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Abstract: Tumor-associated macrophages M2 (TAM2), which are highly prevalent infiltrating immune
cells in the stroma of pancreatic cancer (PC), have been found to induce an immunosuppressive
tumor microenvironment, thus enhancing tumor initiation and progression. However, the immune
therapy response and prognostic significance of regulatory genes associated with TAM2 in PC are
currently unknown. Based on TCGA transcriptomic data and single-cell sequencing data from
the GEO database, we identified TAM2-driven genes using the WGCNA algorithm. Molecular
subtypes based on TAM2-driven genes were clustered using the ConsensusClusterPlus algorithm. The
study constructed a prognostic model based on TAM2-driven genes through Lasso-COX regression
analysis. A total of 178 samples obtained by accessing TCGA were accurately categorized into
two molecular subtypes, including the high-TAM2 infiltration (HMI) cluster and the low-TAM2
infiltration (LMI) cluster. The HMI cluster exhibits a poor prognosis, a malignant tumor phenotype,
immune-suppressive immune cell infiltration, resistance to immunotherapy, and a high number of
genetic mutations, while the LMI cluster is the opposite. The prognostic model composed of six hub
genes from TAM2-driven genes exhibits a high degree of accuracy in predicting the prognosis of
patients with PC and serves as an independent risk factor. The induction of TAM2 was employed as
a means of verifying these six gene expressions, revealing the significant up-regulation of BCAT1,
BST2, and MERTK in TAM2 cells. In summary, the immunophenotype and prognostic model based
on TAM2-driven genes offers a foundation for the clinical management of PC. The core TAM2-driven
genes, including BCAT1, BST2, and MERTK, are involved in regulating tumor progression and TAM2
polarization, which are potential targets for PC therapy.

Keywords: pancreatic cancer; macrophages M2; immunophenotype; prognosis; immune
checkpoint inhibitor

1. Introduction

Pancreatic cancer (PC) is a malignant disease with a high mortality rate. The prevalence
of PC has increased by approximately 0.4% annually due to the growth of the global
population and the increasing number of public health epidemics [1]. The 5-year overall
survival (OS) rate for PC is observed to be less than 10%, positioning it as the seventh
leading cause of cancer-associated mortality worldwide [2]. Although surgery presents the
possibility of treatment, the number of cases that can be resected at the time of diagnosis
is less than 20%, and the majority of patients who undergo surgery pass away as a result
of local recurrence and/or metastasis [3,4]. Furthermore, despite the extensive utilization
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of innovative therapeutic approaches such as neoadjuvant therapy, gemcitabine/nab-
paclitaxel, and FOLFRINOX chemotherapy, therapeutic efficacy remains limited, and the
development of chemoresistance contributes to a poor prognosis [5,6]. Consequently, a
pressing necessity exists to ascertain the efficacious prognostic factors for PC.

The tumor microenvironment (TME) in PC is defined by a dense stroma and extensive
immunosuppression [7], which hinder drug delivery to malignant lesions by restricting
blood flow. This leads to resistance to chemotherapy and the suppression of the antitumor
immune response [8]. Tumor-associated macrophages (TAMs) are among the first infil-
trating cells that exist within intraepithelial pancreatic malignancies, and their numbers
increase throughout the progression to invasive cancer [9]. TAMs enhance cancer progres-
sion through diverse mechanisms such as immune suppression, angiogenesis, invasion,
metastasis, and drug resistance [10]. The employment of the immune checkpoint blockade
is now recognized as a viable therapeutic approach for individuals afflicted with advanced
PC. Although immune checkpoint inhibitors (ICI) have shown encouraging therapeutic
outcomes in multiple cancer types, their efficacy in the context of PC has proven to be less
than satisfactory. TAMs are one of the significant contributors to PD-L1, thereby impeding
the infiltration and efficacy of cytotoxic T cells. This process ultimately leads to unfavorable
resistance to neoadjuvant immunotherapy [11]. The density of TAMs has been identified
as an independent prognostic factor in patients suffering from PC and is correlated to an
increased risk of disease progression, recurrence, metastasis, and shorter OS [12].

TAMs predominantly polarize towards a pro-tumoral M2 phenotype [13]. The infiltra-
tion characteristics of tumor-associated macrophages M2 (TAM2) directly affect the efficacy
of ICI and the prognosis of PC patients. Therefore, clarifying the infiltration characteris-
tics and molecular features of TAM2 can help provide more effective and personalized
treatment strategies for PC patients. In this study, we identified TAM2-driven genes by an-
alyzing the gene modules exhibiting a strong positive correlation with TAM2 infiltration in
the TCGA-PAAD dataset and the highly expressed genes in TAMs based on the single-cell
sequencing dataset. A prognostic model was constructed based on the identification of two
distinct clusters, namely cluster high-TAM2 and cluster low-TAM2, using the TAM2-driven
genes. Subsequently, a comparative analysis was performed on the prognosis, immune
cell infiltration, immunotherapy response, and mutation profiles of different clusters, in
addition to evaluating the predictive performance of the prognostic model. Subsequently,
six TAM2-driven genes were validated as being closely associated with the M2 polarization
of TAMs. These genes could potentially serve as a novel target in PC progression. The
flowchart of this study is illustrated in Figure 1.
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Figure 1. The workflow of our research. WGCNA, weighted correlation network analysis; TAM2, 

tumor-associated macrophages M2; TAMs, tumor-associated macrophages; ICI, immune check-

point inhibitors. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ns, no significance. 

