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Abstract: Most proteins fold into characteristic three-dimensional structures. The rate of folding and
unfolding varies widely and can be affected by variations in proteins. We developed a novel machine-
learning-based method for the prediction of the folding rate effects of amino acid substitutions in
two-state folding proteins. We collected a data set of experimentally defined folding rates for variants
and used them to train a gradient boosting algorithm starting with 1161 features. Two predictors
were designed. The three-class classifier had, in blind tests, specificity and sensitivity ranging
from 0.324 to 0.419 and from 0.256 to 0.451, respectively. The other tool was a regression predictor
that showed a Pearson correlation coefficient of 0.525. The error measures, mean absolute error and
mean squared error, were 0.581 and 0.603, respectively. One of the previously presented tools could
be used for comparison with the blind test data set, our method called PON-Fold showed superior
performance on all used measures. The applicability of the tool was tested by predicting all possible
substitutions in a protein domain. Predictions for different conformations of proteins, open and
closed forms of a protein kinase, and apo and holo forms of an enzyme indicated that the choice of
the structure had a large impact on the outcome. PON-Fold is freely available.

Keywords: protein folding; protein unfolding; machine learning; variation interpretation; amino acid
substitution; folding rate

1. Introduction

During protein folding, the characteristic three-dimensional structure is obtained.
Folding can be co-translational during translation or happen after synthesis. Folding
rate differences between proteins vary by five orders of magnitude [1]. Interestingly, the
unfolding rates have a substantially wider range, up to 10 orders of magnitude [2].

Details for protein folding are available from PFDB [3] and ACPro [4] databases.
Several methods based on different principles and algorithms predict protein folding rates,
for a review and benchmarking study (see [5]). These tools estimate the folding of entire
proteins and the performance varies widely, from very poor to good.

Variations, such as amino acid substitutions, can affect many protein properties, including
stability, activity, solubility, structure, etc. Variants can also affect protein folding rates, usually
in a deleterious way. In human muscle acylphosphatase substitutions, such as Y25F and
V68A, have a major effect on the folding rate [6]. The available folding rate values for variants
originate mainly from a single large study of 806 variants in 24 proteins [7]. Folding and
unfolding rates in Rop, a four-helix-bundle protein, vary over four orders of magnitude [8].

It is more difficult to predict the effects of variations on protein folding than the folding
rates of proteins. Previously, one research group used the same or slightly increased data sets
to develop several predictors. The algorithms they applied include quadratic regression in
FORA [9] and FREEDOM [10], rule-based decision tree in KD-FREEDOM [11], multiple linear
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regression in Folding RaCe [12], and amino acid properties and multiple linear regression
in Unfolding RaCe [2]. In addition, an application based on residue-level coevolutionary
networks has been presented [13]. A related problem is an estimation of the effects of
variations on protein folding free energy and other properties. A free-energy approach
utilizing a modified Molecular Mechanics Generalized Born (MMGB) is an example [14].

Protein folding and solubility are closely connected [5]. There are different fates for
proteins regarding their solvent interaction (see [15]). Soluble proteins can precipitate,
misfolded proteins can refold spontaneously or with the help of chaperones, or become
sequestered or aggregated, when having irreversible structural alterations. Previously,
we developed reliable machine learning (ML) predictors called PON-Sol [16] and PON-
Sol2 [17] for predicting the solubility effects of amino acid substitutions.

Here, we present an ML-based approach for folding rate effect predictions due to
amino acid substitutions. The method was implemented with a gradient boosting algorithm
and was trained with a large data set obtained from the literature. A comparison with a
previous tool indicated that PON-Fold, our tool, had superior performance. We used the
new method to predict all possible substitutions in a widely studied protein and correlated
the results to pathogenicity predictions. Then, the method was used to study the effects
in different conformations of proteins in open and closed forms of a protein kinase and
in apo and holo forms of an enzyme. Protein conformation has a substantial effect on the
prediction outcome; therefore, the choice of the structure is a crucial step.

