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Abstract: Patients with obstructive sleep apnea (OSA) have a heightened risk of developing cardiovas-
cular diseases, namely hypertension. While seminal evidence indicates a causal role for sympathetic
nerve activity in the hypertensive phenotype commonly observed in patients with OSA, no studies
have investigated potential sex differences in the sympathetic regulation of blood pressure in this
population. Supporting this exploration are large-scale observational data, as well as controlled
interventional studies in healthy adults, indicating that sleep disruption increases blood pressure to
a greater extent in females relative to males. Furthermore, females with severe OSA demonstrate a
more pronounced hypoxic burden (i.e., disease severity) during rapid eye movement sleep when
sympathetic nerve activity is greatest. These findings would suggest that females are at greater risk
for the hemodynamic consequences of OSA and related sleep disruption. Accordingly, the purpose of
this review is three-fold: (1) to review the literature linking sympathetic nerve activity to hypertension
in OSA, (2) to highlight recent experimental data supporting the hypothesis of sex differences in
the regulation of sympathetic nerve activity in OSA, and (3) to discuss the potential sex differences
in peripheral adrenergic signaling that may contribute to, or offset, cardiovascular risk in patients
with OSA.
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1. Introduction

In 2022, the American Heart Association released an advisory document detailing
eight domains of everyday life, titled Life’s Essential 8, which should be optimized
to reduce cardiovascular risk [1]. This report built upon the prior iteration, Life’s
Simple 7 [2], to include sleep as a key regulator of cardiovascular health. In this
light, blood pressure is among the most widely studied markers of cardiovascular
risk and is modulated by sleep [3]. That is, both habitual short sleep duration and
experimental sleep restriction are associated with increased blood pressure in otherwise
healthy individuals [3]. Of the various mechanisms that modulate blood pressure, the
sympathetic nervous system is particularly influential in the context of sleep-related
changes. Experimental sleep restriction [4] and studies using total sleep deprivation [5]
report robust activation of the sympathetic nervous system. Interestingly, studies at
the population level and smaller controlled trials indicate the detrimental effects of
short sleep, as well as intermittent sleep disruption, are more pronounced in females
relative to males [6,7].

In addition to healthy adults, increased sympathetic nerve activity is also reported
in many sleep pathologies [8], with the most studied sleep condition being obstructive
sleep apnea (OSA). Characterized by intermittent reductions in airflow with resulting
hypercapnic hypoxemia during sleep, OSA is associated with both the development of
hypertension as well as tonic elevation of sympathetic nerve activity [9]. However, OSA
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is also considered male-dominant [10], and, to date, no study has examined potential
sex differences in the regulation of sympathetic nerve activity in this population. Thus,
the purpose of this article is to review the literature on sex differences in cardiovascular
risk attributable to poor sleep, sympathetic reflex regulation of arterial blood pressure,
and peripheral regulatory mechanisms of sympathetic transduction to the vasculature.
We hope this article will serve as an impetus for the exploration of sex differences in
sleep-induced changes in neurovascular physiology.

2. Sex Differences in Neurovascular Control of Blood Pressure

Young females are protected against developing hypertension and other cardiovascular
diseases relative to young males. With aging, this risk increases in both sexes; however,
the rate of rise in cardiovascular risk is greater in females than males. Specifically, by
the approximate age of menopause, the incidence of hypertension becomes similar to, or
exceeds, that of males of the same age [11,12]. There are fundamental sex differences in
blood pressure regulation that underly these observations. Young males control blood
pressure through a reciprocal relationship between cardiac output and sympathetic control
of total peripheral resistance. For instance, males with high resting sympathetic activity
will have low cardiac output and vice versa to maintain blood pressure [13]. As this
reciprocal relationship is not seen in young females [13], it is likely that sex differences exist
in peripheral adrenergic signaling.