2. Results

2.1. Identification of TAM2 Co-Expressed Genes in PC 

Based on the TCGA-PAAD cohort, we calculated the infiltration of tumor infiltrating 

immune cells (TICs) in 178 PC patients, revealing that TAM2 was significantly enriched in 

the TME of PC (Figure 2A). Given that TAM2 contributes to promoting tumor angiogene-

sis, immunosuppression, and hypoxia induction, we screened TAM2 co-expressed genes 

using WGCNA. The cluster dendrogram revealed the presence of 11 distinct modules. 

Significantly, the gray modules comprised genes that exhibited no aggregation with any 

other modules (Figure 2B). The relationship between the modules and TIC infiltration 

Figure 1. The workflow of our research. WGCNA, weighted correlation network analysis; TAM2,
tumor-associated macrophages M2; TAMs, tumor-associated macrophages; ICI, immune checkpoint
inhibitors. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ns, no significance.

2. Results
2.1. Identification of TAM2 Co-Expressed Genes in PC

Based on the TCGA-PAAD cohort, we calculated the infiltration of tumor infiltrating
immune cells (TICs) in 178 PC patients, revealing that TAM2 was significantly enriched in
the TME of PC (Figure 2A). Given that TAM2 contributes to promoting tumor angiogenesis,
immunosuppression, and hypoxia induction, we screened TAM2 co-expressed genes using
WGCNA. The cluster dendrogram revealed the presence of 11 distinct modules. Signifi-
cantly, the gray modules comprised genes that exhibited no aggregation with any other
modules (Figure 2B). The relationship between the modules and TIC infiltration level was
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further analyzed. The results showed that the blue and turquoise modules had a significant
positive relation to TAM2 (Figure 2C). Furthermore, we found that genes highly associated
with TAM2 were key genes of the blue module or the turquoise module by analyzing the
correlation between module membership and gene significance (Figure 2D,E). Finally, the
1988 genes included in the blue and turquoise modules were defined as TAM2 co-expressed
genes (Supplementary Table S1).
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Figure 2. Identification of TAM2-driven genes. (A). Infiltration level of TICs in pancreatic can-
cer samples was calculated using the CIBERSORT algorithm. (B). Gene dendrogram and mod-
ule colors based on WGCNA analysis, and different colors represent different clustering modules.
(C). Correlation between gene module and TIC infiltration. (D,E). Correlation between gene signifi-
cance and module membership. (F). Cluster analysis of single-cell sequencing samples. (G). The vol-
cano plot illustrates the differentially expressed genes of tumor-associated macrophages, wherein the
red color signifies upregulated genes, while the blue color signifies downregulated genes. (H). Genes
common to both gene sets are defined as TAM2-driven genes in Venn diagram. TAM2, tumor-
associated macrophages M2; TICs, tumor-infiltrating immune cells.

2.2. Screening for TAM2-Driven Genes at the Single-Cell Level

RNA-seq data originated at the tissue level cannot clearly distinguish between tumor
cells and stromal cells, while PC contains a high enrichment of stromal cells, and cancer
cells represent only 5–10% of the tumor. Therefore, we further screened for co-expressed
genes directly associated with TAM2 using single-cell sequencing data. All cells were
classified into five categories and annotated as epithelial cells, fibroblasts, TAMs, NK cells,
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and monocyte endothelial cells, respectively (Figure 2F). Through comparative analysis
of the gene expression between TAMs and other cell types, it was observed that a total of
2348 genes were significantly up-regulated in TAMs (Figure 2G, Supplementary Table S2).
TAMs in PC mainly exhibit a TAM2 phenotype, so we took the intersection of TAM2 co-
expressed genes and TAMs highly expressed genes. Finally, we obtained 603 TAM2-driven
genes (Figure 2H, Supplementary Table S3).