2. Results and Discussion
2.1. Selection of Data Sets

Data for folding affecting variants were collected from previous predictor articles and
the literature. In total, there were 952 variants (Table 1) in 29 two-state proteins (30 PDB
entries) (Supplementary Table S1). Most of the folding rate measurements were performed
with a stopped-flow fluorimeter, some of them also with a continuous flow fluorimeter,
temperature jump fluorimeter, or stopped-flow circular dichroism (CD). Folding effects
were divided into three categories: increasing, decreasing, and not affecting the folding
rate. As there is not an agreed definition of no-effect variants, we optimized the cutoff
for the distribution of cases into three categories so that there were substantial numbers
of cases in all three categories. The threshold was set to ±0.15 s−1. The data items were
then distributed to training and blind test data sets. As a guiding principle, all variants in
a protein and position were kept together either in the training or test data set. This was
conducted to avoid any bias in training and performance assessment. The data set is the
largest collection of folding rate-affecting variants ever used.

Table 1. The number of cases in training and blind test sets.

Folding Rate Decreasing (−) No Effect (No) Folding Rate Increasing (+) Total

Training set 520 136 106 762
Blind test set 133 39 18 190

Total 653 175 124 952

The distribution of the amino acid substitutions in the data set is shown in Supplementary
Table S2. The data set is biased for some residues. Alanine is the most common variant residue
accounting for more than half of the cases. This is because alanine scanning mutagenesis has
been widely used to study the effects of amino acid side chains. Other frequently substituting
residues are phenylalanine and valine. For some amino acid substitutions, there are no cases at
all. There are variations for all amino acid types, although the numbers differ greatly. Leucine,
valine, and histidine are the most frequently altered amino acid types.

The training set contained 520 folding-rate-decreasing, 106 increasing, and 136 variants
with no effect, totaling 762 variants. The blind test set consisted of 190 variants, of which
133 decreased the folding rate, 39 had no effect, and 18 increased the folding rate.
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The folding rate scores for all variants are shown in Figure 1. They follow quite well
the normal distribution. The data are biased towards stability-decreasing variants and
have wider distribution on that side. Variants that reduce or delete a protein property
are more frequent also for pathogenicity, stability, solubility, and activity than those that
increase the property. Folding-rate-increasing variants are substantially rarer than those in
the two other categories, as shown in Table 1.
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Figure 1. Distribution of folding rate changes for variants.

2.2. Three-Class Classifier

The collected data items were divided into three categories. Since the variants had numeri-
cal folding rate values, we were able to develop both a classifier and a regression predictor.

As the data set was unbalanced for the number of cases in the three categories, we
used an iterative process to take benefit of all the cases. We generated a total of 50 random
partitions of training cases with equal distribution in the three categories (Figure 2). For
each subset, we trained a predictor with LightGBM (Microsoft Corporation, Redmond, WA,
USA) and selected the features based on all 50 predictors.
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Figure 2. Flowchart of a classification model.

Five-fold cross-validation was used 10 times to estimate the performance of predictions.
The flowchart for the feature selection for the classification predictor is shown in Figure 3.
Predictors were trained with LightGBM by dropping one feature at a time in each iterative
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step. Feature importance was ranked over all the predictors to obtain the final list of
significant features. LightGBM was chosen as the algorithm since it has proven reliable and
the best algorithm in our recent variant interpretation tools, including the PON-All generic
pathogenicity predictor [18], PON-Sol2 variant severity predictor [17], and ProTstab protein
cellular stability predictor [19].

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 16 
 

 

 

Figure 2. Flowchart of a classification model. 

Five-fold cross-validation was used 10 times to estimate the performance of predic-

tions. The flowchart for the feature selection for the classification predictor is shown in 

Figure 3. Predictors were trained with LightGBM by dropping one feature at a time in 

each iterative step. Feature importance was ranked over all the predictors to obtain the 

final list of significant features. LightGBM was chosen as the algorithm since it has proven 

reliable and the best algorithm in our recent variant interpretation tools, including the 

PON-All generic pathogenicity predictor [18], PON-Sol2 variant severity predictor [17], 

and ProTstab protein cellular stability predictor [19]. 

 

Figure 3. Flowchart of feature selection. 