2.1. α-Adrenergic Signaling

Several lines of evidence demonstrate that young females have blunted periph-
eral α-adrenergic-mediated vasoconstriction relative to young males (Figure 1). First,
young females have less vasoconstriction than young males in response to intra-arterial
infusions of the neurotransmitter norepinephrine [14]. In response to more selective
alpha-adrenergic agonists, specifically phenylephrine (primarily α1) and clonidine
(primarily α2), males demonstrated vasoconstrictor responses, whereas females did
not have significant vasoconstriction [15]. Second, studies using pharmacological
blockade of the autonomic ganglia with trimethaphan demonstrate smaller decreases
in the blood pressure of young females relative to young males [16]. This is indica-
tive that young females have less autonomic support of blood pressure than young
males. In males, an inverse relationship between sympathetic activity and the change
in blood pressure during ganglionic blockade was observed, whereby males with the
greatest sympathetic activity also had the largest reductions in blood pressure [17].
Interestingly, this relationship between changes in sympathetic nerve activity and
blood pressure during ganglionic blockade was not present in females [16], alluding to
the presence of a buffer between sympathetic activity and peripheral vasoconstriction.
This buffer was confirmed in subsequent work describing sex differences in neurovas-
cular transduction (i.e., the magnitude of change in blood pressure for a given burst
of sympathetic activity), where young females had less neurovascular transduction
relative to young males [18] (Figure 1). The root cause of the sex differences in neu-
rovascular transduction remains unclear but almost certainly involves α-adrenergic
signaling (e.g., neurotransmitter release or reuptake; receptor density or sensitivity).
In addition to the sex differences in peripheral α-adrenergic signaling described above,
sex differences also exist in β-adrenergic signaling.
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Figure 1. Neurograms of sympathetic nerve activity recorded via microneurography under resting 
conditions in humans. Sympathetic nerve activity tends to be lower in young females relative to 
young males [13]; however, with aging, this pattern is reversed [19,20]. While patients with obstruc-
tive sleep apnea (OSA) have increased sympathetic nerve activity [21], there have been no studies 
examining potential sex differences in humans. Based upon studies indicating that females experi-
ence more deleterious effects on sympathetic control of blood pressure following sleep disruption 
[5,22], and the pattern of oxygen desaturation in females with OSA [23], we hypothesize that females 
with OSA have greater sympathetic nerve activity than males with OSA (theoretical sex differences). 
Transduction summarizes the vasoconstrictive response to a given burst of sympathetic nerve ac-
tivity; upward arrows indicate more vasoconstriction, whereas downward arrows are indicative of 
less vasoconstriction. Young females have less neurovascular transduction as compared to young 
males, although this dissipates with aging, whereby older females have a more pronounced vaso-
constrictive response to sympathetic nerve activity relative to older males [18]. As blood pressure 
elevations in OSA are attributable to increased sympathetic nerve activity [24], and we hypothesize 
that sympathetic nerve activity is greater in females with OSA, we anticipate that neurovascular 
transduction is increased in females with OSA relative to males with OSA. α-adrenergic constriction 
and β-adrenergic dilation refer to changes in arterial diameter in response to neurotransmitters, 
such as norepinephrine, binding to these adrenergic receptors. Young females demonstrate less vas-
oconstriction in response to intra-arterial infusion of α-adrenergic-specific pharmacological agents 
(e.g., phenylephrine, clonidine) relative to males [15]. Concomitantly, greater β-adrenergic-medi-
ated vasodilation is observed in young females relative to young males [18]. However, with advanc-
ing age, β-adrenergic-mediated dilation is less pronounced in females but not males [25,26]. To date, 
no study has directly measured arterial diameter during intra-arterial drug infusions in patients 
with OSA. Based on the literature, we anticipate that α-adrenergic-mediated vasoconstriction is sim-
ilar between females and males with OSA, but that β-adrenergic-mediated vasodilation is selectively 
attenuated in females with OSA. 

2.2. β-Adrenergic Signaling 
Multiple studies have demonstrated that augmented β-adrenergic signaling plays an 

important role in regulating arterial blood pressure in young females. As mentioned 
above, there is no relationship between sympathetic nerve activity and total peripheral 
resistance in young females. However, a significant relationship emerges under β-adren-
ergic receptor blockade via propranolol such that females have a similar relationship be-
tween these variables as males [13]. These data suggest that β-adrenergic receptor-medi-
ated vasodilation offsets the relationship between sympathetic activity and total periph-
eral resistance in young females but not in males (Figure 1). In addition, young females 
have very low vasoconstrictor responses during intra-arterial infusions of norepinephrine 
[14]. However, the vasoconstrictor responses to norepinephrine in young females are sig-
nificantly greater during β-adrenergic receptor antagonism with propranolol, such that 
young females have similar vasoconstrictor responses as young males [14]. Furthermore, 
β-adrenergic blockade in young females results in a significant increase in the vascular 
response to sympathetic nerve activity (neurovascular transduction) [18]. Finally, there 