2.3. Molecular Typing Based on TAM2-Driven Genes

The univariate COX survival analysis results revealed that 127 genes in the TAM2-
driven genes were strongly associated with PC prognosis, and were used for the next
clustering analysis (Supplementary Table S4). Next, the 178 PC samples in the TCGA-
PAAD cohort were clustered utilizing ConsensusClusterPlus, determining the optimal
cluster numbers relying on the cumulative distribution function (CDF). The CDF area
curve shows that the clustering result is relatively stable at k = 2, and all samples can
be divided into two clusters (Figure 3A,B). These two clusters differed significantly in
TAM2 infiltration (Figure 3C), so clusters 1 and 2 were named the HMI and LMI clusters,
respectively. Furthermore, the expression of TAM2 cellular markers was assessed between
the two clusters, demonstrating that five molecules exhibited notably higher expression
in the HMI cluster (Figure 3D). In order to clarify the clinical value of clusters, we further
evaluated the clinical characteristics and prognosis of different clusters. The analysis of
survival, which was predicated on OS, disease-specific survival (DSS), and progression-free
interval (PFI), showed a poor prognosis for the HMI cluster, while the LMI cluster had a
favorable prognosis (Figure 3E–G). By comparing the clinical characteristics of different
clusters, we found that PC patients with the HMI cluster had more pronounced tumor
malignant manifestations, including a higher percentage of G3/4 in the histological grade
and a higher percentage of N1 in the N stage (Figure 3H–L). Low tumor differentiation and
lymph node invasion levels in patients with HMI clusters are among the reasons for their
poor prognosis.

2.4. Immune Infiltration Analysis and Immunotherapy Prediction

Considering the mutual cross-linking between TAM2 and other TICs in the TME, the
TIC infiltration went through a further comparison in different clusters. Multiple TICs were
significantly enriched in the HMI cluster, including naive B cells, memory B cells, memory
CD4 T cells, follicular helper T cells, and dendritic cells (Figure 4A). TME is a key factor
affecting the effectiveness of immunotherapy, so we further analyzed the immunotherapy
response of different clusters. The results relying on the tumor immune dysfunction and
exclusion (TIDE) database showed that the immunotherapy resistance score was higher
in the HMI cluster (Figure 4B), and the immunotherapy response rate was lower in the
HMI cluster (Figure 4C). According to the Cancer Immunome Atlas (TCIA) database, the
HMI cluster had lower immunotherapy response scores than the LMI cluster (Figure 4D,E),
suggesting that TAM2 may contribute to the mechanism of immunotherapy resistance
in PC.

2.5. Targeted Drugs Sensitivity Analysis and Mutation Profiling

The pRRophetic R package was utilized to determine the IC50 values of commonly
used chemotherapeutic agents for each sample. The results showed that PC patients
with the HMI cluster were more sensitive to dasatinib, bortezomib, cyclophosphamide,
vinblastine, and ruxolitinib (Figure 4F–J), while PC patients with the LMI cluster were more
sensitive to entinostat, irinotecan oxaliplatin, vorinostat, and selumetinib (Figure 4K–O).
Finally, we analyzed the somatic mutation data and CNV data of the clusters. By plotting
the waterfall of the top 20 mutations in clusters, it was observed that within the top
five mutations of high frequency, TP53, KRAS, CDKN2A, and TTN mutations were more
frequent in the HMI cluster, while MUC16 and HROOM4 mutations were frequent in the
LMI cluster (Figure 5A,B). Additionally, we investigated the amplifications and deletions of
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the copy numbers of the clusters, revealing that the homozygous deletions (HOMDEL) and
amplifications were significantly different between the HMI and LMI clusters (Figure 5C).
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Figure 3. Immune clusters based on TAM2-driven genes. (A). Clustering heat map of PC sam-
ples when consensus k = 2. (B). The cumulative distribution frequency curve of PC samples.
(C). Comparison of TAM2 infiltration levels in different clusters using the CIBERSORT algorithm.
(D). Comparing the expression of TAM2 markers in different clusters. (E–G). OS time, DSS time and
PFI time KM curves of PC patients with different clusters. (H–L). Percentage distribution of clinical
characteristics in PC samples grouped by different clusters. TAM2, tumor-associated macrophages
M2; PC, pancreatic cancer; CDF, cumulative distribution frequency; OS, overall survival; DSS, disease
specific survival; PFI, progression-free interval; KM, Kaplan–Meier. ***, p < 0.001.
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Figure 4. Immune infiltration analysis and immunotherapy prediction for HMI cluster and LMI
cluster. (A). Violin diagram demonstrating TIC infiltration in different clusters using the CIBERSORT
algorithm. (B,C). Immunotherapy resistance was predicted for each cluster utilizing the TIDE
platform. (D,E). Immunotherapy response was predicted for each cluster utilizing the TCIA database.
(F–O). IC50 values of 10 chemotherapeutic agents in PC patients with different clusters. HMI,
high-TAM2 infiltration; LMI, low-TAM2 infiltration; TICs, tumor-infiltrating immune cells; TIDE,
tumor immune dysfunction and exclusion; TCIA, the Cancer Immunome Atlas; IC50, half maximal
inhibitory concentration. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ns, no significance.