Feature selection for three-class classification showed the best performance with 31 

features (Table 2). None of the selected features had very high scores, and much more 

important scores were seen, e.g., when training PON-All. The conservation score (C-score) 

reflects the structural and functional importance of the variant position, which is the most 

important feature followed by relative position (rp) and relative solvent accessibility (rsa) 

for the extent of accessibility of the original amino acid. We started with a large number 

Figure 3. Flowchart of feature selection.

Feature selection for three-class classification showed the best performance with 31 features
(Table 2). None of the selected features had very high scores, and much more important
scores were seen, e.g., when training PON-All. The conservation score (C-score) reflects the
structural and functional importance of the variant position, which is the most important
feature followed by relative position (rp) and relative solvent accessibility (rsa) for the extent
of accessibility of the original amino acid. We started with a large number of features of
many types. This was important since the selected features represent all the feature categories.
There are several amino acid propensities, neighbor features, amino acid substitution types,
potentials calculated in different ways, and proportions of amino acid types. The fact that
none of the features has a very high score originates from the difficult prediction task.

The procedure for training the predictor is shown in Figure 3. Five-fold CV was
repeated 10 times by using under-sampled training data sets with equal numbers of
variants in the three categories. Each set contained 80 folding-rate-increasing, decreasing,
and non-affecting variants. The results are shown in Table 3. We followed the guidelines
for reporting predictor performance [20,21] and provide the full set of measures.

In the CV, the specificity ranges from 0.493 to 0.591 and the sensitivity ranges from
0.527 to 0.540 for different types of variants (Table 3). The corresponding scores in the blind
test set are from 0.324 to 0.419 and from 0.256 to 0.451, i.e., somewhat lower for all types of
variants (Table 3). The values for F1 behave the same way. This may indicate that the use of
additional cases could significantly improve performance. The problem is that such data
are not often published.

The other scores are also lower for the blind test set. The performance measures are
somewhat better for 31 selected features than for all the features. The measures are typically
somewhat better when trained on all the features than on the selected features in the blind
test set; however, the differences are not large.

Accuracy, macro-F1, and GC2 were calculated over the entire data. On CV, the per-
formance was clearly better when using the selected features. In the case of blind test
data, somewhat better results were obtained with all the features. As the differences are
not large, and the use of all the features introduces the so-called curse of dimensionality,
especially since we have substantially more features than cases, it was preferable to use a
smaller feature set. For extensive discussion on the representativeness of training data sets
(see [22]). Small data sets cannot cover the entire space of feature combinations.
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Table 2. Features selected for classification predictor.

Rank Feature Name Score Description

1 C-score 55.23 Conservation score
2 rp 36.11 Relative position of variation in sequence
3 rsa 34.95 Relative solvent accessibility
4 TOBD000102 30.58 Optimization-derived potential obtained for large set of decoys
5 SIMK990102 26.75 Distance-dependent statistical potential (contacts within 5–7.5 Å)
6 THOP960101 24.22 Mixed quasichemical and optimization-based protein contact potential
7 VENM980101 23.08 Statistical potential derived by the maximization of the perceptron criterion
8 BONM030106 17.72 Distances between centers of interacting side chains in the parallel orientation
9 window_Y 16.35 The proportion of Y within a neighborhood window of 25 positions
10 MOOG990101 15.31 Quasichemical potential derived from interfacial regions of protein–protein complexes
11 BONM030105 14.42 Distances between centers of interacting side chains in the intermediate orientation
12 window_NonPolarAA 10.77 The proportion of nonpolar residues within a neighborhood window of 25 positions
13 BETM990101 10.65 Modified version of the Miyazawa–Jernigan transfer energy
14 MIYS850103 8.38 Quasichemical energy of interactions in an average buried environment
15 window_ChargedAA 8.35 Proportion of charged residues within a neighborhood window of 25 positions
16 window_PosAA 8.10 Proportion of positively charged residues within a neighborhood window of 25 positions
17 BONM030101 7.63 Quasichemical statistical potential for the antiparallel orientation of interacting side groups
18 window_F 7.62 Proportion of F within a neighborhood window of 25 positions
19 SKOJ970101 7.01 Statistical potential derived by the quasichemical approximation
20 window_R 4.77 Proportion of R within a neighborhood window of 25 positions
21 window_D 4.22 Proportion of D within a neighborhood window of 25 positions
22 AURR980118 2.90 Normalized positional residue frequency at helix termini C”
23 LIWA970101 2.85 Modified version of the Miyazawa-Jernigan transfer energy
24 GARJ730101 1.43 Partition coefficient
25 BULH740101 1.38 Transfer free energy to surface
26 OVEJ920103 0.98 Environment-specific amino acid substitution matrix for beta residues
27 QIAN880128 0.98 Weights for coil at the window position of −5
28 AURR980102 0.99 Normalized positional residue frequency at helix termini N′′′

