Cytoscape program plugins. Based on the network analysis
of protein–protein interactions, it was found that BMP4 emerges as the most promising
candidate gene, highly connected with 24 interactions. The strength of their connectedness
is presented in Table 4. Moreover, the table of all protein–protein connections and their
combined score can be found in Supplementary Table S5.
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Figure 3. Protein–protein interaction network of aberrantly methylated genes in our gene list. The
visualization was refined using specialized plugins within the Cytoscape software (version 3.10.0).
Subsequent analysis of the network highlights BMP4 as a standout candidate, engaging in 24 interac-
tions with other proteins. Node coloration corresponds to interaction frequency, with yellow nodes
denoting singular interactions, while the deep blue node signifies the network pinnacle, boasting
24 interactions.

Table 4. Protein–protein interactions for BMP4.

Node 1 Node 2 Homology Coexpression
Experimentally

Determined
Interaction

Database
Annotated

Automated
Textmining

Combined
Score

BMP4 CHRD 0 0.062 0.723 0.9 0.988 0.999

BMP4 BMP2 0.961 0.076 0 0.9 0.901 0.907

BMP4 MSX1 0 0.062 0 0 0.854 0.857

BMP4 SMAD6 0 0.097 0.148 0 0.738 0.781

BMP4 FGF5 0 0 0 0 0.7 0.7

BMP4 PAX9 0 0 0 0 0.672 0.672

BMP4 HAND2 0 0.062 0.056 0 0.636 0.649

BMP4 SIX1 0 0.07 0.139 0 0.568 0.624

BMP4 GATA3 0 0.099 0.105 0 0.539 0.596

BMP4 VCAN 0 0 0 0 0.577 0.577

BMP4 FOXF1 0 0.07 0.056 0 0.551 0.571
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Table 4. Cont.

Node 1 Node 2 Homology Coexpression
Experimentally

Determined
Interaction

Database
Annotated

Automated
Textmining

Combined
Score

BMP4 TLL1 0 0.064 0.243 0 0.406 0.542

BMP4 GPC6 0 0.096 0.153 0 0.441 0.535

BMP4 THBS1 0 0 0 0 0.532 0.532

BMP4 PDGFRA 0 0.062 0.07 0 0.48 0.507

BMP4 NCAM1 0 0.062 0.057 0 0.483 0.503

BMP4 COL4A2 0 0.088 0.246 0 0.304 0.479

BMP4 OTX1 0 0 0 0 0.455 0.455

BMP4 COL5A1 0 0.089 0.213 0 0.289 0.446

BMP4 FOXF2 0 0.075 0.056 0 0.407 0.437

BMP4 VTN 0 0.062 0 0 0.41 0.423

BMP4 SDC2 0 0 0 0 0.422 0.422

BMP4 HOXA5 0 0.053 0.057 0 0.403 0.42

BMP4 SLIT2 0 0.099 0.056 0 0.355 0.404

2.5. Gene Prioretization Using Phenolyzer

Phenolyzer is an integrative tool which takes as input a discrete list of phenotype terms
and generates a list of candidate genes weighted by their chance of being associated with
the phenotype, even in the absence of any genotype data [27]. Phenolyzer uses three steps
for data processing, described in the Section 3.5. Our list of 253 genes was used, each gene
was given a score, and we generated a visual gene–gene network (Figure 4). The figure
shows seed genes (blue), and predicted greens (yellow). The highest scores were given
to platelet-derived growth factor receptor alpha (PDGFRA) (0.139), phosphatidylinositol-
4,5-bisphosphate 3-kinase catalytic subunit delta (PIK3CD) (0.126), APC regulator of WNT
signaling pathway 2 (APC2) (0.119), BMP4 (0.112), baculoviral IAP repeat containing
2 (BIRC2) (0.112), and bone morphogenetic protein 2 (BMP2) (0.11). The genes with the
highest scores are represented with the biggest round nodes.
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3. Materials and Methods
3.1. Patients and Data

We utilized the TCGAbiolinks package [28] in the R programming environment to
download both clinical information and DNA methylation microarray data included in
the COAD (colon adenocarcinoma) and READ (rectum adenocarcinoma) project of TCGA.
DNA methylation analysis was performed on level 3 data, which is already normalized and
contains beta-value calculations, genomic coordinate, chromosome number, and Human
Genome Organisation (HUGO) gene symbol for each CpG site on the array.