2.6. Biological Mechanisms of Different Clusters

The results of the difference analysis indicated that 586 and 172 genes exhibited signif-
icant overexpression in the HMI and LMI clusters, respectively (Figure 5D, Supplementary
Table S5), representing the top 10 characterized gene expression levels in both clusters
in a heat map (Figure 5E). The biological mechanism of the HMI cluster exhibits a close
association with macrophages and organismal immunity in the context of gene ontology
(GO) enrichment analysis (Figure 5F, Supplementary Table S6), while the biological mecha-
nism of the LMI cluster is related to pancreatic function and vesicular transport (Figure 5G,
Supplementary Table S7). Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis results, the characteristic genes of the HMI cluster were found to partici-
pate in various classical tumor signaling pathways and immunological processes, including
PI3K-Akt, NF-kappa B, and IL-17 signaling pathways (Figure 5H, Supplementary Table S8).
However, the KEGG pathway involved in the LMI cluster was not associated with tumor
development or immune response (Figure 5I, Supplementary Table S9).
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Figure 5. Mutation mapping and biological mechanisms in different clusters. (A,B). The waterfall
plot of top 20 mutation genes in HMI and LMI clusters. (C). The top 10 amplification and HOMDEL
genes in HMI and LMI clusters. (D). Volcano plot shows the DEGs between HMI and LMI clusters.
(E) The heatmap shows top 10 up-regulated DEGs and top 10 down-regulated DEGs. (F,G). The
bubble diagram shows the GO terms associated with the HMI and LMI clusters. (H,I). The bar chart
shows the KEGG pathways involved in the HMI and LMI clusters. HMI, high-TAM2 infiltration;
LMI, low-TAM2 infiltration; HOMDEL, homozygous deletion; DEGs, differentially expressed genes;
GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

2.7. Construction of a Prognostic Model Based on the TAM2-Driven Genes

The large number of TAM2-driven genes is not conducive to clinical detection. To ad-
dress this issue, we developed a risk model utilizing Lasso–Cox regression analysis, which
is based on TAM2-driven genes. Lasso regression analysis of the training groups showed
that the optimal penalty parameter corresponded to TAM2-driven genes (Figure 6A,B).
Therefore, the training groups were subjected to multivariate Cox regression analysis using
these 13 genes. Finally, a Cox risk model consisting of six TAM2-driven genes was iden-
tified, calculating the risk score as follows: 0.447*PYGL − 0.409*CCND2 + 0.478*BCAT1
+ 0.482*BST2 − 0.579*MERTK − 0.744*GAA (Figure 6C). Among the training, validation,
and the entire groups, Kaplan–Meier survival curves revealed that the high-risk group
exhibited shorter intervals of OS (Figure 6D–F) and PFI (Figure 6G–I). The study findings
indicate that the risk score was identified as an independent prognostic factor for the
patient outcomes in three datasets, as demonstrated by the univariate and multivariate Cox
regression analyses (Figure 7A–F).
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Figure 6. Prognostic model based on the TAM2-driven genes. (A) Distribution of Lasso coefficients
of the prognostic TAM2-driven genes in the training group. (B) The cross-validation curve of Lasso
regression shows the best penalty parameter value in the training group. (C) The 6 TAM2-driven
genes construct the Cox risk model in the training group. (D–F) The OS time KM curve in the training
group, validation group, and entire cohort. (G–I) The PFI time KM curve in the training group,
validation group, and entire cohort. TAM2, tumor-associated macrophages M2; OS, overall survival;
KM, Kaplan–Meier; PFI, progression-free interval. *, p < 0.05; **, p < 0.01.

2.8. Assessing the Performance of a Prognostic Model

The analysis of distribution patterns of risk scores and outcome status revealed a
positive correlation between the risk scores of patients and the incidence of outcome
events (Figure 7G–I). The expression profiles of six genes driven by TAM2 indicated that
PYGL, BCAT1, and BST2 manifested elevated expression levels in the high-risk group,
whereas CCND2, MERTK, and GAA exhibited higher expression levels in the low-risk
group (Figure 7J–L). The Cox risk model’s predictive ability was assessed using the Re-
ceiver Operating Characteristic (ROC) curve. The area under the curve (AUC) of risk score
in the training group (0.779) was more elevated than other clinical features (Figure 8A), the
validation group (AUC = 0.738) (Figure 8B), and the entire cohort (AUC = 0.763) (Figure 8C)
to obtain consistent results. Moreover, a time-dependent survival ROC curve of the risk
score was constructed for predicting 1-, 3-, and 5-year OS rates (Figure 8D–F). In order to
enhance the credibility of the Cox risk model’s predictive ability, we conducted risk score
calculations in two additional datasets (ICGC-PACA-AU-array and ICGC-PACA-CA-seq),
both of which showed a worse prognosis for the high-risk group (Figure 8G,H). Differential
analysis was conducted on the high- and low-risk groups to explore the potential mecha-
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nisms contributing to the unfavorable prognosis of patients in the high-risk group. The
volcano plot illustrates that the high-risk group exhibited the up-regulation of 111 genes
and down-regulation of 59 genes (Figure 8I, Supplementary Table S10). The heatmap shows
the expression of each of the top 10 overexpressed and suppressed genes (Figure 8J). The
enrichment analysis results suggested that differentially expressed genes are involved
in the chemotactic movement of immune cells and immune molecules (Figure 8K,L,
Supplementary Tables S11 and S12).