29 NADH010101 0.18 Hydropathy scale based on self-information values in the two-state model (5% accessibility)
30 g2_g6 0.001 Negatively charged amino acid (D, E) substitution by residues in group other amino acids (A, T)
31 V_A 0.001 Valine substitution by alanine

Table 3. Comparison of predictor performances for feature sets on 10-time 5-fold CV and blind test set.

10-Time 5-Fold CV Blind Test

Performance
Metrics With All Features a With 31 Selected Features With All Features With 31 Selected Features

TP
− 55.4/27.4 55.9/27.6 65.0/31.0 60.0/28.6

No 13.3/24.4 14.9/27.4 11.0/17.9 10.0/16.2
+ 9.9/22.8 11.6/26.9 8.0/28.1 7.0/24.6

TN
− 34.7/70.9 35.6/73.2 33.0/74.4 32.0/67.1

No 92.6/76.1 93.8/78.5 118.0/101.8 110.0/104.1
+ 104.7/81.0 106.3/83.5 123.0/90.7 125.0/88.2

FP
− 15.2/31.4 14.2/29.0 24.0/52.2 25.0/59.5

No 32.9/26.1 31.7/23.7 33.0/24.8 41.0/22.6
+ 26.6/21.3 25.0/18.7 49.0/36.0 47.0/38.4

FN
− 48.1/23.8 47.6/23.5 68.0/32.4 73.0/34.8

No 14.6/26.7 12.9/23.8 28.0/45.5 29.0/47.1
+ 12.2/28.3 10.4/24.2 10.0/35.2 11.0/38.7

PRE
− 0.785/0.472 0.797/0.493 0.730/0.372 0.706/0.324

No 0.289/0.484 0.322/0.535 0.250/0.418 0.196/0.419
+ 0.271/0.519 0.317/0.591 0.140/0.439 0.130/0.391

REC
− 0.535/0.535 0.540/0.540 0.489/0.489 0.451/0.451

No 0.479/0.479 0.536/0.536 0.282/0.282 0.256/0.256
+ 0.445/0.445 0.527/0.527 0.444/0.444 0.389/0.389

F1
− 0.636/0.499 0.643/0.514 0.586/0.423 0.550/0.377

No 0.357/0.479 0.399/0.534 0.265/0.337 0.222/0.318
+ 0.333/0.475 0.393/0.553 0.213/0.442 0.194/0.390

Macro-F1 All 0.442/0.485 0.478/0.533 0.355/0.400 0.322/0.362
ACC All 0.512/0.486 0.538/0.534 0.442/0.405 0.405/0.366
GC2 All 0.050/0.070 0.078/0.114 0.007/0.015 0.017/0.039

a The numbers separated by a slash are for observations and normalized values calculated to mitigate the
class imbalance.
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2.3. Regression Predictor

As another application, we trained a regression predictor for the value of folding rate
change. The feature selection was performed similar to that described above. A total of
21 features were identified as the most informative ones (see Table 4). There is some overlap
with the features in Table 2: nine (43%) of the features are the same. The common features
include the three most important features: relative solvent accessibility, C-score, and the
relative position of the variant in the sequence. In addition, a quasichemical potential,
a distance-dependent potential, a principal component, and transfer free energy were
shared. Several of the amino acid neighborhood features are shared including those for
aromatic tyrosine and phenylalanine, charged aspartate, and positively charged residues.
The remaining features are for some potentials, amino acid types, and others.

Table 4. Features selected for regression predictor.

