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Abstract: Red blood cell (RBC) deformability, expressing their ability to change their shape, allows
them to minimize their resistance to flow and optimize oxygen delivery to the tissues. RBC with
reduced deformability may lead to increased vascular resistance, capillary occlusion, and impaired
perfusion and oxygen delivery. A reduction in deformability, as occurs during RBC physiological
aging and under blood storage, is implicated in the pathophysiology of diverse conditions with
circulatory disorders and anemias. The change in RBC deformability is associated with metabolic
and structural alterations, mostly uncharacterized. To bridge this gap, we analyzed the membrane
protein levels, using mass spectroscopy, of RBC with varying deformability determined by image
analysis. In total, 752 membrane proteins were identified. However, deformability was positively
correlated with the level of only fourteen proteins, with a highly significant inter-correlation between
them. These proteins are involved in membrane rafting and/or the membrane–cytoskeleton linkage.
These findings suggest that the reduction of deformability is a programmed (not arbitrary) process of
remodeling and shedding of membrane fragments, possibly mirroring the formation of extracellular
vesicles. The highly significant inter-correlation between the deformability-expressing proteins infers
that the cell deformability can be assessed by determining the level of a few, possibly one, of them.

Keywords: red blood cells; RBC deformability; membrane proteins; lipid rafts; membrane vesicles;
membrane remodeling

1. Introduction

The primary role of red blood cells (RBC) is to supply oxygen to tissues. To accom-
plish this, RBCs have unique flow-affecting properties [1,2], which define hemodynamic
functionality, namely their capacity to affect blood circulation [3]. A major effector of the
RBC hemodynamic functionality is the cell’s deformability, expressing the cells’ ability to
adapt their shape to the dynamically changing flow conditions to minimize their resistance
to flow. This is particularly important for their passage through the capillaries, which are
narrower than the RBC. Reduced deformability (increased rigidity) results in impaired
perfusion and oxygen delivery to peripheral tissues [4–6], and rigid RBCs can directly
block capillaries [7]. RBC deformability is also a significant determinant of their ability
to pass through the splenic vasculature; reduced deformability hinders their transit and
increases splenic RBC sequestration and destruction [8–11]. Accordingly, reduced RBC
deformability (increased rigidity) has been implicated in circulatory disorders and anemias
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observed in diverse pathologies, e.g., thalassemia, sickle anemia, cerebral malaria, sepsis,
diabetes [1,12–15], cardiovascular conditions, and stroke [4,16]. A reduction in deformabil-
ity is characteristic of RBC physiological aging, and normally the deformability distribution
spans from low-deformable, even undeformable cells, to highly deformable cells [2,17,18].

The aging of RBCs that occurs during their circulation in the vascular system is as-
sociated with metabolic and structural changes [19] that lead to remodeling of the cell
membrane and alteration of cytoplasm composition [20,21]. At the cellular level, aging is
characterized by decreased cell volume (MCV) due to the shedding of cell membrane frag-
ments [22,23], leading to the elevation of the intracellular hemoglobin (Hb) concentration
(MCHC) and cell density [24].

Shedding membrane fragments is associated with reorganizing the RBC cytoskeletal
and losing membrane lipids and proteins [25,26], resulting in RBCs with a reduced area-to-
volume ratio and decreased cell deformability.

Currently, RBC deformability is determined exclusively by physical methods, using
various techniques, such as micropipette aspiration [27], atomic force microscopy [28],
optical tweezers [29,30], filtration [31], microfluidic filtration [32], laser diffractometry [33],
erythrocyte shape recovery [34], and direct visualization of the cell shape change under flow
in the flow chamber [2,17,35,36]. However, the cell’s physical properties are determined
by its structure and composition, and their alteration should correlate with changes in
biochemical measures.

The present study was undertaken to explore the relation of RBC membrane pro-
tein composition to cell deformability. To this end, we comprehensively analyzed the
correlation of the RBC membrane proteins, determined by mass spectroscopy (MS), with
the cell deformability, as determined by image analysis. It was found that the change
in the RBC deformability is associated with changes in the level of a set of interrelated
membrane proteins.