KJ

Figure 7. Risk score from Cox risk model is an independent predictor of prognosis in PC patients.
(A–C) Univariate Cox analysis of risk score and clinical characteristics in the training group, validation
group, and entire cohort. (D–F) Multivariate Cox analysis of risk score and clinical characteristics in
the training group, validation group, and entire cohort. (G–I) The distribution trend of risk score,
OS time in the training group, validation group and, entire cohort. (J–L) Expression levels of 6-gene
signature in the high-risk and low-risk groups in the training group, validation group, and entire
cohort. PC, pancreatic cancer; OS, overall survival.
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Figure 8. Assessing the prognostic predictive power and biological mechanisms of the Cox risk model.
(A–C) ROC curves based on the risk model predict 1-, 3-, and 5-year OS rates in the training group,
validation group, and entire cohort. (D–F) ROC curve of the risk model and clinical characteristics in
the training group, validation group, and entire cohort. (G,H) Comparison of survival curves between
high- and low-risk groups after applying the risk model to external datasets (ICGC-PACA-AU-array
and ICGC-PACA-CA-seq). (I,J) Volcano plot and heatmap present the DEGs between high- and
low-risk groups. (K,L) GO analysis and KEGG analysis results of risk score-related DEGs. ROC,
Receiver Operating Characteristic; OS, overall survival; DEGs, differentially expressed genes; GO,
gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

2.9. Confirmation of Critical TAM2-Driven Genes

Given the good predictive performance of the Cox risk model, we further analyzed
the characteristics of six model genes. The findings of the combined pancreatic cohorts of
TCGA-PAAD and GTEx showed that BST2, CCND2, GAA, and PYGL were significantly
overexpressed in PC tissues compared to normal pancreatic tissues, while the opposite
was true for BCAT1 (Figure 9A). The survival analysis results revealed that BST2, CCND2,
GAA, PYGL, and BCAT1 were all correlated to the prognosis of PC patients (Figure 9B). To
determine whether the model genes are equally critical in M2 macrophages, we assayed
the expression levels of the model gene in M2 macrophages. The THP-1 cells went through
differentiation into M0 macrophages, which were subsequently differentiated into M2
macrophages (Figure 9C). The successful induction was confirmed by detecting the cellular
markers CD206/163 and IL-10 of M2 macrophages (Figure 9C). Six model genes were shown
to be significantly up-regulated in M2 macrophages when their expression levels were
compared to those of M0 macrophages (Figure 9D). The results suggested that six model
genes are the critical TAM2-driven genes involved in tumor progression.
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Figure 9. Validating the potential value of six TAM2-driven genes used to construct risk models in
PC. (A) The differential expression of 6 genes in PC and normal pancreatic tissue was analyzed by the
combination of TCGA-PAAD and GTEx-pancreatic cohorts. (B) KM survival curves demonstrate the
prognostic significance of 6 genes in PC. (C) The expression levels of M2 macrophages markers were
detected after induction of differentiation of THP-1 cells into M2 macrophages. (D) Comparison of
the expression levels of 6 genes in M0 macrophages and M2 macrophages. TAM2, tumor-associated
macrophages M2; PC, pancreatic cancer; KM, Kaplan–Meier. *, p < 0.05; **, p < 0.01; ***, p < 0.001, ****,
p < 0.0001.

3. Discussion

Pancreatic cancer is an intricate ailment resulting from the intricate interplay of various
factors. Prior investigations have demonstrated that the genesis and progression of pan-
creatic cancer are concomitant with a plethora of genetic mutations, with key driver genes
being KRAS, CDKN2A, TP53, and SMAD4 [14]. Among these, the KRAS mutation stands
as a pivotal initiating factor, signifying the metamorphosis from normal cells to initiated
cells [15]. Additionally, KRAS mutation ranks among the most prevalent oncogenic events,
occurring in approximately 90% of pancreatic cancer patients [16]. Nevertheless, genetic
mutations or variations do not exclusively account for the etiology of pancreatic cancer;
aberrant epigenetic modifications also foster the occurrence and development of the disease.
Copious evidence points to the involvement of epigenetic modifications, such as DNA
methylation, histone modifications, and RNA alterations, in the genesis and progression
of pancreatic cancer [17]. Furthermore, afflictions affecting the pancreas itself, such as
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diabetes and chronic pancreatitis, may hasten the advancement of pancreatic cancer [18].
In recent years, with the advancement of high-throughput detection methods such as gene
sequencing and multi-omics research, precision medicine has made significant strides in the
diagnosis and treatment of pancreatic cancer. Precision medicine has greatly enhanced the
efficacy of novel adjuvant and adjunctive therapies for pancreatic cancer through various
aspects, including the exploration of critical therapeutic targets, the selection of appropriate
patient populations, the assessment of treatment drug sensitivity and adverse reactions,
and the monitoring of treatment dynamics, thereby extending patients’ survival time [19].