Rank Feature Name Score Description

1 rsa 36.000 Relative solvent accessibility
2 C-score 29.361 Conservation score
3 rp 26.525 Relative position of variation in sequence
4 ZHAC000105 21.893 Environment-dependent residue contact energies (rows = strand, cols = coil)
5 MOOG990101 18.082 Quasichemical potential derived from interfacial regions of protein–protein complexes
6 ZHAC000102 16.647 Environment-dependent residue contact energies (rows = helix, cols = strand)
7 BASU010101 16.462 Optimization-based potential derived by the modified perceptron criterion
8 window_T 15.404 Proportion of T within a neighborhood window of 25 positions
9 SIMK990105 15.355 Distance-dependent statistical potential (contacts longer than 12 Å)
10 window_PolarAA 15.248 Proportion of polar residues within a neighborhood window of 25 positions

11 KESO980102 14.054 Quasichemical energy in an average protein environment derived from interfacial regions
of protein–protein complexes

12 SIMK990102 12.777 Distance-dependent statistical potential (contacts within 5–7.5 Å)
13 window_G 11.407 Proportion of G within a neighborhood window of 25 positions
14 window_Y 9.909 Proportion of Y within a neighborhood window of 25 positions
15 window_F 9.617 Proportion of F within a neighborhood window of 25 positions
16 window_PosAA 9.447 Proportion of positively charged residues within a neighborhood window of 25 positions
17 window_V 8.810 Proportion of V within a neighborhood window of 25 positions
18 window_D 7.500 Proportion of D within a neighborhood window of 25 positions
19 SNEP660101 1.844 Principal component I
20 BULH740101 1.159 Transfer free energy to surface
21 LAWE840101 1.155 Transfer free energy, CHP/water

The full set of features and the 21 selected features were used to test the performance
in 10-time five-fold CV (Table 5). We used four measures to address the performance.
All the scores are better when using 21 selected features instead of all the features. The
scores are good, and PCC is 0.525. The error measures, MAE and MSE, are 0.581 and 0.603,
respectively. R2 (0.255) is substantially better for the selected features. This measure, the
coefficient of determination, provides a measure of how well the observed cases match
with the model. It is calculated based on the proportion of total variation in cases explained
by the predictor.

Table 5. Comparison of performance for different features in 10-time 5-fold CV.

With All Features With 21 Selected Features

PCC 0.449 0.525
MAE 0.609 0.581
MSE 0.674 0.603
R2 0.167 0.255

PON-Fold has good performance considering the difficult prediction task and limited
and biased data set. Some variation types are scarce or missing from the training data and
affect the performance of the method.
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2.4. Blind Test Performance

Several methods have been presented for variant effect calculation for folding rate
change (see the Introduction). However, only one of these, Folding RaCe [12], was available
for comparison. The other tools are either not available or do not facilitate large-scale predic-
tion. FoldingRaCe uses relative solvent accessibility, secondary structural information, and
position in the sequence as features. It constructs sub-models by multiple linear regression
to predict the folding rate change. We compared the performance of our tool to that of Fold-
ing RaCe on the blind test set. PON-Fold has better performance according to all metrics
(Table 6). For example, the Pearson correlation coefficient is better by 16 percentage points.
The error measures, MAE and MSE, are substantially better for PON-Fold, both being well
under 1 s−1. In conclusion, PON-Fold has substantially better performance. It was trained
on 752 variants, whereas the FoldingRace is based on 790 variants. Since the numbers of
cases are almost identical for the two methods, the differences in the performance are due
to a better representation of the features relevant to the folding rate in PON-Fold.

Table 6. Comparison of the prediction performance for PON-Fold and Folding RaCe.

PON-Fold Folding RaCe

PCC 0.330 0.170
MAE 0.672 0.952
MSE 0.817 1.632
R2 −0.021 −1.040

Figure 4 shows the distribution of the true and predicted values for PON-Fold and
Folding RaCe. The region for a 95% confidence interval is substantially narrower for our
method and is indicated by the error measures. The range of distribution is very narrow
in the case of PON-Fold, which is indicative of good performance. There is still room for
improvements, which could be achieved with the extended data set. This is important as
proteins are widely different and to obtain generalizable features larger numbers would be
necessary. Unfortunately, such data sets are not frequently determined.
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2.5. PON-Fold Application to Domain-Wide Analysis of Folding Effects

To test the applicability of PON-Fold, we predicted all possible 19 substitutions in all
positions in the Bruton tyrosine kinase (BTK) kinase domain, in which variations have been
extensively studied [23–26]. Figure 5A–C indicate the predicted folding effects in the three
categories. For comparison, there is a corresponding graph for predicted disease-causing
variants in 5G. These predictions were obtained with PON-P2 [27], which, according to
various benchmarks, is a highly reliable tool. The structures were visualized with UCSF
Chimera [28].
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of these sites are affected by folding-rate-changing variations (Figure 5). When looking at 
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contain large numbers of variants that have no effect on folding. 

