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Abstract: Previous transcriptome profiling studies showed significantly upregulated genes and
altered biological pathways in acute COVID-19. However, changes in the transcriptional signatures
during a defined time frame are not yet examined and described. The aims of this study included
viral metagenomics and evaluation of the total expression in time-matched and tissue-matched
paired COVID-19 samples with the analysis of the host splicing profile to reveal potential thera-
peutic targets. Prospective analysis of paired nasopharyngeal swabs (NPS) and blood (BL) samples
from 18 COVID-19 patients with acute and resolved infection performed using Kallisto, Suppa2,
Centrifuge, EdgeR, PantherDB, and L1000CDS2 tools. In NPS, we discovered 6 genes with changed
splicing and 40 differentially expressed genes (DEG) that yielded 88 altered pathways. Blood samples
yielded 15 alternatively spliced genes. Although the unpaired DEG analysis failed, pairing identified
78 genes and 242 altered pathways with meaningful clinical interpretation and new candidate drug
combinations with up to 65% overlap. Metagenomics analyses showed SARS-CoV-2 dominance
during and after the acute infection, with a significant reduction in NPS (0.008 vs. 0.002, p = 0.019).
Even though both NPS and BL give meaningful insights into expression changes, this is the first
demonstration of how the power of blood analysis is vastly maximized by pairing. The obtained
results essentially showed that pairing is a determinant between a failed and a comprehensive study.
Finally, the bioinformatics results prove to be a comprehensive tool for full-action insights, drug
development, and infectious disease research when designed properly.

Keywords: transcriptome; metagenomics; COVID-19; therapeutics; pairing; differential expression
(DEG); SARS-CoV-2; RNA

1. Introduction

During the current coronavirus disease-19 (COVID-19) pandemic, over 768 million
infected people were registered, of which even 6.9 million ended fatally, https://www.
who.int/ (accessed 18 June 2023). Accomplishing scientific achievements, such as pathogen
identification and vaccine synthesis, were priority goals due to the heavy burden on health
systems and the economy. Still, further efforts are necessary to understand the complex
interactions between the host and severe acute respiratory coronavirus 2 (SARS-CoV-2).
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Although COVID-19 apparently shares numerous clinical manifestations with other com-
mon respiratory viral infections, a significant peculiarity of SARS-CoV-2 infection has
been observed over time [1]. Firstly, many studies have proven that SARS-CoV-2 has
the capacity to infect different human cell types managing to successfully evade the host
immune response [2]. Key features of the innate immune functions disturbance include
unrecognizable viral replication, dysregulation of interferon response and/or signaling
pathways, exhaustion and reduction of lymphocytes, particularly CD4+ T, CD8+ T, and
natural killer (NK) cells, and finally, development of hyperinflammation and even cytokine
storm [3–6]. All listed and described features could lead to multiple-organ dysfunction
syndrome (MODS) and acute respiratory distress syndrome (ARDS), a major cause of death
in COVID-19 [7]. However, while the evolution of SARS-CoV-2 continuously leads to the
generation of new variants and subvariants, and the rate of infections is simultaneously
increasing, the spectrum of clinical manifestations and risk factors for adverse events are
also changing [8].

The integrity of the nasal microbiome and virome may also be disturbed by an ex-
ogenous infective stressor such as SARS-CoV-2, leading to upregulation of the host innate
immune system, activation of dormant pathogens, and establishment of microbial nasal
mucosal host gene patterns [3,9]. To date, knowledge about these interactions is lacking
not only in the field of COVID-19 but also in other infectious diseases. Due to limited
methodological possibilities of targeted sequencing on cultures, next-generation sequencing
(NGS)-based methods have opened up a wide range of possibilities for understanding meta-
transcriptomics. However, NGS still could not be widely used because of the complex and
time-consuming execution, cost prohibition, demanding quality and sample volume, and
difficulties in implementation to accurately and comprehensively describe the entire virome
and microbiome together with the host response [10]. Therefore, the optimization of new
methods and computational workflow to simultaneously characterize virome, microbiome,
and host genome directly from a variety of clinical samples is expanding [10–12].