Tumor cells recruit peripheral blood mononuclear cells into tumor tissue and induce
their differentiation into TAMs by secreting chemokines and cytokines. TAMs, widely
considered as M2 subtypes, lead to immune evasion through producing inhibitory cytokines
(IL-10 and TGF-β), the depletion of L-arginine metabolic activity, ROS production, and
involvement of immune checkpoints [20,21]. TAMs enriched in the PC stroma could be
potential targets for immunotherapy. Recent studies have shown that IFN-g enhances the
efficacy of PD1-blocking therapies by inhibiting the infiltration of TAM2 [22]. Therefore,
understanding the regulation of TAMs in the immunosuppressive microenvironment will
help explore TAMs as adjuvant therapeutic targets for tumor immunotherapy. In the
study, based on single-cell sequencing data and the WGCNA algorithm, TAM2-driven
genes were identified that were positively correlated with TAM2 infiltration levels and
characteristically up-regulated in TAM2. Two molecular subtypes of PC (HMI and LMI
clusters) were obtained using unsupervised clustering based on TAM2-driven genes. TAMs
are considered a prognostic indicator for many solid tumors, including PC, gastric, ovarian,
and non-small-cell lung cancers [23–25]. A meta-analysis including 1699 PC patients
showed that elevated levels of TAM2 infiltration predicted worse OS and disease-free
survival [12]. In the same line with our results, PC patients in the HMI cluster had elevated
levels of TAM2 infiltration and a poor prognosis. In addition, PC patients in the HMI
cluster have features of advanced tumors, including poor histological grade and N stage.
The lower level of tumor cell differentiation in the HMI cluster may be related to TAM2
promoting the stemness of tumor cells [26]. Cytokines and chemokines derived from TAM2,
such as IL1/8 and CCL18, can enhance the epithelial–mesenchymal transition in tumor
tissues through various signaling pathways, which leads to advanced tumor invasion and
metastasis [27,28].

Many studies have identified that TAM2 plays a crucial role in the PC microenviron-
ment by driving the immunosuppressive cell to polarize and expand, and we also found
abnormally elevated levels of Tregs infiltration in the HMI cluster. TAM2 induces CD4 T
cell differentiation into tumor-promoting Tregs while promoting Treg aggregation in the
tumor to suppress the antitumor response [29]. In our study, the level of Tregs infiltration
exhibited a significant elevation in the HMI cluster compared to the LMI cluster. Given the
regulatory role that TAM2 plays in the immunosuppressive microenvironment of PC, we
further explored the response to immunotherapy in different clusters. As expected, the
HMI cluster exhibited strong resistance and a low response rate to ICI treatment due to
high levels of TAM2 infiltration. This result suggests that the application of ICI therapy,
along with the inhibition of TAM2 polarization and recruitment, may provide a better
prognosis for PC patients. In addition, to characterize the molecular profile of clusters, we
investigated genomic alterations. The HMI cluster has a higher frequency of mutations in
two tumor-associated genes, KRAS and TP53, which partly explains the poor prognosis
and malignant progression of patients in the HMI cluster.

The emergence of multi-omics data has led to the discovery of numerous genetic traits
and risk models, which offer innovative perspectives on tumor diagnosis and prognosis
prediction [30,31]. Multiple genetic features are necessary for accurate and reliable predic-
tive models in tumor biology due to their complexity. Relying on a single pathological
feature or biomarker is insufficient. We constructed a Cox risk model that could predict
the prognosis of PC patients and identify the hub genes in TAM2-driven genes. The Cox
risk model consists of six TAM2-driven genes that are employed for the calculation of
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risk score for each patient suffering from PC, which is consequently used to categorize
the patients into high- and low-risk groups. The survival analysis results suggested a
significant difference in prognosis between the two risk groups. Additionally, the AUC
demonstrated the predictive power of the Cox risk model. The validation group and the
whole group were both used to validate the model. Furthermore, the Cox risk model went
through external validation through the ICGC-PACA-AU-array and ICGC-PACA-CA-seq
cohorts, which produced comparable predictive capabilities.