Figure 5D–F indicate differences in the predicted folding rate effects between two 
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structure 3k54 [31]. A substantial number of predictions are different between the two 
structures, in all three categories. The largest changes are seen in β-strands in the upper 
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Figure 5. Predicted folding effects indicated on BTK kinase domain in closed (PDB code 3gen) and
open (3k54) structures. The range of (A) folding decreasing, (B) no effect, and (C) folding increasing
variants are color-coded. The scales below the structures show the numbers of each predicted effect
due to the variations. The differences in the numbers of (D) folding decreasing, (E) no effect, and
(F) folding increasing variants between the open and closed conformations. The scales below the
structures show the differences in numbers of each predicted effect due to the variations, closed
enzyme vs. open enzyme. (G) Variants predicted to cause disease, X-linked agammaglobulinemia,
in BTK kinase domain (3gen). Predictions were made with PON-P2 program. The scale below the
structure shows the number of predicted pathogenic variants in each position. Inhibitor ibrutinib
is shown in cyan. (H) Superimposition of the closed (3gen, in gray) and open (3k54, cyan) shows
differences in the location of the upper domain. The structures were superimposed based on the
lower lobe backbone atoms.

Protein kinases are dynamic and undergo a substantial structural alteration when
moving from open conformation to closed [29]. The upper lobe of the domain twists around
a linker region (Figure 5G). The structures were superimposed based on the backbone atoms
in the lower lobes and show almost identical positions. There are large changes in the
upper domain, mainly due to the rigid body twist around the linker.

The large numbers of variations in BTK are predicted to be pathogenic [24,30]. Many
of these sites are affected by folding-rate-changing variations (Figure 5). When looking at
positions with no or just a few pathogenic variations, e.g., in certain loops, many of them
contain large numbers of variants that have no effect on folding.

Figure 5D–F indicate differences in the predicted folding rate effects between two BTK
conformations: the closed structure represented by PDB entry 3gen [31] and open structure
3k54 [31]. A substantial number of predictions are different between the two structures, in
all three categories. The largest changes are seen in β-strands in the upper lobe and, e.g., in
the loops and ends of secondary structural elements in the lower lobe.
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The two lobes are connected by a single linker region, residues 476–479 (Figure 5H).
Interestingly, in three out of the four positions, there are no folding-decreasing variants and
many folding-increasing variants (Figure 5A,C). Many of the variants in these positions are
predicted to be disease-causing (Figure 5H).

The other example is for holo (1awb) and apo (2 hhm [32]) conformations of inositol
monophosphatase. Although the structures are rather similar, only some minor differences
are seen in the superimposed structures in Figure 6D. There are still many differences in the
predicted folding rates, as shown in Figure 6A–C. This apparently indicates that the context
of the position has a substantial contribution to the prediction. The major differences in the
folding rates are within secondary structural elements and residues involved in binding.
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Figure 6. Comparison of the effect of different conformations on folding rate predictions for apo
and holo forms of myo-inositol monophosphatase. The predictions were based on holo enzyme
structure (1awb) and apo form (2 hhm) [32]. Differences in the predicted (A) folding decreasing,
(B) no effect, and (C) folding increasing variants, holo form vs. apo form. (D) Superimposition of the
holo (gray) and apo (cyan) forms of the enzyme. Ca2+ ions are in green, Cl− in cyan, and D-myo-
inositol-1-phosphate in yellow. The scales below the structures show the differences in numbers of
each predicted effect due to the variations, holo enzyme vs. apo enzyme.

Based on the predictions of different conformations of the same protein indicates that
the choice of the used structure has to be made carefully. Biologically, the most relevant
structure will likely give the best starting point. These kinds of effects likely affect all the
folding rate predictions, whether entire proteins or variants. Until now, no attention has
been paid to the conformations.