For our clustering model, we focused on methylation microarray data obtained from
the Illumina Infinium HumanMethylation27k BeadChip (HM27). This dataset consisted of
a total of 234 CRC samples, each containing DNA methylation data specifically generated
from the HM27 array. Notably, these samples already had assigned methylation clusters,
which were determined by the Cancer Genome Atlas Consortium [13]. Subsequently, we
applied our clustering model to DNA methylation data obtained from the Illumina Infinium
HumanMethylation450k BeadChip array (HM450). This dataset comprised a total of
332 CRC samples. Unlike the HM27 data, these samples did not have any assigned clusters
from previous studies. Both microarray datasets were at data level 3, which included
essential information such as beta-value calculations, HUGO gene symbols, chromosome
numbers, and genomic coordinates for each targeted CpG site on the arrays. It is worth
noting that the HM450 array targeted 482,421 CpG sites in the human genome. Additionally,
we checked for the availability of mutation files for selected samples and downloaded them
when accessible. For the purpose of differential methylation analysis, we also downloaded
45 normal samples that were included in COAD and READ dataset in TCGA.

3.2. Probes and Genes

The coordinates of protein-coding genes were downloaded from Ensembl, release
89 (http://www.ensembl.org/, accessed on 20 May 2023), while predicted promoter regions
were obtained from the Ensembl Regulatory Build e89 [29]. The nomenclature of genes was
unified according to the HUGO Gene Nomenclature Committee (HGNC) (http://www.
genenames.org/, accessed on 20 May 2023).

We overlapped the HM450 probes mapped to the GRCh38/hg38 genome [30] with pro-
moter regions and found their nearest genes. From the total of 482,421 probes, 93,794 probes
are located within promoter region. The genes, where the transcription start position was
within 5 kb of the mapped promoter region, were used for further analysis. KRAS and
BRAF mutations were filtered from the mutation files. The mutations taken into account
were in codon 12, 13 and 61 for KRAS, and p.V600E in BRAF. mutL homolog 1 (MLH1)
DNA methylation status in each sample was asserted on the probe (cg00893636) located in
the bidirectional MLH1/EPM2A interacting protein 1 (EPM2AIP1) promoter CpG island
and closest to the current RefSeq MLH1 transcription start sites. Beta value greater than
0.2 was taken as the threshold for methylation.

3.3. Unsupervised Clustering

For unsupervised clustering, we used the data from HM27 and HM450 arrays included
in the COAD and READ projects of TCGA. The methylation data from HM27 has been
previously clustered by the Cancer Genome Atlas Consortium, and the resulting clusters
have been included in the samples’ information data [13]. In this study, we aimed to
recreate the clusters of methylation data from HM27 and their clustering information. To
achieve this, we utilized the recursively partitioned mixture model (RPMM) algorithm.
Specifically, we focused on 2757 probes that exhibited the highest variability in methylation
levels. By applying the RPMM algorithm to these probes, we obtained the best clustering
results compared to already assigned clusters.

To cluster the methylation data from the HM450 array, we utilized a total of 332 CRC
samples. Among these samples, 248 tumor samples belonged to the COAD project, while
84 tumor samples belonged to the READ project. The data from both projects were com-

http://www.ensembl.org/
http://www.genenames.org/
http://www.genenames.org/
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bined, and we performed unsupervised clustering using conditions determined based on
the samples from the HM27 array.