We identified six hub TAM2-driven genes by the Cox risk model: PYGL, CCND2,
BCAT1, BST2, MERTK, and GAA. PYGL is a key gene involved in the glycolytic pathway
with glycogen phosphorylase activity. A preclinical study showed that PYGL induces
EMT and metastasis in PC by stimulating the glycolysis of glycogen accumulated in tumor
cells [32]. Cyclin D2 is encoded by CCND2 and plays a role in cell cycle progression, and is
believed to regulate cyclin-dependent kinases 4/6 during the G1-S transition [33]. CCND2
is dysregulated in various tumors and is correlated to patient prognosis, including lung,
breast, and liver cancers [34]. Silva et al. reported that the catabolism of branched-chain
amino acids plays an immunomodulatory function in glioblastoma, which is associated
with the inhibition of macrophage phagocytic activity [35]. BCAT1 plays an important role
as a transaminase in the catabolism of branched-chain amino acids. BCAT1 is the most
abundant isoform in human macrophages and is involved in regulating the activation
of pro-inflammatory macrophages [36]. BST2, a type II transmembrane protein, exhibits
oncogenic properties in diverse tumors such as PC, myeloma, breast, lung, and kidney
cancers [37–39]. A preclinical study in colorectal cancer showed that up-regulated BST2
promotes immunosuppressive TME by recruiting TAMs and inducing them into the M2
phenotype [40]. In addition, FGD5-AS1-regulated BST2 plays a role in promoting M2
macrophage polarization and inhibiting M1 macrophage polarization in cervical cancer [41].
MERTK is a novel type I receptor tyrosine kinase that is widely expressed in macrophages
and promotes phagocytosis [42]. After recognizing ligands exposed on the surface of
apoptotic cells, MERTK rapidly mediates the phagocytosis and macrophage clearance of
apoptotic cells, a process known as efferocytosis [43]. During tumor development, MERTK
promotes immune evasion and the M2 polarization of macrophages through the regulation
of efferocytosis [44]. GAA is involved in regulating the autophagic process in tumor cells.
A recent study showed that low levels of GAA induced autophagy in gastric cancer cells
through AMPK activation and inhibition of mTORC1 signaling. In contrast, high levels
of GAA were observed to inhibit autophagy by reducing intracellular ATP levels and the
number of active lysosomes [45].

4. Materials and Methods
4.1. Data Acquisition

The R 4.0.5 software was utilized for the purposes of data processing, statistical
analysis, and visualization. The study objectives were met by collecting datasets from
various databases, including the Cancer Genome Atlas (TCGA) and the International Cancer
Genome Consortium (ICGC), the Genotype-Tissue Expression (GTEx) and
Gene Expression Omnibus (GEO) databases [46–49]. Transcriptome data and clinical infor-
mation of PC samples include three study cohorts: TCGA-PAAD (n = 178),
ICGC-PACA-AU-array (n = 167), and ICGC-PACA-CA-seq (n = 182). Transcriptome data
of normal pancreatic tissue were from the GTEx-pancreatic cohort (n = 167). Single-cell
sequencing data of PC samples were from GSE154778 (n = 16). Somatic mutation files for
the TCGA-PAAD cohort were obtained by accessing the UCSC database, and the maftools
R package was used for reading, organizing, and visualizing. The copy number varia-
tion (CNV) data from the TCGA-PAAD cohort were obtained by accessing the cBioportal
database [50,51].
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4.2. Immune Cell Infiltration Analysis

Analysis of the TCGA-PAAD cohort using the CIBERSORT R package enabled the cap-
ture of 22 TIC levels in each PC sample [52]. TICs that exhibited an infiltration level of 0 in
50% of the PC samples were removed, and 14 TICs were finally retained for further analysis.

4.3. Weighted Correlation Network Analysis (WGCNA)

The study utilized the WGCNA R package for building a weighted co-expression
network and filtering co-expression modules [53]. The samples with a large dispersion were
removed by hierarchical clustering. The soft power of k = 12 was selected. Subsequently,
the transformation of the expression matrix into a topology matrix was executed. The
hybrid dynamic shearing tree standard was employed to cluster genes using the average-
linkage hierarchical clustering approach, according to TOM. The modules that were in close
proximity were combined into novel modules. The correlation between each module and
TIC infiltration of the samples was calculated. Finally, the module genes with the highest
module–TAM2 associations were identified as the TAM2 co-expression genes.

4.4. Single-Cell Sequencing Data Download and Processing

First, ineligible cells and genes were removed following these criteria: (1) cells ex-
pressing <200 genes; (2) genes expressed in <3 cells; (3) cells having a percentage of
mitochondrial or erythrocyte gene percentage >5%; (4) cells having a number of expressed
genes >7500. Seurat R package and single R package were used for the full-flow analysis
and cell annotation of single-cell sequencing data [54]. Finally, the FindMarkers function
was used to complete the differential analysis between TAMs and other cells. The criteria
used to screen significantly differentially expressed genes (DEGs) were as follows: Log2
fold change (Log2FC) > 0.1 and adjusted p value < 0.05.

4.5. Consensus Clustering

Extraction of the overlapping regions of TAM2 co-expression genes and DEGs as
TAM2 driver genes was carried out. Based on the TAM2-driven genes, consensus clustering
was further carried out in the TCGA-PAAD cohort using the ConsensusClusterPlus R
package [55]. The study set the parameters as the Euclidean distance-based Pam algorithm
with 1000 iterations. At each iteration, 80% of the samples went through drawing in a
random manner. The selection of an optimal number of clusters relied on CDF and ranged
from 2 to 9 clusters. Finally, 2 clusters were identified, named cluster high-TAM2 infiltration
(HMI) and cluster low-TAM2 infiltration (LMI).