Figure 1. Neurograms of sympathetic nerve activity recorded via microneurography under resting
conditions in humans. Sympathetic nerve activity tends to be lower in young females relative
to young males [13]; however, with aging, this pattern is reversed [19,20]. While patients with
obstructive sleep apnea (OSA) have increased sympathetic nerve activity [21], there have been
no studies examining potential sex differences in humans. Based upon studies indicating that
females experience more deleterious effects on sympathetic control of blood pressure following
sleep disruption [5,22], and the pattern of oxygen desaturation in females with OSA [23], we
hypothesize that females with OSA have greater sympathetic nerve activity than males with
OSA (theoretical sex differences). Transduction summarizes the vasoconstrictive response to
a given burst of sympathetic nerve activity; upward arrows indicate more vasoconstriction,
whereas downward arrows are indicative of less vasoconstriction. Young females have less
neurovascular transduction as compared to young males, although this dissipates with aging,
whereby older females have a more pronounced vasoconstrictive response to sympathetic nerve
activity relative to older males [18]. As blood pressure elevations in OSA are attributable to
increased sympathetic nerve activity [24], and we hypothesize that sympathetic nerve activity is
greater in females with OSA, we anticipate that neurovascular transduction is increased in females
with OSA relative to males with OSA. α-adrenergic constriction and β-adrenergic dilation refer to
changes in arterial diameter in response to neurotransmitters, such as norepinephrine, binding to
these adrenergic receptors. Young females demonstrate less vasoconstriction in response to intra-
arterial infusion of α-adrenergic-specific pharmacological agents (e.g., phenylephrine, clonidine)
relative to males [15]. Concomitantly, greater β-adrenergic-mediated vasodilation is observed in
young females relative to young males [18]. However, with advancing age, β-adrenergic-mediated
dilation is less pronounced in females but not males [25,26]. To date, no study has directly
measured arterial diameter during intra-arterial drug infusions in patients with OSA. Based on the
literature, we anticipate that α-adrenergic-mediated vasoconstriction is similar between females
and males with OSA, but that β-adrenergic-mediated vasodilation is selectively attenuated in
females with OSA.

2.2. β-Adrenergic Signaling

Multiple studies have demonstrated that augmented β-adrenergic signaling plays
an important role in regulating arterial blood pressure in young females. As mentioned
above, there is no relationship between sympathetic nerve activity and total periph-
eral resistance in young females. However, a significant relationship emerges under
β-adrenergic receptor blockade via propranolol such that females have a similar rela-
tionship between these variables as males [13]. These data suggest that β-adrenergic
receptor-mediated vasodilation offsets the relationship between sympathetic activity
and total peripheral resistance in young females but not in males (Figure 1). In addition,
young females have very low vasoconstrictor responses during intra-arterial infusions
of norepinephrine [14]. However, the vasoconstrictor responses to norepinephrine in
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young females are significantly greater during β-adrenergic receptor antagonism with
propranolol, such that young females have similar vasoconstrictor responses as young
males [14]. Furthermore, β-adrenergic blockade in young females results in a signif-
icant increase in the vascular response to sympathetic nerve activity (neurovascular
transduction) [18]. Finally, there are direct data reporting augmented vasodilation dur-
ing intra-arterial infusion of β-adrenergic agonists in young females relative to young
males [27]. Together, these studies highlight the importance of β-adrenergic receptor-
mediated vasodilation in regulating the blood pressure of young females by offsetting
α-adrenergic receptor-mediated vasoconstriction in the peripheral vasculature. Practi-
cal applications of the relationships between peripheral adrenergic receptors in young
females include the heightened fainting prevalence in young females and lower blood
pressure in young females compared to age-matched young males; importantly, these
effects persist throughout life and continue through menopause [28].

2.3. Changes with Aging

Several changes in blood pressure regulation contribute to the age-associated rise in
blood pressure, hypertension, and cardiovascular risk. Direct measurements of sympa-
thetic nerve activity demonstrate increases with age in both males and females [19,20]
(Figure 1). Further, there is an age-related increase in the autonomic support of blood
pressure that is driven by increased sympathetic and decreased parasympathetic nerve
activity [29–31]. This contributes to the “double hit” to blood pressure regulation in
females around the age of menopause, where there is an accelerated increase in blood
pressure and risk of hypertension. This double hit is characterized by (1) the increase
in sympathetic nerve activity and (2) a reduction in β-adrenergic receptor-mediated
vasodilation. During infusion of non-selective β-adrenergic agonists, as well as β2-
adrenergic-specific agonists, postmenopausal females demonstrate blunted vasodilatory
responses relative to young, premenopausal females [25,26]. Unlike young females,
postmenopausal females exhibit significant vasoconstrictor responses to norepinephrine,
which is not altered by co-infusion with the β-adrenergic antagonist propranolol [14].
These data suggest that β-adrenergic receptor-mediated vasodilation no longer offsets α-
adrenergic receptor-mediated vasoconstriction in postmenopausal females. Finally, there
is also evidence that the blood pressure response to a given level of sympathetic nerve
activity (neurovascular transduction) changes with aging [18]. In males, neurovascular
transduction decreases with age such that age-associated increases in sympathetic nerve
activity are buffered, as evidenced by a lower vasoconstrictor response. Conversely,
in females, neurovascular transduction increases with age, manifesting as an exagger-
ated vascular response to sympathetic activity. Further, this increase in neurovascular
transduction is not improved with β-adrenergic blockade with propranolol, suggest-
ing that β-adrenergic-mediated vasodilation no longer offsets α-adrenergic-mediated
vasoconstriction in postmenopausal females [18].