As a primary site of infection pathogenesis, local nasal expression is more COVID-19-
dependent and specific. So far, transcriptome profiling studies have shown significantly
upregulated genes and biological pathways altered during acute infection, such as proin-
flammatory cytokines, chemokines, enzymes in neutrophil-mediated immunity, and several
IFN-stimulated genes [13–16]. However, data showing experimental validation, potential
diagnostic use, and detailed characterization of variations with age, sex, disease period,
and/or severity are generally scarce [17]. On the other hand, a systemic expression derived
from whole blood could be more relevant to reflect the virus-induced host immune system
imbalance. Thus, previous research conducted on blood samples from severe COVID-19
patients showed altered gene expression associated with inflammatory and hypercoagula-
bility pathways, as well as elevated neutrophil activity and expression of coagulation and
platelet function genes [18,19].

It could be observed that previous research has not yet examined and described
changes in the transcriptional signatures during a defined time frame. This, in particu-
lar, implies considering paired samples related to acute and resolved infection because
otherwise, the interpretation of human expression may vary [20]. Moving toward a more
comprehensive analysis of the host-viral relationship, it is of vital interest that the aims
of this study include evaluating the expression in paired COVID-19 samples across differ-
ent relevant tissues. The benefit of pairing the samples and eliminating inter-individual
variation is quantified whenever possible. Moreover, this study analyzes the host splicing
profile showing potential therapeutic targets.

2. Results
2.1. SARS-CoV-2 Dominates the Metagenomics Findings in Both Case and Control Cohorts

Metagenomic alignment of 36 nasopharyngeal swab samples yielded a total of
3772 species, out of which 2699 had unique mappings. After the analysis of unique
reads, only 3 species that belonged to different assemblies of SARS-CoV-2 and SARS-CoV
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were statistically significantly different between cases and controls (Ensembl IDs 9000092,
9000103, 694009). Considering all reads (unique and multi-mapped), no individual species
showed statistically different abundances. Still, the cases’ mean log-transformed value
was bigger (0.008 vs. 0.002, p = 0.019), indicating a significant reduction in the viral RNA
abundance at the control stage. Summation was attempted for all the phages and multiple
bacterial taxa, but no significant differences were achieved.

The same analysis was performed on 12 pairs of blood samples yielding a total of
1794 species, out of which 1162 had unique mappings. There were no statistically significant
differences in individual or summed categories for all or unique reads.

2.2. DEG Analysis in Blood Rescued by Pairing

DEG analysis for NPS and BL samples was repeated with both paired and independent
designs, yielding a different result. The independent design of blood samples gave only
two genes that were statistically significant, so this analysis was deemed unsuccessful and
was not further processed. Conversely, paired design for BL samples yielded 78 significant
DEGs with only 3 (3.8%) downregulated (Table 1). NPS samples yielded a comparable
number of significant genes regardless of pairing—53 genes in an unpaired (Supplementary
Table S1) mode and 40 genes in paired mode (Table 2), with an overlap of 23 genes. Of those
23 upregulated genes, the majority were interferon-regulated genes. Among prominent
ones are CXCL10, a marker of acute viral infection, ISG15, both an extracellular cytokine
and an intracellular protein modifier, IFI6 that may be involved in the regulation of cell
apoptosis and IFI27, a proven predictor for COVID-19 outcomes. The upregulation was
found in major histocompatibility complex genes, HLA-DR and HLA-A. Downregulation
was noticed in only 2 genes in the unpaired design. The asymmetry in the regulation
direction can be explained by the significant immune activation across the transcriptome
resulting mostly in upregulation.

Table 1. Results of paired DEG analysis in blood (BL) showing genes with FDR corrected significant
p-value.