2. Results

Correlation between RBC deformability and the level of membrane proteins.
The MS analysis identified 752 membrane proteins, and all were examined for correla-

tion with the RBC deformability expressed by the cell elongation ratio (ER).
As shown in Table 1, fourteen membrane proteins exhibited a clear positive correlation

with cell deformability; the higher the protein level, the higher the cell deformability.
The relationship between the AER value and the content of cell membrane proteins is

further illustrated in Figure 1, depicting the linear regression between AER and the level of
ezrin in the membrane, which exhibits the highest correlation significance (Table 1).
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Table 1. Correlations between the levels of RBC membrane proteins (expressed by Ln (LFQ)) and the
cell deformability, expressed by the average elongation ratio (AER).

№ Proteins Gene Significance, p Pearson Coefficient, r

1 Ezrin EZR 0.00006 0.83

2 Long-chain-fatty-acid—CoA ligase 4 ACSL4 0.0002 0.81

3 Argonaute-2 EIF2C2 0.0003 0.79

4 Protein band 4.1 EPB41 0.0003 0.79

5 Glycophorin C GYPC 0.0005 0.77

6 GTP-binding proteins Ras RAC1/3 0.0007 0.76

7 Stomatin STOM 0.0008 0.75

8 G-adducin ADD3 0.001 0.75

9 Flotellin-1 FLOT1 0.001 0.73

10 CD44 CD44 0.002 0.72

11 Band-3 SLC4A1 0.002 0.72

12 Flotellin-2 FLOT2 0.002 0.71

13 Integrin-associated protein CD47 CD47 0.003 0.72

14 Glycophorins A GYPA 0.004 0.67

2.1. Variability in RBC Deformability and Respective Level of Membrane Proteins

Following our previous study [17,18], the RBC deformability exhibited large variability
between the samples regardless of their source, where the average elongation ratio (AER)
ranged from 1.36 to 1.83, as shown in Figure 2A.
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Figure 2. Distribution of the deformability (AER, (A)) and the membrane ezrin level (B) in the
RBC samples.

Similarly, considerable variability was found in the level of the deformability-expressing
membrane proteins listed in Table 1. This is illustrated in Figure 2B, which presents the
distribution of membrane ezrin content (Ln (LFQ)) in the tested RBC samples, ranging
from 25.6 to 27.5.

2.2. Interrelation between the Deformability-Expressing Membrane Proteins

The changes in the deformability-expressing membrane proteins can occur indepen-
dently for the individual proteins or inter-dependently. We analyzed the correlations
between the protein levels listed in Table 1 to gain insight into this question. As shown in
the matrix of Table 2, a highly significant mutual inter-correlation was found between the
deformability-expressing proteins.
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Table 2. Correlation matrix for levels of deformability-expressing membrane proteins. Statistical
significance expressed using Pearson correlation coefficient.

EIF2C2 EZR EPB41 ACSL4 FLOT1 GYPC STOM CD44 SLC4A1 FLOT2 RAC1/3 CD47 GYPA ADD3

EIF2C2 1.00

EZR 0.72 1.00

EPB41 0.92 0.71 1.00

ACSL4 0.90 0.81 0.86 1.00

FLOT1 0.88 0.70 0.93 0.87 1.00

GYPC 0.84 0.71 0.88 0.84 0.96 1.00

STOM 0.85 0.71 0.85 0.91 0.94 0.96 1.00

CD44 0.89 0.67 0.84 0.89 0.93 0.95 0.98 1.00

SLC4A1 0.85 0.62 0.89 0.84 0.97 0.98 0.97 0.95 1.00

FLOT2 0.85 0.67 0.84 0.89 0.96 0.97 0.99 0.98 0.98 1.00

RAC1/3 0.85 0.72 0.84 0.91 0.93 0.94 0.97 0.95 0.95 0.97 1.00

CD47 0.82 0.69 0.78 0.86 0.88 0.89 0.95 0.93 0.92 0.95 0.96 1.00

GYPA 0.86 0.58 0.91 0.79 0.89 0.85 0.83 0.83 0.90 0.86 0.90 0.84 1.00

ADD3 0.75 0.79 0.78 0.69 0.68 0.67 0.60 0.63 0.63 0.58 0.67 0.57 0.67 1.00

The clear inter-correlations between the deformability-expressing proteins suggest
that, in practice, the cell deformability can be assessed by determining the level of a few, or
even one of them, particularly the ones that exhibit especially strong correlation such as
ezrin, band-3, flotillin-1, stomatin, flotillin-2, glycophorin C, protein 4.1, and CD44.