In addition to the increased sympathetic activity and changes in peripheral sig-
nalling that are associated with aging, changes in the firing patterns of sympathetic
neurons have also been described. Historically, muscle sympathetic nerve activity has
been quantified in vivo as multi-unit bursts of an integrated signal. Recent work from
Shoemaker and colleagues has allowed the study of post-ganglionic sympathetic nerve
firing in humans. This is methodologically possible by recording sympathetic nerve
activity at higher sampling frequencies (10,000 Hz) and using post-processing software
to separate a burst of sympathetic activity into individual action potentials [32,33]. Un-
der baseline conditions, older adults demonstrate more action potentials per burst of
sympathetic activity than young adults [34]. In response to strong sympathetic stimuli
(maximal voluntary apnea), older individuals have a blunted rise in the firing probability
of previously active action potentials (analogous to blunted rate-coding) coupled with
attenuated recruitment of previously silent larger and faster conducting sympathetic
action potential recruitment (analogous to blunted population-coding) relative to young
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participants [34]. Although sex differences were not investigated in their study, they
are likely to exist, as work in young individuals has provided evidence that sex and the
menstrual cycle impact sympathetic action potential recruitment patterns in a manner
that is mediated, in part, by gonadal hormones [35].

In summary, there is a double hit to neurovascular physiology that potentiates the
risk of hypertension in females around the age of menopause that is not observed in
males. This double hit is characterized by both an increase in sympathetic activity and
decreased β-adrenergic-mediated vasodilation that function, in tandem, to increase
blood pressure around this age. Importantly, the role of sympathetic neural discharge
patterns in the onset of these age-by-sex differences in blood pressure control is in-
completely understood. Furthermore, despite clear sex differences in the underlying
neurovascular physiology and established changes with aging, few studies have evalu-
ated potential sex differences in neurovascular physiology following acute or chronic
sleep disruption.

3. Sleep Disruption and Cardiovascular Risk: Sex Differences
3.1. Epidemiological Data

Sleep is crucial to maintaining systemic homeostatic balance and is particularly
impactful on cardiovascular regulation [1]. The prevalence of short sleep duration (i.e.,
total sleep time less than six or seven hours) was nearly 10% throughout the late 20th
century and has increased during the early 21st century, when nearly one-third of the
United States’ population habitually obtains short sleep [36,37]. Short sleep duration
can originate from a self-imposed short sleep window or from a sleep pathology such as
insomnia or OSA, both of which are characterized by short and/or fragmented sleep [38].
Nearly 20 years ago, Gottlieb et al. [39] provided the first epidemiological evidence
connecting short sleep duration to the prevalence of hypertension. Objective short sleep
duration in sleep disorders, such as insomnia [40,41] and OSA [42,43], are also associated
with increased risk for developing conditions such as hypertension.

Using epidemiological modeling and the Whitehall II study cohort, Cappuccio
et al. [6] established a sex-specific relationship between chronic short sleep duration and
hypertension. The relative risk of both prevalent and incident hypertension was 56%
in females who habitually slept less than six hours, which increased to 94% in females
who regularly slept less than five hours per night; importantly, this relationship was
independent of age and not present in males. Data from the largest study sample to date
(over 700,000 individuals) corroborate this notion, whereby Grandner et al. [7] found
that the risk of hypertension associated with chronic short sleep duration is stronger
in females throughout the lifespan as compared to age-matched males. One of the
contributing mechanisms linking sleep disruption and the onset of hypertension, partic-
ularly with aging, is increased sympathetic nerve activity. Muscle sympathetic nerve
activity is lower in premenopausal females compared to age-matched males, although
this relationship is reversed in older age, as females exhibit a more robust increase in
muscle sympathetic nerve activity per decade of life compared to males [19]. This is
accompanied by the enhanced sympathetic support of blood pressure in postmenopausal
females [30], suggesting that sympathetic dysregulation may contribute to hypertension
risk more so in older females, coinciding with the peri/postmenopausal transition when
sleep disorders become more prevalent [30].