Gene_Name logFC logCPM LR p-Value FDR Ensembl_ID

IFI27 4.48 6.73 136.83 1.31 × 10−31 7.47 × 10−27 ENSG00000165949.12

SFT2D3 −7.48 0.76 64.85 8.07 × 10−16 2.30 × 10−11 ENSG00000173349.6

IGLC1 2.91 3.08 40.56 1.91 × 10−10 2.90 × 10−6 ENSG00000211675.2

IGKV4-1 2.14 3.49 40.43 2.04 × 10−10 2.90 × 10−6 ENSG00000211598.2

JCHAIN 2.42 6.87 36.21 1.77 × 10−9 1.64 × 10−5 ENSG00000132465.12

H3C3 1.64 2.81 36.11 1.87 × 10−9 1.64 × 10−5 ENSG00000287080.2

AC118281.1 −4.66 0.03 35.96 2.02 × 10−9 1.64 × 10−5 ENSG00000288380.1

AC020656.1 6.68 0.55 35.55 2.48 × 10−9 1.77 × 10−5 ENSG00000257764.2

IGLV3-19 3.92 3.72 33.73 6.33 × 10−9 4.01 × 10−5 ENSG00000211663.2

HIST1H2BO 1.72 2.89 33 9.24 × 10−9 5.26 × 10−5 ENSG00000274641.2

HIST1H2BH 1.56 3.61 31.66 1.83 × 10−8 9.50 × 10−5 ENSG00000275713.2

IGKV1-5 1.81 3.37 31.37 2.13 × 10−8 1.01 × 10−4 ENSG00000243466.1

IGLC3 2.56 5.26 30.42 3.48 × 10−8 1.53 × 10−4 ENSG00000211679.2

HIST1H2AJ 1.69 3.44 29.37 5.99 × 10−8 2.28 × 10−4 ENSG00000276368.2

IGKV3-20 1.96 3.94 29.36 6.00 × 10−8 2.28 × 10−4 ENSG00000239951.1

AC114546.3 −5.71 −0.81 28.95 7.44 × 10−8 2.62 × 10−4 ENSG00000279364.1

IGHV3-30 2.03 4.03 28.83 7.88 × 10−8 2.62 × 10−4 ENSG00000270550.1

IGHV4-34 2.77 3.72 28.74 8.29 × 10−8 2.62 × 10−4 ENSG00000211956.2

IGKC 2.06 7.21 28.02 1.20 × 10−7 3.60 × 10−4 ENSG00000211592.8
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Table 1. Cont.