The RPMM clustering was applied to both the HM27 and HM450 datasets. RPMM is a
model-based unsupervised clustering approach specifically designed for DNA methylation
measurements that follow a beta distribution ranging between 0 and 1. We preprocessed
the data by removing probes mapped to the X and Y chromosomes, as well as probes
containing “NA” values. Subsequently, we performed RPMM clustering on the 2757 probes
that exhibited the highest variability in DNA methylation levels. The FANNY algorithm
was used for initialization, which is a fuzzy clustering algorithm that assigns data points
to clusters with varying degrees of membership, allowing for more flexible clustering.
We used the level-weighted version of the Bayesian information criterion (BIC) as a split
criterion for existing clusters during the RPMM clustering process. The BIC is a statistical
criterion used to assess the goodness-of-fit of a model while penalizing complex models
to avoid overfitting. In the context of RPMM, the BIC was used to determine the optimal
number of clusters and to split existing clusters based on the level of DNA methylation. The
RPMM clustering was implemented using the R-based RPMM package, which provides
tools and functions to perform RPMM clustering on DNA methylation data. Overall,
the RPMM clustering approach allows for the identification of distinct clusters of DNA
methylation patterns within the datasets and explores the underlying structure of DNA
methylation variability in the samples [31].

3.4. Statistical Analysis and Data Visualization

For differential methylation analysis, we used the same tumor samples as described
above with an additional 38 normal samples from the COAD project and 7 normal samples
from READ project. The analysis was performed in R (version 4.3.0) and Bioconductor
software packages (version 3.18). For multiple comparisons, package TCGAbiolinks was
used for the calculation of false-discovery rate (FDR)-adjusted p-values using Bonferroni
correction [28]. Differentially methylated regions were calculated using data of each cluster
compared to data of normal tissues. The threshold for difference in methylation between
tumor and normal tissue was set to 0.3, and adjusted p-value threshold was set to 0.01. The
Illumina Infinium DNA methylation β-values were represented in a heatmap constructed
with R-based software package ComplexHeatmap (version 2.17.0) [32]. Averaged probes per
promoter region were graphically represented with the Circos software (version 0.69-9) [33].

3.5. Functional Analysis

The STRING database (version 11.5) was used to identify gene ontology processes
enriched within genes associated with differentially methylated CpG sites for 253 genes
from the intersection of all four clusters [34]. The protein–protein interactions network
(PPIN) were performed using the STRING database with Cytoscape plugin, which produces
a functional association network using interaction sources such as textmining, experiments,
database, co-expression, neighborhood, gene fusion, and co/occurrence.

The Phenolyzer tool (http://phenolyzer.wglab.org/, accessed on 8 June 2023) was
used for the prioritization of our list of genes. The Phenolyzer processes the list of genes in
three steps [27]. The first step is to search databases in the CTD’s (Comparative Toxicoge-
nomics Database) disease vocabulary and disease ontology for a certain disease/phenotype
term, interpret the term into multiple specific disease names, and find all the associ-
ated genes and related information in OMIM (Online Mendelian Inheritance in Man),
Orphanet (a journal for rare disease), NCBI’s (National Center for Biotechnology Infor-
mation) ClinVar, GeneReviews (an expert-authored, peer-reviewed disease descriptions),
and GWAS (Genome Wide Association Studies) databases, then generate the seed gene set
with conditional probability as scores. The second step is to grow the seed gene set in the
HPRD (Human Protein Reference Database) protein interaction, NCBI’s Biosystem, HGNC
(HUGO Gene Nomenclature Committee) gene family, and HTRI (Human Transcriptional
Regulation Interactions) databases and retrieve an augmented gene set. The third step

http://phenolyzer.wglab.org/
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involves integrating all the information to score genes. The input can be one or several
disease/phenotype terms, while users can optionally supply a gene list or genomic region
to further trim down the candidate genes [27].

4. Discussion

In this study, we employed the high-density coverage of the HM450 methylation
array to comprehensively investigate DNA methylation patterns in CRC. Leveraging this
genome-wide approach, we identified four distinct methylation subtypes characterized
by high, intermediate, and low levels of methylation. Our clustering approach was based
on previous studies utilizing the HM27 array [13], and the clinical data associated with
our clusters align with prior research findings. Specifically, the CIMP-H subtype showed
enrichment for BRAF mutations, MLH1 methylation, and a higher prevalence in the ascend-
ing colon [23]. In contrast, cluster 3 and cluster 4 subtypes were more commonly observed
in the sigmoid colon and rectum.