3.2. Experimental Studies on Sleep Disruption

At present, only total sleep deprivation paradigms have utilized microneurogra-
phy, the gold standard in vivo assessment of sympathetic nerve activity, and successfully
discerned sex-specific alterations in the sympathetic response to experimental sleep per-
turbations. Early total sleep deprivation studies employed 24 h of sleep deprivation as a
proof-of-concept model to delineate an acute increase in arterial blood pressure [30,44]. This
acute rise in blood pressure was accompanied by a baroreflex-mediated decrease in muscle
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sympathetic nerve activity [44,45], although these study samples were exclusively [44] or
predominantly [45] male. Carter et al. [5,22] employed a similar 24 h sleep deprivation
model in young and older adults (1:1 female-to-male ratio) to elucidate potential sex differ-
ences in the regulation of blood pressure by sympathetic nerve activity. In both young and
older adults, 24 h total sleep deprivation elicited an acute rise in blood pressure, consistent
with prior studies [44,45]; however, the response in sympathetic nerve activity diverged
between sexes. In young males, muscle sympathetic nerve activity was reduced following
total sleep deprivation, in support of prior work by Kato et al. [45] and Ogawa et al. [44]. In
contrast, young females exhibited a sympathetic predominance via baroreflex dysfunction
(i.e., a rise in blood pressure not accompanied by reduced sympathetic nerve activity) with
no differences observed in muscle sympathetic nerve activity between normal sleep and
total sleep deprivation conditions. Older males, who are at risk for hypertension and sleep
disorders, tended to exhibit a decrease in muscle sympathetic nerve activity despite a rise in
blood pressure following total sleep deprivation [5]. In comparison, older females exhibited
sympathoexcitation, suggesting that sympathetic dysregulation, perhaps secondary to
baroreflex dysfunction, may be a driving factor in short sleep-mediated hypertension in
postmenopausal females [5].

Other ecologically valid models of sleep disruption include partial sleep deprivation
(e.g., sleep stage-specific disruption) and sleep restriction (e.g., curtailed opportunity
to sleep). Sayk et al. [46] examined changes in next-morning sympathetic activity via
microneurography following a single night of slow wave sleep deprivation induced by
acoustic stimuli. In this study, slow wave sleep was targeted due to the known baroreflex
resetting that occurs during this stage [47,48]. Surprisingly, the morning-after muscle
sympathetic nerve activity and blood pressure regulation were not different between
normal sleep and partial sleep deprivation conditions; unfortunately, the study was
underpowered to discern sex differences. At present, Covassin et al. [4] remains the
only sleep restriction study with adequate statistical power to delineate alternations in
the sympathetic control of blood pressure using a randomized, crossover study design
consisting of a nine-day, four-hour sleep per night restriction model. Sleep restriction
elicited a sympathoexcitatory response indexed by increased plasma norepinephrine
in both males and females. Moreover, this sympathoexcitation was accompanied by
increased 24 h blood pressure selectively in females. To date, there have been studies
that have characterized alterations in sympathetic nerve activity following partial sleep
deprivation or sleep restriction.

Experimental models of total sleep deprivation, partial sleep deprivation, and sleep
restriction have consistently provided mechanistic evidence linking disrupted sleep to car-
diovascular risk vis a vis increasing blood pressure. More chronically, only Carter et al. [49]
has measured muscle sympathetic nerve activity in a female-dominant group of people
with insomnia compared to controls. Thus, it remains equivocal if sex differences in sympa-
thetic dysregulation with insomnia are present. Similarly, heightened sympathetic nerve
activity is well-established in patients with OSA, yet studies investigating sex differences
are presently absent from the literature. This is at odds with existing experimental sleep
curtailment paradigms showing potentiated risk in females, and future work is strongly
warranted in this area.