This is illustrated in Figure 3, showing the correlation between the deformability
measured directly by the image analysis (CFA) vs. AER calculated by the levels of ezrin,
following one-parametric linear regression AER = 0.1964 × [EZR] − 3.642.
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Figure 3. RBC deformability, expressed by AER measured directly by the image analysis (by the CFA)
vs. AER calculated by the cell membrane ezrin level. r = 0.83, p = 0.00006.

Table 2 shows that the fourteen proteins can be divided into two groups according to
the significance of the inter-dependence between their membranal content. 1. The twelve
proteins are characterized by a very high value of the Person correlation coefficient (r > 0.775)
of inter-dependences. 2. The two proteins with r < 0.775 are ezrin and G-adducin. We tested
the possibility of achieving a better correlation between EAR’s experimental and calculated
values on these grounds. To this end, we derive a two-parametric linear regression in
which we combined one protein from the first and one protein from the second group.
The best correlation between the experimental and calculated AER was given from all
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the regressions when protein 4.1 (Group 1) and ezrin (Group 2) were used. Yielding the
regression equation is AER = 0.129 × [EZR] + 0.066 × [EPB41] − 4.09, where [EZR] and
[EPB41] are the membrane content of ezrin and protein 4.1R (expressed by the value of
Ln (LFQ)).

The predictive power of this model is illustrated in Figure 4, showing a better correla-
tion between the AER derived from the combined calculation of these proteins’ levels vs.
the AER measured directly by the image analysis; r = 0.877, significance, p = 0.00006.
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It should be noted that the two-parameter model is not ideal due to the inter-correlation
between the content of the two proteins. To minimize this drawback, in Figure 4, we chose
the two proteins with the lowest inter-correlation (ezrin and protein 4.1).

3. Discussion

As a mechanical property, RBC deformability depends on the cell membrane structure
and composition, and their alteration should thereby correlate with changes in biochemical
measures. Previous studies, both experimental and numerical simulations, linked the cell
deformability to the content of specific membrane proteins, particularly stomatin, band-3,
and protein 4.1R [37–40].

The present study is the first to comprehensively analyze the changes in levels of RBC
membrane proteins and their potential relation to cell deformability.

Out of the 751 RBC membrane proteins that were identified, only 14 exhibited a
strong positive correlation with the cell deformability, including two groups of proteins
with known functions: (1) Proteins involved in the linking of the lipid bilayer and the
cytoskeleton, specifically band-3, protein 4.1, glycophorin C, an ezrin adducin [41,42], and
(2) proteins involved in membrane lipid raft, specifically stomatin, flotillin-1, and flotillin-
2 [26,43–45]. Most of these proteins are lost by the cell membrane during its physiological
aging [46,47], which is also known to be accompanied by decreased deformability [48].

The main three determinants of red cell deformability are (a) the surface area-to-
volume ratio of a cell [49]; (b) intracellular viscosity [50]; and (c) the membrane viscoelastic-
ity [10]. Of these three factors, only the elasticity of the membrane is directly determined
by its protein composition, which is involved in linking the membrane lipid bilayer with
the cytoskeleton [51–54].

The erythrocyte membrane is a two-dimensional structure consisting of a cytoskele-
ton and lipid bilayer with integral membrane proteins. The RBC cytoskeleton network
predominantly comprises spectrin tetramers, actin, and protein 4.1R, along with adaptor
proteins, attached to the membrane by band-3 via ankyrin [55,56]. Disruption of the bilayer
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and skeleton contact alters the cells’ shape and mechanical properties [10,54]. RBC ghosts
with an impaired membrane–cytoskeleton attachment have a significantly lower surface
area and volume and, respectively, lower than normal deformability [57].

This is consistent with the reduction in the level of the deformability-expressing
proteins presented in Table 1, which, as noted above, most of them are involved, to various
degrees, in the link between the lipid bilayer and the cytoskeleton or are a part of the
lipid rafts.