Gene_Name logFC logCPM LR p-Value FDR Ensembl_ID

HIST1H3F 1.48 3.1 27.61 1.49 × 10−7 4.22 × 10−4 ENSG00000277775.2

IGLC2 2.56 6.3 27.52 1.56 × 10−7 4.22 × 10−4 ENSG00000211677.2

IGKV3-15 1.54 2.4 27.2 1.84 × 10−7 4.75 × 10−4 ENSG00000244437.1

IGHA1 1.77 6.28 26.75 2.32 × 10−7 5.74 × 10−4 ENSG00000211895.5

IGLV1-40 2.56 1.93 25.53 4.36 × 10−7 1.03 × 10−3 ENSG00000211653.2

HIST1H2BE 1.21 3.94 25.02 5.68 × 10−7 1.29 × 10−3 ENSG00000274290.3

PVRIG2P −5.22 −1.02 24.62 7.00 × 10−7 1.53 × 10−3 ENSG00000235333.3

IGLV3-21 2.28 2.7 24.23 8.54 × 10−7 1.80 × 10−3 ENSG00000211662.2

IGHV3-23 1.53 3.26 24.03 9.48 × 10−7 1.93 × 10−3 ENSG00000211949.3

TXNDC5 1.7 6.72 23.76 1.09 × 10−6 2.14 × 10−3 ENSG00000239264.9

HIST1H2BB 1.61 1.59 23.39 1.32 × 10−6 2.51 × 10−3 ENSG00000276410.4

IGHV3-11 2.14 1.28 23.18 1.47 × 10−6 2.71 × 10−3 ENSG00000211941.3

HIST1H2BM 1.24 2.42 22.22 2.43 × 10−6 4.32 × 10−3 ENSG00000273703.2

HIST1H2BI 1.47 2.93 21.75 3.11 × 10−6 5.37 × 10−3 ENSG00000278588.2

EPSTI1 1.92 7.56 21.42 3.69 × 10−6 6.18 × 10−3 ENSG00000133106.14

TIGD3 −1.19 2.79 21.23 4.08 × 10−6 6.57 × 10−3 ENSG00000173825.7

IGHG1 2.04 5.83 21.19 4.15 × 10−6 6.57 × 10−3 ENSG00000211896.7

IGHV3-21 1.71 2.49 21.06 4.44 × 10−6 6.83 × 10−3 ENSG00000211947.2

HIST1H3G 1.3 3.63 20.9 4.84 × 10−6 7.25 × 10−3 ENSG00000273983.1

HIST1H4L 1.2 1.95 20.58 5.72 × 10−6 8.35 × 10−3 ENSG00000275126.2

IGKV1D-39 1.67 3.07 20.43 6.18 × 10−6 8.79 × 10−3 ENSG00000251546.1

AC104837.2 2.18 0.84 20.28 6.68 × 10−6 9.20 × 10−3 ENSG00000238015.2

HIST1H1T 1.54 1.27 20.25 6.78 × 10−6 9.20 × 10−3 ENSG00000187475.6

IGKV1-12 2.18 1.38 19.9 8.16 × 10−6 1.08 × 10−2 ENSG00000243290.3

IGLV6-57 2.26 1.22 19.81 8.57 × 10−6 1.11 × 10−2 ENSG00000211640.4

IGKV3-11 1.82 3.08 19.26 1.14 × 10−5 1.44 × 10−2 ENSG00000241351.3

HIST1H1B 1.42 5.57 18.96 1.33 × 10−5 1.65 × 10−2 ENSG00000184357.5

AL031777.3 1.1 4.35 18.9 1.38 × 10−5 1.67 × 10−2 ENSG00000282988.2

HIST1H4D 1.32 3.92 18.73 1.51 × 10−5 1.79 × 10−2 ENSG00000277157.2

IGHV3-64D 2.31 0.26 18.57 1.64 × 10−5 1.90 × 10−2 ENSG00000282639.1

IGLV2-8 1.96 2.03 18.53 1.67 × 10−5 1.90 × 10−2 ENSG00000278196.3

TNFRSF17 1.55 1.62 18.48 1.72 × 10−5 1.92 × 10−2 ENSG00000048462.11

AC093010.3 −3.53 1.2 18.44 1.76 × 10−5 1.93 × 10−2 ENSG00000259976.3

IGLV3-25 2.84 2.92 18.32 1.87 × 10−5 2.01 × 10−2 ENSG00000211659.2

IGHV1-2 1.7 2.01 18.23 1.96 × 10−5 2.06 × 10−2 ENSG00000211934.3

HIST1H2AB 1.23 2.32 18.18 2.01 × 10−5 2.08 × 10−2 ENSG00000278463.2

PDZK1IP1 −1.62 4.52 17.91 2.32 × 10−5 2.36 × 10−2 ENSG00000162366.8

JUP 1.06 3.66 17.85 2.39 × 10−5 2.37 × 10−2 ENSG00000173801.17

IGHV5-51 1.52 2.46 17.83 2.41 × 10−5 2.37 × 10−2 ENSG00000211966.2

HIST1H2BD 1.4 5.26 17.8 2.45 × 10−5 2.37 × 10−2 ENSG00000158373.8

AC139495.1 1.16 4.12 17.47 2.92 × 10−5 2.77 × 10−2 ENSG00000248477.6

IGHV4-59 1.63 3.15 17.2 3.36 × 10−5 3.14 × 10−2 ENSG00000224373.3

IFI44L 2.34 8.64 17.17 3.42 × 10−5 3.14 × 10−2 ENSG00000137959.16
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Table 1. Cont.