The high density of the HM450 arrays enabled us to apply the Bonferroni test to
evaluate methylation at all CpG sites of each cluster. While previous studies often set a
low threshold (e.g., 0.1 or 0.2) for defining differentially methylated probes in genome-
wide methylation array data, we set a threshold of 0.3 in our analysis. By intersecting the
significant CpG probes and mapping them to promoter and bound regions, we obtained a
list of 426 probes. These probes were then averaged within each promoter or bound region,
increasing the confidence for validating candidate methylation sites through experimental
methods. Specifically, we focused on 253 genes assigned to these regulatory regions. These
genes were subsequently integrated into additional analyses to delve deeper into their
interrelationship and their roles in CRC.

Among the gene promoters, several stood out due to having a higher number of
probes within their regions. Notably, these included EYA4, ADHFE1, MAP3K14, as well
as gene clusters such as HOXA (HOXA2/3/6) and PCDHGC (PCDHGC4/5). These genes
have been previously studied and implicated in cancer, showing hypermethylation and
differential expression [24–26].

To identify genes commonly methylated across all methylation subtypes, we em-
ployed two different approaches. Firstly, using protein–protein interaction analysis, we
selected candidate genes based on the number of connected node genes. Among these
candidates, BMP4 emerged as a prominent gene. Secondly, we utilized Phenolyzer, a tool
that prioritizes genes based on phenotype associations, and BMP4 and BMP2 were among
the top-ranked genes.

Our comprehensive genome-wide analysis highlights BMP4 as the most promising
candidate gene with a potential role in the development and progression of colorectal
cancer. BMP4 is a member of the bone morphogenetic protein (BMP) family, which belongs
to the transforming growth factor β (TGF-β) superfamily [35]. BMPs interact with type I
and type II receptors, each possessing serine/threonine and tyrosine kinase activities. The
BMP family can be further divided into subgroups based on structural similarities and
their ability to bind specific type I receptors [36].

Intriguingly, BMP4, while primarily targeted toward the epithelial compartment,
demonstrates a distinct localization within mesenchymal cells expressing α-smooth muscle
actin [37]. A pivotal role of BMP4 is evident in its capacity to mitigate colonic inflammation
and uphold intestinal homeostasis [37]. The perturbation of epithelial Bmpr1a has been
shown to amplify BMP4 levels in the context of dextran sodium sulphate (DSS)-inuced
colitis. Conversely, the inflammatory cytokines TNF-α and interleukin-1β (IL-1β) exert
inhibitory effects on BMP4 expression [37]. Recent investigations into DSS-induced colitis
have unveiled dynamic expression patterns correlating with disease progression, notably
observing an upregulation of BMP4 and Smad4 in the crypt during the early stages, fol-
lowed by a downregulation in the later stages [38]. Counteracting the disease, exogenous
administration of BMP4 recombinant protein emerges as a viable strategy, demonstrated
to enhance epithelial proliferation by targeting an ID3 inhibitor and preserving Lgr5+
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intestinal stem cells [38]. In addition, the transgenic overexpression of BMP4 ligands along
the intestinal crypt-villus axis yields contrasting outcomes—suppressing proliferation,
hastening terminal differentiation, and impeding intestinal regeneration in the setting of
DSS-induced colitis [39]. Furthermore, inhibiting BMP4 in intestinal stromal cells imparts
a conducive environment for intestinal stem cell proliferation and the maintenance of
intestinal equilibrium [40]. Evidently, a myriad of factors, including localization, concentra-
tion, and specific targets, intricately shape the duality of BMP4’s impact on the intestinal
epithelium—proliferative or anti-proliferative [41].