The highly significant inter-correlation between the deformability-expressing proteins,
depicted in Table 2, infers that the reduction in their level is a programmed (not arbitrary)
process of membrane remodeling and possibly shedding of membrane fragments. Our
previous study showed that the RBC deformability is inversely proportional to the number
of microvesicles in the extracellular medium [48]. It was also shown that some of the
deformability-expressing proteins listed in Table 1 (stomatin, band-3, flotillin-1, and flotillin-
2; ezrin, protein 4.1, and argonaute-2) are integral components of the vesicles formed by
the red cell [26,58–60], implying that the vesiculation is accompanied with a decrease in the
levels of these proteins in the cell membrane [45,56,61,62].

Notably, a number of the deformability-expressing proteins are included in the “stom-
atin complex” [63], and we have previously shown the association between the RBC
deformability and the cell membrane stomatin level [25].

It is thus plausible to conclude that membrane remodeling, which reflects the decrease
in cell deformability, involves the shedding of membrane fragments and the concomitant
formation of microvesicles.

It should be noted that the deformability-expressing proteins listed in Table 1 do
not include some proteins that are known to be involved in the connection between the
cytoskeleton and the lipid bilayer of the red cell, e.g., moesin, ankyrin, and cofilin [64,65].
Thus, the change in the cell deformability would also be associated with changes in these
proteins’ levels. This discrepancy is yet to be explored.

As noted in the Introduction, RBC deformability, a mechanical property of the cell, is
commonly determined by physical methods. The study presents a set of membrane proteins
whose determination by biochemical methods (immunochemistry, mass spectroscopy) can
be used for this purpose. Moreover, this study presents a highly significant inter-correlation
between the deformability-expressing proteins (Table 2), as well as an excellent correlation
of ezrin vs. deformability (Figure 1), and between the calculated vs. experimentally
determined deformability, using one or two proteins (Figures 3 and 4, respectively). This
suggests that the cell deformability can be assessed by determining a few, or possibly one,
of the deformability-expressing proteins. This can be performed by chemical methods, e.g.,
immunochemistry, mass-spec, and similar, which might be either less efficient or more
efficient than the physical methods for measuring RBC deformability, depending on the
specific methods.

It should be noted that the above changes in the RBC membrane composition leading
to alteration of the cell deformability can be different in pathological conditions associ-
ated with alterations in RBC composition and structure, such as hemoglobinopathies and
diabetes [66–68], and should hopefully be the subject of further studies.

4. Materials and Methods
4.1. Materials

Phosphate-buffered saline (PBS) without calcium and magnesium (catalog 02-023-1A)
was purchased from Biological Industries Ltd. (Kibbutz Beit-HaEmek, Haemek, Israel). All
other chemicals were purchased from Sigma Aldrich Israel.

4.2. Methods
4.2.1. RBC Sample Sources

Sixteen RBC samples were obtained from two sources: 1. Freshly collected blood from
healthy volunteer donors (male, 18–40 years, Hb > 13 mg/dL), without known disorders,
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upon their consent; 2. expired packed RBC (PRBC) units (stored for 42 days). All blood
samples were taken according to the guidelines and approval of the Helsinki Committee
Regulations, Hadassah Hospital, Jerusalem, Israel. Permit 0819-20-HMO.

4.2.2. Isolation of RBC

Healthy volunteers: Fresh blood was drawn from ten healthy donors. RBCs were
isolated and washed twice in PBS by centrifugation (500× g for 10 min) and re-suspended
in PBS supplemented with 0.5% bovine serum albumin (BSA).

Packed RBC (PRBC): Blood was drawn from six healthy donors according to the blood
bank routine and stored in standard sterile bags (not leukoreduced) containing citrate
phosphate dextrose (CPD). PRBCs were stored (in SAGM) at 4 ◦C in the Hadassah Hospital
Blood Bank until their expiration date (42 days). As above, RBC was isolated, washed, and
re-suspended in PBS supplemented by 0.5% of BSA.