4. Obstructive Sleep Apnea

Obstructive sleep apnea is identified by recurrent complete (apnea) or partial
(hypopnea) airway collapses during sleep. The number of apneas and hypopneas
are summed, indexed per hour of sleep, and used to identify and then character-
ize the severity of OSA. Specifically, 5.0–14.9 events per hour indicates mild OSA,
whereas 15.0–29.9 events per hour is moderate OSA, and ≥30.0 events per hour is
severe OSA [50]. Clinically, OSA is associated with a precipitous increase in the risk of
stroke, coronary artery disease, and heart failure, with dysregulation of arterial blood
pressure being a significant contributor to these comorbid cardiovascular diseases [51].
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Indeed, approximately five-in-ten patients with OSA present to their initial diagnostic
sleep study with hypertension [52]. Similarly, OSA predicts future diagnosis of hy-
pertension independent of age, sex, body fat, and exercise habits [9]. In addition to
elevated blood pressure during waking hours, patients with OSA also have noctur-
nal hypertension [53] and impaired nocturnal blood pressure dipping [54], both of
which predict cardiovascular mortality [55,56]. Historically, OSA is male-dominant,
although this is deleterious to women’s health as it promotes their underreporting
to sleep clinics [55,56] and, ultimately, contributes to their underdiagnosis [57] and
undertreatment [58]. Further contributing to this discrepancy are sex differences in the
clinical phenotype and symptomology of females with OSA, which may inadvertently
lead healthcare practitioners to pursue a differential diagnosis away from OSA [59–61].
Nevertheless, some evidence suggests females with OSA are more predisposed to
develop hypertension than males [62], although this is inconsistently reported [63].
The notion that females with OSA could be at greater risk of hypertension than males
with OSA is not without merit. Indeed, females with severe OSA have more frequent
and more severe oxygen desaturations during the rapid eye movement stage of sleep
as compared to males with OSA [23]. It is important to note that sympathetic nerve
activity is greatest during rapid eye movement sleep [64]. Collectively, these studies
indicate that the pathophysiological burden of OSA in females may be concentrated in
the window of sleep when the sympathetic nervous system is most active, suggesting
they may have greater sympathetic dysregulation and a greater risk of hypertension
than males with OSA. While the contribution of hypertension to OSA-related cardio-
vascular disease is evident, there have been no studies to date that have investigated
potential sex differences in the sympathetic regulation of blood pressure in patients
with OSA. Here, we will provide a brief review of the sympathetic reflexes that con-
tribute to hypertension in OSA, along with evidence supporting a sexual dimorphism
in the sympathetic regulation of blood pressure in these patients. Then, we will dis-
cuss human studies that provide insight into potential mechanisms responsible for
neurovascular dysfunction in patients with OSA while highlighting evidence of sex
differences, when applicable.

4.1. Sympathetic Regulation of Blood Pressure in OSA

Several physiological systems regulate arterial blood pressure [65], although, in pa-
tients with OSA, the sympathetic nervous system is particularly influential. That is, patients
with OSA have approximately 50% more sympathetic nerve bursts per minute relative
to controls of similar age, sex, and body mass index (Figure 2) [24]. The baroreflex is
our principal autonomic regulator of arterial blood pressure and functions via mechani-
cal stretch receptors located in the carotid sinus (Figure 3). Activated during periods of
blood pressure elevation, the baroreflex inhibits sympathetic outflow and, conversely, func-
tions to elevate sympathetic nerve activity and peripheral resistance when blood pressure
falls. Indeed, when these pressure receptors are unloaded pharmacologically (via intra-
venous nitroprusside infusion), patients with OSA have a blunted rise in sympathetic nerve
activity indicative of a reduction in sympathetic baroreflex sensitivity [66]. Attenuated
high-frequency heart rate variability [67], along with greater blood pressure variability [68],
further indicate autonomic instability with OSA. While these data implicate baroreflex
dysfunction as a contributor to the hypertensive phenotype of OSA, other studies suggest
it is not the most significant autonomic determinant.
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Figure 2. Sample neurograms recorded from the peroneal nerve under resting conditions from n = 
3 patients with obstructive sleep apnea (OSA) as well as n = 3 individuals of similar age and body 
mass index who do not have OSA (Normal). These sample neurograms demonstrate a robust in-
crease in sympathetic nerve firing rate and burst amplitude in patients with OSA. Reprinted from 
Somers et al. J. Clin. Investig. 1995 with permission [21]. 