Gene_Name logFC logCPM LR p-Value FDR Ensembl_ID

AC007556.1 1.95 0.23 16.98 3.78 × 10−5 3.42 × 10−2 ENSG00000235321.1

HIST1H4I 1.01 3.33 16.74 4.29 × 10−5 3.73 × 10−2 ENSG00000276180.1

HIST1H1PS1 1.36 1.62 16.73 4.30 × 10−5 3.73 × 10−2 ENSG00000216331.2

LY6E 1.33 6.11 16.72 4.32 × 10−5 3.73 × 10−2 ENSG00000160932.11

IGHV4-31 1.86 1.5 16.51 4.84 × 10−5 4.11 × 10−2 ENSG00000231475.3

AC016993.1 −4.03 −1.48 16.47 4.93 × 10−5 4.11 × 10−2 ENSG00000258178.1

HIST1H2BG 1.23 4.05 16.42 5.07 × 10−5 4.11 × 10−2 ENSG00000273802.2

HIST1H2AH 1.21 3.21 16.41 5.10 × 10−5 4.11 × 10−2 ENSG00000274997.2

IGLV2-14 1.29 3.45 16.4 5.13 × 10−5 4.11 × 10−2 ENSG00000211666.2

IFI44 2.15 7.31 16.3 5.40 × 10−5 4.26 × 10−2 ENSG00000137965.11

IGLV2-11 1.53 1.73 16.28 5.46 × 10−5 4.26 × 10−2 ENSG00000211668.2

RF00019 1.38 1.59 16.23 5.61 × 10−5 4.30 × 10−2 ENSG00000207117.1

SIGLEC1 2.52 6.38 16.21 5.66 × 10−5 4.30 × 10−2 ENSG00000088827.12

HIST1H3J 1.19 2.85 16.09 6.03 × 10−5 4.47 × 10−2 ENSG00000197153.5

IGHG2 1.14 3.98 16.09 6.04 × 10−5 4.47 × 10−2 ENSG00000211893.4

AC245128.3 4.59 −1.21 15.98 6.40 × 10−5 4.67 × 10−2 ENSG00000268734.1

LogFC—log-fold-change, logCPM—log counts per million, LR—likelihood ratio.

Table 2. Results of paired DEG analysis in nasopharyngeal swabs (NPS) showing genes with FDR
corrected significant p-value.

Gene Name logFC logCPM LR p-Value FDR Ensembl_ID

ISG15 4.76 8.21 56.21 6.51 × 10−14 2.26 × 10−9 ENSG00000187608.10

IFITM1 4.21 7.00 48.81 2.83 × 10−12 4.91 × 10−8 ENSG00000185885.16

IRF7 5.53 5.15 41.16 1.40 × 10−10 1.63 × 10−6 ENSG00000185507.21

CXCL11 7.02 4.02 40.48 1.99 × 10−10 1.73 × 10−6 ENSG00000169248.13

IFIT2 4.95 5.55 35.61 2.41 × 10−9 1.67 × 10−5 ENSG00000119922.10

C1QB 5.26 4.40 28.84 7.85 × 10−8 4.55 × 10−4 ENSG00000173369.17

IFITM3 3.07 7.10 28.01 1.21 × 10−7 5.99 × 10−4 ENSG00000142089.16

CXCL10 6.01 4.70 27.17 1.86 × 10−7 8.09 × 10−4 ENSG00000169245.6

PSAP 3.34 6.67 26.35 2.84 × 10−7 1.10 × 10−3 ENSG00000197746.14

IFI30 2.69 6.70 22.43 2.18 × 10−6 7.38 × 10−3 ENSG00000216490.4

IFI35 3.79 4.86 22.30 2.34 × 10−6 7.38 × 10−3 ENSG00000068079.8

EPSTI1 4.37 4.04 21.38 3.78 × 10−6 1.09 × 10−2 ENSG00000133106.14

IL10RA 5.83 3.15 21.11 4.33 × 10−6 1.16 × 10−2 ENSG00000110324.11

FCGR3A 4.93 3.61 20.73 5.28 × 10−6 1.31 × 10−2 ENSG00000203747.12

IFIT1 2.72 6.27 20.50 5.97 × 10−6 1.38 × 10−2 ENSG00000185745.10

LAG3 5.92 2.88 20.36 6.43 × 10−6 1.40 × 10−2 ENSG00000089692.9

LAP3 3.14 5.75 20.04 7.58 × 10−6 1.55 × 10−2 ENSG00000002549.12

HLA-B 2.61 7.07 19.75 8.80 × 10−6 1.59 × 10−2 ENSG00000234745.11

IFI6 2.37 7.08 19.67 9.20 × 10−6 1.59 × 10−2 ENSG00000126709.15

BST2 3.17 5.49 19.60 9.55 × 10−6 1.59 × 10−2 ENSG00000130303.13

AC020763.4 5.83 3.06 19.54 9.87 × 10−6 1.59 × 10−2 ENSG00000279569.1

IFI27 2.46 7.93 19.48 1.01 × 10−5 1.59 × 10−2 ENSG00000165949.12
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Table 2. Cont.