4.6. Targeted Drug Sensitivity Analysis and Immunotherapy Prediction

The medication sensitivity of each patient with PC was estimated according to their
gene expression profiles using the Oncopredict R package [56,57]. The study utilized the
Wilcoxon Test functions in R for screening potential drug sensitivity within HMI and LMI
clusters, whereby lower IC50 values were indicative of increased drug sensitivity. This
study also accessed the TIDE and TCIA databases not only to assess the potential for
resistance to immunotherapy and the response to ICI treatment for the HMI and LMI
clusters [58,59], but also to obtain the TIDE and immunophenoscore (IPS) scores of PC
patients, respectively. A positive correlation was observed between elevated IPS and
reduced TIDE scores, indicating a favorable immunotherapeutic outcome.

4.7. Functional Enrichment Analysis of Different Clusters

We indirectly analyzed the biological functions involved in HMI and LMI clusters
using the molecular characterization of clusters. First, DEGs of different clusters were
identified through the Limma R package. The molecular characteristics of HMI clusters
were defined as Log2FC > 1 and adj-p < 0.05. The molecular characteristics of LMI clusters
were defined as Log2FC < 1 and adj-p < 0.05. The enrichKEGG and enrichGO functions in
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the clusterProfiler R package were then used to analyze the KEGG pathways and GO terms
involved in the molecular characteristics of different clusters [60].

4.8. COX Risk Model Construction

The TCGA-PAAD cohort was randomly assigned to a training group (n = 89) and
a validation group (n = 89) using the caret R package. The COX risk model, which was
based on TAM2-driven genes, was constructed using the data from the training group. The
TAM2-driven genes were analyzed using univariate COX regression analysis according to
OS, and those genes that exhibited significant prognostic significance were identified by
screening (p < 0.05). To mitigate the risk of overfitting, the study used the least absolute
shrinkage and selection operator (LASSO) regression to evaluate potential prognostic
genes. The list of prognostic genes corresponding to the optimal penalty parameter is
obtained when the cross-validation error of Lasso regression is the smallest. The LASSO
prognostic genes went through a multivariate COX regression analysis to determine the
ultimate risk model. The risk score for each patient was calculated as follows: risk score
= βmRNA1 × ExpressionmRNA1 + βmRNA2 × ExpressionmRNA2 + . . .+βmRNAn ×
ExpressionmRNAn.

4.9. Cell Culture and Treatments

The THP-1 cells (Shanghai Institute of Nutrition and Health, Shanghai, China) were
cultured in Dulbecco’s modified Eagle medium (DMEM, Gibco, Grand Island, NY, USA)
with 10% fetal bovine serum (FBS, Gibco) and incubated at 37 ◦C under 5% CO2. The THP-1
monocytes went through a 72 h treatment of 100 ng/mL PMA (Abcam, Cambridge, MA,
USA), resulting in their conversion into M0 macrophages. Subsequently, these macrophages
were subjected to a 48 h incubation with 20 ng/mL IL-4 (Peprotech, Rocky Hill, NJ, USA),
leading to the acquisition of M2 macrophages.

4.10. RNA Extraction and qRT-PCR

The RNA was extracted from the samples utilizing TRIzol, followed by the utilization
of PrimeScript RT Reagent Kit to synthesize cDNA. qRT-PCR analyses were performed
using a StepOne real-time PCR instrument (Applied Biosystems, Nyack, NY, USA). The
2−∆∆Ct method was used to analyze relative gene expression, with the purpose of normal-
izing the data, which was achieved by the use of GAPDH. Supplementary Table S13 lists
the used primer sequences. All analyses were repeated three times.

4.11. Statistical Analysis

Statistical calculations and the visualization of all results were conducted through
R (version 4.0.2, R Foundation, Vienna, Austria). The statistical analysis of categorical
variables involved the utilization of either the chi-square test or Fisher’s exact test. The
statistical differences in the measured variables were analyzed using the Wilcoxon rank-
sum test. Spearman’s rank correlation coefficient was employed to assess the association
between the two variables. The prognostic analysis was conducted utilizing the Kaplan–
Meier survival curve, as well as univariate and multivariate Cox analyses. p < 0.05 indicated
a significant difference.

5. Conclusions

In conclusion, we classified PC depending on TAM2-driven gene expressions. The
immune subtypes exhibit significant differences in TIC infiltration, prognosis, and im-
munotherapy effects. A six-gene prognostic model was constructed relying on these TAM2-
driven gene expressions. The 6-gene signature exhibits robust stability and demonstrates
consistent predictive efficacy across diverse databases. Finally, we identified that BCAT1,
BST2, and MERTK expression levels were significantly increased in TAM2 as potential
mechanistic molecules that induce the polarization of TAMs toward the M2 phenotype.
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