 
Figure 3. A schematic overview of the neural feedback mechanisms that regulate blood pressure. 
The sympathetic baroreflex operates as a negative feedback mechanism whereby increases in blood 
pressure (i.e., peripheral resistance) are sensed by stretch receptors located near the carotid bifurca-
tion. These baroreceptors activate the caudal ventrolateral medulla, which functionally restricts the 

Figure 2. Sample neurograms recorded from the peroneal nerve under resting conditions from n = 3 patients
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have OSA (Normal). These sample neurograms demonstrate a robust increase in sympathetic nerve firing rate
and burst amplitude in patients with OSA. Reprinted from Somers et al. J. Clin. Investig. 1995 with permission [21].
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Figure 3. A schematic overview of the neural feedback mechanisms that regulate blood pressure.
The sympathetic baroreflex operates as a negative feedback mechanism whereby increases in blood
pressure (i.e., peripheral resistance) are sensed by stretch receptors located near the carotid bifurcation.
These baroreceptors activate the caudal ventrolateral medulla, which functionally restricts the rostral
ventrolateral medulla (RVLM), manifesting as attenuated sympathetic nerve activity [69]. Conversely,
the sympathetic baroreflex increases sympathetic nerve activity, elevating peripheral resistance when
arterial blood pressure declines. The peripheral chemoreflex is initiated when arterial PO2 falls as
sensed by type 1 glomus cells in the carotid bodies, which, through the carotid sinus nerve, synapse
in the RVLM to increase sympathetic nerve activity [70]. This increase in sympathetic nerve activity
elevates arterial blood pressure via the binding of neurotransmitters to peripheral adrenergic receptors,
functionally offsetting tissue-level hypoxic vasodilation, which preserves end-organ perfusion.
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Oxygen-sensing chemoreceptors located in the carotid bifurcation and aortic arch
principally respond to falls in PaO2, reflexively increasing ventilation and sympathetic
nerve activity. In humans, carotid chemoreceptors are the dominant oxygen sensors, as
evidenced by the physiological responses to hypoxia being nearly abolished following
surgical removal of the carotid bodies [71,72]. Seminal data from Narkiewicz et al. [73]
illustrated that the sympathetic response to chemoreflex activation, measured through an
end-expiratory apnea (to inhibit pulmonary afferent suppression of sympathetic nerve
activity) following inspiratory hypoxia, is potentiated in patients with OSA as compared
to controls. In a succeeding study, the investigators found that peripheral chemoreflex
inhibition (inspiratory hyperoxia) reduced sympathetic activity by 17% and mean arterial
pressure by 4 mmHg exclusively in patients with OSA, thus suggesting that tonic chemore-
flex activation accounts for a portion of the increased basal sympathetic tone observed with
OSA [24]. However, the physiological responses to central chemoreflex stimulation (inspi-
ratory hypercapnia) and a cold pressor test (total sympathoexcitatory arch) are comparable
between patients with OSA and controls [73]. Collectively, these data indicate the nocturnal
intermittent hypoxemia induced by cyclical changes in airway patency precipitates the
hypertensive phenotype typified in OSA via increasing sympathetic nerve activity. This
notion has sparked interest in exploring the neurophysiological effects of acute intermittent
hypoxia during waking hours in people with and without sleep-disordered breathing.

4.2. Intermittent Hypoxia Studies

For more than twenty years, intermittent hypoxia protocols have been used in healthy
humans to mimic OSA [74] despite it being an imperfect replication of the pathophysiol-
ogy [75]. Several studies have explored the cardiopulmonary responses to intermittent
hypoxia as reviewed elsewhere [76]; however, far fewer have examined the effects of
intermittent hypoxia on sympathetic nerve activity. It is important to note that the ventila-
tory and sympathetic responses to chemoreflex activation are differentially regulated [77],
whereby changes in minute ventilation during hypoxia should not be interpreted as con-
gruent with sympathetic nerve activity. Cutler et al. [78] conducted the earliest of these
studies, finding that 20 min of intermittent hypoxia sensitizes the peripheral chemorecep-
tors for three hours following the final bout of hypoxia. A recent series of experiments
from the Limberg group has furthered our understanding of the neurophysiological effects
of intermittent hypoxia. For instance, Ott et al. [79] reported that the increase in sympa-
thetic nerve activity following 30 min of intermittent hypoxia is a function of both greater
intra-sympathetic burst action potential firing in addition to recruitment of more robust
inter-burst action potentials. Two follow-up studies investigated the sex-specific effects of
intermittent hypoxia on sympathetic activity. Principally, 30 min of intermittent hypoxia
increases sympathetic nerve activity similarly in young, healthy males (∆7.2 ± 1.8 bursts/
100 heartbeats) and females (∆5.5 ± 2.2 bursts/100 heartbeats), while blood pressure in-
creases in males but decreases in females [80]. This novel finding suggests that young
females may be resilient against the deleterious effects of intermittent hypoxia. Preclinical
experiments support this notion, whereby the hypertensive effects of intermittent hypoxia
were more pronounced in ovariectomized rodents relative to females that retained their
ovaries [81]. A similar study illustrated that intermittent hypoxia sensitizes lung vagal C
fibers to a greater extent in ovariectomized rats relative to those with intact ovaries and that
this effect was offset with supplemental 17β-estradiol [82]. While the clinical implications
of these findings are not immediately apparent, these data clearly indicate that intermittent
hypoxia alters sympathetic discharge patterns differently between sexes and that female
sex hormones appear to offset the neurophysiological effects of intermittent hypoxia.