Gene Name logFC logCPM LR p-Value FDR Ensembl_ID

DHX58 5.03 3.70 19.42 1.05 × 10−5 1.59 × 10−2 ENSG00000108771.13

NAPSB 4.43 3.74 19.30 1.12 × 10−5 1.62 × 10−2 ENSG00000131401.11

OS9 3.61 4.86 19.06 1.27 × 10−5 1.77 × 10−2 ENSG00000135506.16

MNDA 3.80 4.90 18.58 1.63 × 10−5 1.96 × 10−2 ENSG00000163563.8

HLA-DRA 2.84 6.65 18.55 1.65 × 10−5 1.96 × 10−2 ENSG00000204287.14

LY6E 2.32 7.05 18.54 1.67 × 10−5 1.96 × 10−2 ENSG00000160932.11

GADD45B 3.46 4.94 18.47 1.72 × 10−5 1.96 × 10−2 ENSG00000099860.9

ISG20 2.90 5.45 18.46 1.74 × 10−5 1.96 × 10−2 ENSG00000172183.15

FOS 2.91 5.60 18.45 1.75 × 10−5 1.96 × 10−2 ENSG00000170345.10

MRPS34 3.77 4.84 18.25 1.93 × 10−5 2.10 × 10−2 ENSG00000074071.15

HLA-A 2.37 6.52 18.07 2.13 × 10−5 2.25 × 10−2 ENSG00000206503.13

MT-ND6 2.44 11.17 17.79 2.47 × 10−5 2.52 × 10−2 ENSG00000198695.2

ERP44 3.52 4.57 17.55 2.79 × 10−5 2.77 × 10−2 ENSG00000023318.8

GZMB 5.14 3.65 17.13 3.48 × 10−5 3.36 × 10−2 ENSG00000100453.13

HLA-DPA1 2.93 5.63 16.68 4.41 × 10−5 4.15 × 10−2 ENSG00000231389.7

TNFAIP6 5.38 2.27 16.59 4.63 × 10−5 4.23 × 10−2 ENSG00000123610.5

IL4I1 3.84 3.94 16.26 5.52 × 10−5 4.92 × 10−2 ENSG00000104951.16

CMPK2 4.18 4.17 16.20 5.69 × 10−5 4.95 × 10−2 ENSG00000134326.11

LogFC—log-fold-change, logCPM—log counts per million, LR—likelihood ratio.

Based on protein–protein interactions, there are three clusters of genes without inter-
connections (Figure 1). The largest cluster consists of 19 histone genes with abundant mu-
tual connections between the members. The immunity-related cluster has 5 genes—IFI27,
IFI44, LY6E, EPSTI1, and SIGLEC1. The smallest cluster has only two interacting genes—IGJ
and TNFRSF17.

2.3. Pathway Analysis Confirms Known Disease Aspects and Reveals New Patterns

For the three successful design-tissue combinations (blood paired, nasopharyngeal
paired, nasopharyngeal independent), we obtained significant results of pathway analysis
for three ontologies—cellular components, biological processes, and molecular functions.
The potentially asymmetric upregulation at the individual gene level is validated at this
step. Molecular function pathways for BL samples (Table 3) show clinically expected down-
regulation in olfactory receptor activity, odorant binding, oxygen and heme binding, etc.
The expected upregulation is mostly found in immune pathways (immunoglobulin receptor
binding and antigen binding) and RNA metabolism (RNA binding and structural con-
stituent of ribosomes), reflecting the infection mechanism of an RNA virus. Analysis of NPS
with the same ontology gives reduced olfactory and G-protein coupled receptor activity,
with the immune component shown as increased cytokine receptor binding (paired design)
and antigen binding (unpaired design). The other tissue-ontology combinations show
analogous upregulation involving multiple cell structures (Supplementary Tables S2–S9).
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Figure 1. String database protein–protein interactions. The nodes represent genes, while the
line width represents the strength of interaction. There are three clusters of genes without
interconnections—nineteen histone genes, an immunity-related cluster with five genes, and the
smallest cluster with two interacting genes.

2.4. Non-Histone Gene Signatures Are Successfully Negated by L1000 Perturbagens

Comparison of the gene expression patterns with known perturbagens in L1000 gave
the top-ranking substance BML-259 a score of 0.24. After analysis of the individual overlaps
of substances, almost none of them included genes from the histone family. Because our
programmatic annotation failed to recognize 14 of 20 histone genes (HIST*) in our list,
we suspected a versioning annotation problem and repeated the analysis without the
histone genes. The top-ranking substance remained the same, but the score increased
to 0.47 (Table 4), and the best combination of BRD-K12184916 and Nocodazole had a
score of 0.65 (Table 5). Nocodazole ranked 34th on the single substance list but appeared
in 8 out of 12 top-ranking pairs and included the gene IFI27 with the lowest p-value.
Clustered visualization shows that most single substances primarily affect the genes from
the immunoglobulin superfamily (IG*) (Figure 2).
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Table 3. Molecular function pathways for blood (BL) samples.