Moreover, BMPs have been found to exhibit diverse roles in cancer progression. On
one hand, BMPs have demonstrated inhibitory effects on the proliferation of gastric cancer,
breast cancer, and prostate cancer cells [42,43]; on the other hand, BMPs have been reported
to enhance the motility and invasiveness of various cancer cell types, including breast
cancer, prostate cancer, and malignant melanoma cells [44]. In the context of colorectal
cancer, the inhibition of BMP4 has been shown to induce apoptosis in colorectal cancer cells
by reducing mitogen-activated protein kinase (MAPK) activity in cell culture. Interestingly,
increased BMP4 expression has been discerned in the context of Colitis-associated colon
cancer relative to nonneoplastic mucosa, underscoring its potential implication in disease
progression [45]. Furthermore, an experimental BMP inhibitor, known as LDN-193189, has
been found to suppress colorectal cancer formation in vivo [46].

Intriguingly, the intricate role of BMPs in colon cancer progression unveils a dualistic
nature. Previous studies have illuminated a dichotomy, wherein BMP4 overexpression
has been correlated with the heightened invasiveness of colon cancer cells, as exemplified
by [47]. Meanwhile, BMP2 was shown to be hypermethylated in CRC [48] and has been
observed to induce epithelial–mesenchymal transition, thereby potentiating the metastatic
capabilities of colon cancer cells [49,50]. Furthermore, compelling evidence has emerged,
as presented by Lorente-Trigos et al. [51], underscoring the BMP pathway’s pivotal role in
nurturing the growth of primary colon tumors within an in vivo context.

Collectively, these findings coalesce to propose a nuanced conjecture regarding BMP’s
role in colon carcinogenesis. The prevailing hypothesis posits a biphasic behavior of BMPs,
wherein they potentially exert an initial tumor suppressor effect, subsequently transitioning
to assume a tumor-promoting role. This nuanced perspective underscores the dynamic
and context-dependent interplay of BMP signaling within the intricate landscape of colon
cancer progression [52].

While previous studies have examined the impact of polymorphisms within BMPs
or their expression on colorectal cancer (CRC) [53–57], only the BMP3 gene has been
previously identified as hypermethylated in CRC tissue [58,59]. In our comprehensive
study of miRNA-target gene expressions in colorectal cancer, we have previously iden-
tified the overexpression of the BMP4 gene in colorectal cancer tissue [60]. By utilizing
the high-density HM450 methylation array and applying rigorous thresholds for differen-
tial methylation, our study provides valuable insights into the methylation patterns and
potential biomarkers associated with CRC. The identification of specific gene promoters,
including those previously implicated in cancer, expands our understanding of the epige-
netic alterations underlying CRC development and may contribute to the development of
novel diagnostic and therapeutic strategies. Our scientific contribution lies in adding an
epigenetic dimension to the existing understanding of the role of BMP4 polymorphisms
and gene expression in relation to colorectal cancer. This aspect had not been previously
substantiated or demonstrated in the scientific literature. These findings suggest that BMP4
may also act as a tumor-promoting factor in the specific context of colorectal cancer.

The study is subject to certain limitations that should be acknowledged. First, the
sample size, especially the relatively smaller number of normal samples, presents a lim-
itation. A larger number of normal samples would have enhanced the statistical power
and confidence in the results. Additionally, the availability of paired-tumor and match-
ing normal samples with methylation data is limited, which restricts the ability to draw
strong conclusions from such a small subset. Another potential limitation arises from the
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inherent biases introduced by the various bioinformatics tools utilized in the analysis. To
address this concern, we adopted a strategy of employing multiple tools to cross-validate
our findings. This approach helps us to minimize any potential biases and ensures the
robustness of our results. Despite these limitations, the study offers valuable insights into
DNA methylation patterns in colorectal cancer. By being transparent about the limitations,
we hope to encourage further research and foster a more comprehensive understanding of
the underlying mechanisms involved in this complex disease.

5. Conclusions

In conclusion, our study employed clustering analysis of the COAD and READ
projects from TCGA using the HM450 array, enabling us to identify a set of genes exhibiting
aberrant promoter methylation across all four methylation subtypes of colorectal cancer
CRC. By utilizing various bioinformatics approaches, we have identified BMP4 as the most
compelling candidate gene. The comprehensive analysis presented in this study provides a
valuable foundation for researchers investigating methylated promoter regions associated
with colorectal cancer.
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