2.6. PON-Fold Web Application

PON-Fold is freely available as a web application at http://structure.bmc.lu.se (ac-
cessed on 11 August 2023) and at https://www.yanglab-mi.org.cn/PON-FOLD (accessed
on 11 August 2023). The program has a user-friendly web interface that accepts variations
in protein sequence as amino acid substitutions. Batch submission including all variants
and proteins of interest is accepted. PON-Fold provides a complete report that is sent to
the user by email when ready.

3. Conclusions

To our knowledge, the first ML-based predictor was developed for protein folding
rate changes upon single amino acid substitutions. One method was developed for regres-
sion. The classifier method groups the variants into three categories: those increasing or
decreasing the folding rate and those having no effect. In comparison to a previous tool,
the method showed superior performance. Users need to pay attention to the choice of
three-dimensional structure if several structures are available. The freely available method
is suitable for large-scale analysis of variants, as demonstrated by protein-wide variation
studies. Once more experimental variation data become available, it will be relatively easy
to retrain the method.

http://structure.bmc.lu.se
https://www.yanglab-mi.org.cn/PON-FOLD
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4. Materials and Methods
4.1. Data Sets

We collected a set of 952 substitution variants (D952) in 29 proteins. The data were
used for previous predictors [10,33], were from a large scale experimental study [7], or
the literature. The folding rates of protein variants were determined in in vitro folding
experiments. The values range from 10−3 s−1 to 105 s−1. For a protein variant, the folding
rate change ∆ ln kf is defined as follows:

∆ ln k f = ln k f
var − ln k f

wt (1)

where ln kf
var and ln kf

wt are natural logarithms of protein folding rates for protein variants and
wild-type proteins, respectively. The ∆ ln kf values were in the range from−5.23 s−1 to 2.61 s−1.

A threshold of ±0.15 was used for ∆ ln kf to classify the variants into three categories:
folding increasing, decreasing, and no effect. Thereby, we could train predictors both for
regression and for 3-class classification.

D952 was divided into two parts: a blind test set and a training set. All variants
in the same position and in the same protein were kept together, either in the training
or test data. The data sets are available on predictor websites and in VariBench [34] at
http://structure.bmc.lu.se/VariBench/folding.php (accessed on 11 August 2023).

4.2. Features

A total of 1161 biological features of 6 types were collected or calculated, including
688 amino acid features, 3 conservation features, 436 variation-type features, 25 neighbor-
hood features, 1 protein-type feature, and 8 structural features.

Amino acid features were obtained based on physical and chemical propensities of
amino acids and amino acid pairs obtained from AAindex [35]. Indices with missing
values were excluded. Finally, 553 amino acid indices and 135 amino acid pair indices
were retained.

The conservation score was obtained with ConSurf [36]. It estimates the evolution-
ary conservation of each position in a protein sequence. We used DCA [37] to identify
intramolecular coevolutionary sites.

Variation type features were in a 20 ∗ 20 matrix, where one dimension was denoted as
the original residue and the other as the variant residue. Another matrix of size 6 ∗ 6 was
used to group amino acid changes based on physicochemical properties [38].

For neighborhood features, we used a sequence window of 23 positions centered
on the variant site. A 20-dimensional vector of counts of neighborhood residue types
within a sequence window was determined. An additional 5 features, including NonPo-
larAA, PolarAA, ChargedAA, PosAA, and NegAA, indicated the numbers of nonpolar,
polar, charged, positively charged, and negatively charged neighborhood residues within
sequence window [39], respectively.

The protein-type feature refers to the relative position of a variant, obtained by dividing
the length of the protein sequence by the variation position.