In contrast to these observations, human and preclinical data purport intermittent
hypoxia may yield beneficial effects on vascular function. For instance, Iwamoto et al. [83]
found that 50 min of intermittent hypoxia enhanced the endothelial function of the internal
carotid artery by 33% in healthy young adults. A succeeding study reported the same
intermittent hypoxia protocol partially offset the attenuation in brachial artery endothelial
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function associated with acute physical inactivity [84]. Fifteen days of intermittent hypoxia
(~45 min per day) reduced systolic blood pressure by nearly 11 mmHg in patients with
hypertension and OSA who were being treated with positive airway pressure therapy [85].
Data supporting a mechanism for this observation come from in vitro experiments that
suggest intermittent hypoxia may blunt sympathetically induced transcriptional changes
associated with the development of atherosclerosis [86]. Differentially, intermittent hypoxia
was shown to induce autophagy via the AMPK/mTOR pathway, which may serve as a
protective mechanism for endothelial cells in patients with OSA [87]. Another potential
mechanism for the beneficial effects of intermittent hypoxia could be that the cyclical
fluctuations in shear rate during intermittent hypoxia act on arterial endothelial cells
to promote nitric oxide synthesis [83,88]. Indeed, elevating systemic nitric oxide levels
improves blood pressure and autonomic function in patients with OSA [89].

Taken together, intermittent hypoxia is leveraged in research studies to mimic OSA,
with increases in sympathetic nerve traffic being a frequently reported outcome. In recent
years, it has become apparent that intermittent hypoxia influences the regulation of sym-
pathetic nerve activity differently between males and females. Mild intermittent hypoxia
also exerts beneficial effects on vascular health, which may be a function of peripheral
vasodilation, as observed in skeletal muscle [90]. Although promising, caution should be
used when interpreting these data, as inter-study differences in the hypoxic stimulus, main-
tenance of PETCO2, the inclusion of females, and statistical power to detect sex differences
make clinical extrapolation challenging. Indeed, greater “doses” of intermittent hypoxia
(i.e., more severe hypoxemia, longer exposure) increase blood pressure while promoting
oxidative stress and inflammation [91]. To this point, it is important to denote if the inter-
mittent hypoxia protocol of interest is designed to mimic OSA or lower blood pressure, as
this delineation likely explains discrepant findings between experimental studies and the
etiology of OSA.

5. Future Directions

The body of evidence outlined above provides strong support for future investigations
of potential sex differences in sympathetic cardiovascular regulation in patients with
OSA. This series of studies should begin with exploring if peripheral chemoreflex and/or
baroreflex sensitivity differ between males and females with OSA. It should be noted that
recent data show young females have greater increases in sympathetic nerve activity during
hypercapnia (central chemoreflex activation) relative to young males [92]. Thus, it may be
that sex differences in neurovascular control in patients with OSA are a function of central
versus peripheral chemoreflex sensitivity. Further, sympathetic action potential firing
patterns may contribute to sex differences in sympathetic regulation in OSA. Therefore, it
would be relevant to explore sex differences in neurovascular transduction to determine
if a given burst of sympathetic nerve activity induces a greater vasoconstrictor response
in females with OSA. It will be important to control for age during these studies, as β-
adrenergic-mediated vasodilation is attenuated in older females [14], and the prevalence
of OSA increases with age [93]. Collectively, it is evident that much more work on sex
differences in patients with OSA is needed.

6. Summary

The deleterious effects of sleep disruption on cardiovascular risk, in the absence of
overt sleep disorders, are more pronounced in females relative to males. Obstructive sleep
apnea is among the most-studied chronic sleep disorders and is historically more prevalent
in males than females. This has fueled the underrepresentation of females with OSA in
studies, which subsequently limits our understanding of sex differences in the etiology
and pathophysiology of OSA. As much of the cardiovascular risk associated with OSA is
attributable to neurogenic hypertension, studies examining the neurovascular regulation of
blood pressure in females with OSA are of critical importance. We hope this review serves
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as an impetus for the wider inclusion of females in sleep-related clinical research and the
exploration of sex differences in the neurovascular responses to sleep disruption.
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