4.2.3. Preparation of RBC Membranes

Cells were lysed in sodium phosphate lysis buffer (5 mM sodium phosphate pH
8.0, 1 mM EGTA, 1 mM EDTA, and 1 mM PMSF) on ice for 10 minutes. Lysates were
centrifuged (14,000 rpm for 10 min), and the supernatant was aspirated. We repeated
the procedure three times to clean the sample from hemoglobin. After the third wash, a
protease inhibitor cocktail (Sigma, St. Louis, MO, USA) was added. Samples were sent in
dry ice for mass-spectrometry analysis.

To test the changes in the protein composition of RBC, we utilized mass-spectrometry
analysis to cover the whole spectrum of proteins to monitor changes in integral proteins
of the erythrocyte membrane. The presented research examined protein composition for
RBCs with different aging statuses.

4.2.4. Determination of RBC Membrane Protein Composition

The composition of the RBC membrane proteins and their relative level in the cell
membrane was comprehensively determined using mass-spectroscopy [69,70]. Proteins
were trypsin-digested following the in-solution digestion protocol. Peptides were then
purified on C18 StageTips prior to their LC-MS analysis. Peptides were separated on an
Easy-spray pepmap column using a water-acetonitrile gradient and the EasynLC1000
nanoHPLC. Peptides were electrosprayed into a Q-Exactive mass spectrometer (Thermo
Scientific, Waltham, MA, USA) via the Easy-spray source. Peptides were analyzed using
data-dependent acquisition, with the fragmentation of the top 10 proteins from each scan.
Raw MS files were analyzed by MaxQuant using the Human Uniprot database. The false
discovery rate was set to 1% at the protein and peptide levels. Mass spectrometry identified
and quantified 752 proteins and their levels.

4.2.5. Determination of RBC Deformability

RBC deformability was determined using our original computerized cell flow-properties
analyzer (CFA), as described in numerous previous studies [25,35,71,72], illustrated in
Figure 5. The CFA provides the RBC deformability by direct visualization of the cell
shape-change in a narrow-gap flow-chamber under flow-induced shear stress resembling
conditions in microvessels.

In brief, 50 µL of the RBC suspension (1% hematocrit, in PBS, supplemented by
0.5% BSA) was inserted into the flow chamber (adjusted to 200 µm gap) containing a glass
slide, to which the RBC adhere, and the adherent RBC were then subjected to controllable
flow-induced shear stress (3.0 Pa). The deformability is expressed by a change in cell shape
expressed by the elongation ratio, ER = a/b, where “a” is the major cellular axis and “b” is
the minor cellular axis. ER = 1.0 reflects a round RBC, undeformed by the applied shear
stress. The CFA contains an image analysis program that automatically measures each
cell’s ER. RBCs with ER ≤ 1.1 are defined as “undeformable” cells that do not deform
under high shear stress. The image analysis produces an ER distribution in a population of
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8000–10,000 cells, from which various parameters are derived, including the average ER
(AER), the median ER (MER), the percent of undeformable cells (%UDFC, ER ≤ 1.1), and
low-deformable cells (%LDFC, ER ≤ 1.3) [25,72].
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4.2.6. Statistical Analysis

The Shapiro–Wilk test was used to verify the normality of the distribution of the
continuous variables. The results are presented as mean ± SD and tested for statistical
significance using the paired Student t-test. Statistical differences, examined with the SPSS
21 (version 64 bit) software package, were considered significant at p < 0.05. The Pearson
coefficient and p-value characterized the significance of linear regression between two
tested parameters. The coefficient of variation (CV) was used to characterize the variability
in the tested RBC samples’ cell deformability and protein level.

5. Conclusions

Red blood cell deformability, measured by image analysis, strongly correlates with the
level of fourteen cell membrane proteins (“deformability-expressing proteins”), measured
by mass spectroscopy.

The deformability-expressing proteins exhibit highly significant inter-correlations
between their levels in the RBC membrane. These primarily include (1) proteins involved
in the lipid bilayer-cytoskeleton linkage and (2) proteins involved in membrane lipid
rafts. Notably, part of them are constituents of extracellular RBC micro-vesicles. This
suggests that the decrease in deformability, as occurs during RBC physiological aging,
is a programmed process of membrane remodeling and shedding membrane fragments,
mirroring the formation of extracellular vesicles.

The highly significant inter-correlation between the deformability-expressing proteins
infers that the cell deformability can be assessed by determining a few, or possibly one, of
these proteins.
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