Protein structural features. The secondary structure classification for the variant site
was obtained with Stride [40]. The seven types of secondary structural elements were
expressed in a 7-dimensional vector. Accessible surface area (ASA) is the surface area of
residues accessible to solvent. We used relative ASA (RSA) to describe the extent to which
a residue is exposed to the solvent calculated as follows:

RSA = ASA/maxASA (2)

where ASA was obtained by Naccess, and the values for maxASA were from [41].

http://structure.bmc.lu.se/VariBench/folding.php


Int. J. Mol. Sci. 2023, 24, 13023 11 of 14

4.3. Training Machine Learning Predictor

LightGBM [42,43] framework facilitates the implementation of gradient boosting
decision tree algorithm. It uses decision trees as the base learners and integrates multiple
weak predictors into a strong one. The weights among the base learners are not equal.
A new base learner is obtained by focusing on the cases that the existing base learners
misclassified. LightGBM supports efficient parallel training, can quickly process massive
data, and has the advantages of fast training speed, low memory consumption, and high
accuracy. We used LightGBM to train the predictor.

For 3-class classification, the numbers of the three types of variants in the training
data set were unbalanced. To make full use of all the variants while performing balanced
processing, we built multiple sub-classifiers using multiple under-sampling and voting
procedures. First, five groups of train-test subsets were obtained through five-fold cross-
division. Second, 80 variants of each of the three categories were selected from the training
subset and used to train a sub-classifier. We repeated the procedure 10 times to obtain
10 sub-classifiers and made predictions on the test subset. We used LightGBM also for the
regression predictor.

4.4. Feature Selection

During training the tree model, we scored the importance of features by the number
of times a feature was used or by the total information gain it brought.

For 3-class classification, 50 groups of train-test subsets were obtained by applying
5-fold cross-division 10 times. For each train-test subset, we first balanced the training
set, then trained a model using the LightGBM algorithm and evaluated its performance
using the test set. We multiplied each set of feature importance scores by the corresponding
accuracy and summed them together. In each step, the feature that had the highest score
was selected. The 10-time 5-fold cross-validation with the feature subset was used to
estimate the accuracy of predictions.

For the development of the regression predictor, we used the same feature selection
process without balancing the training set. Pearson correlation coefficient was used as the
weighted coefficient for feature importance scoring and selection.

4.5. Performance Assessment

For 3-class classification, when three categories of variants are evenly distributed, the
random prediction probability is 0.33. The predictions can be divided into four conditions
based on the true class and predicted class of each sample: true positive (TP), true negative
(TN), false positive (FP), and false negative (FN) classes. Five metrics were used to eval-
uate the performance of the model, including three one-class metrics: specificity (SPEC),
sensitivity (SENS), and F1 score (F1). Three comprehensive metric calculated based on all
the data items included macro-F1, accuracy (ACC), and generalized squared correlation
(GC2) [44]. The evaluation metrics were computed by using the following equations:

SPEC =
TP

TP + FP
(3)

SENS =
TP

TP + FN
(4)

F1 =
2xSPEC× SENS

SPEC + SENS
(5)

Macro− F1 =
∑2

i=0 F1i

K
(6)
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where F1i is F1 score for class i and K is the number of classes.

ACC =
TP + TN

TP + TN + FP + FN
(7)

GC2 =
∑ij

(zij−eij)
2

eij

N(K− 1)
(8)

where K is the number of classes and N is the number of total inputs. Where zij represents
the number of inputs of class i to class j, xi = ∑j zij represents the number of inputs associated
with class i and yi = ∑j zji represents the number of inputs predicted for class i. The expected

number of items in cell i,j in the confusion matrix can be defined as eij =
xi×yj

N .
For regression, four metrics were used to evaluate the performance of the model,

including Pearson correlation coefficient (PCC), mean absolute error (MAE), mean squared
error (MSE), and R2. The metrics were computed as follows:

PCC =
cov(X, Y)

σXσY
=

(E[(X− µX)(Y− µY)])

σXσY
, (9)

where cov is the covariance, σX is the standard deviation of X, σY is the standard deviation
of Y, µX is the mean of X, µY is the mean of Y, and E is the expectation.

MAE =
∑N

i=1
|yi − xi|
N

, (10)

where yi is the prediction and xi is the true value.

MSE =
∑N

i=1
(yi − xi)

2

N
(11)

Here, yi is the prediction and xi is the true value.

R2 = 1− SSres

SStot
= 1−∑i

(yi − xi)
2

∑i
(yi − y)2 (12)

where SStot is the total sum of squares, SSres is the sum of squares of residuals, yi is the true
value, and xi is the prediction.
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