GO Molecular Function Complete Number Over/Under p-Value FDR

immunoglobulin receptor binding (GO:0034987) 72 + 0.00 0.00
olfactory receptor activity (GO:0004984) 369 − 0.00 0.00

antigen binding (GO:0003823) 127 + 0.00 0.00
G protein-coupled receptor activity (GO:0004930) 615 − 1.11 × 10−16 7.02 × 10−14

transmembrane signaling receptor activity (GO:0004888) 698 − 6.00 × 10−15 3.03 × 10−12

molecular transducer activity (GO:0060089) 745 − 6.46 × 10−14 2.33 × 10−11

signaling receptor activity (GO:0038023) 745 − 6.46 × 10−14 2.72 × 10−11

odorant binding (GO:0005549) 102 − 2.78 × 10−11 8.79 × 10−9

RNA binding (GO:0003723) 295 + 9.79 × 10−10 2.75 × 10−7

structural constituent of chromatin (GO:0030527) 54 + 2.92 × 10−9 7.39 × 10−7

nucleic acid binding (GO:0003676) 951 + 1.78 × 10−7 4.10 × 10−5

structural constituent of ribosome (GO:0003735) 45 + 2.27 × 10−6 4.79 × 10−4

catalytic activity. acting on a nucleic acid (GO:0140640) 91 + 3.31 × 10−6 6.44 × 10−4

heterocyclic compound binding (GO:1901363) 1311 + 5.85 × 10−6 1.06 × 10−3

organic cyclic compound binding (GO:0097159) 1332 + 9.36 × 10−6 1.58 × 10−3

oxygen binding (GO:0019825) 13 − 4.05 × 10−5 6.40 × 10−3

heme binding (GO:0020037) 36 − 1.17 × 10−4 1.75 × 10−2

catalytic activity. acting on RNA (GO:0140098) 67 + 1.34 × 10−4 1.89 × 10−2

protein binding (GO:0005515) 3412 + 1.84 × 10−4 2.45 × 10−2

oxygen carrier activity (GO:0005344) 8 − 2.41 × 10−4 3.05 × 10−2

Table 4. Predicted overlap of L1000 genes with individual perturbagen signatures of the opposite
direction. All the differentially expressed genes are included in the analysis. Full table with links is
given in Supplementary Table S10.

Rank Score Perturbation Cell-Line Dose Time

1 0.4706 BML-259 DV90 80.0 um 6.0 h

2 0.4118 BRD-K12184916 SNGM 0.63 um 6.0 h

3 0.3529 Dilazep dihydrochloride A549 10.0 um 6.0 h

4 0.3529 16-HYDROXYTRIPTOLIDE AGS 0.08 um 6.0 h

5 0.3529 TG101348 DV90 11.1 um 6.0 h

6 0.3529 HLI 373 SNGM 10.0 um 6.0 h

7 0.3529 528116.cdx SNGM 0.09 um 6.0 h

8 0.3529 BRD-K68548958 SNGM 20.0 um 6.0 h

9 0.3529 N9-isoproplyolomoucine TYKNU 122.55 um 6.0 h

10 0.3529 BRD-K68756823 VCAP 10.0 um 24.0 h

11 0.3529 vorinostat HCC515 3.33 um 24 h

12 0.2941 TG101348 NCIH2073 11.1 um 6.0 h

13 0.2941 528116.cdx NCIH2073 0.09 um 6.0 h

14 0.2941 curcumin SNGM 48.0 um 6.0 h

15 0.2941 MK-0591 U937 80.0 um 6.0 h

16 0.2941 chaetocin VCAP 0.08 um 6.0 h

17 0.2941 NCGC00185090-03 HEPG2 10.0 um 6.0 h

18 0.2941 BRD-K23657553 SKB 10.0 um 24.0 h

19 0.2941 BRD-K63945320 ASC 10.0 um 24.0 h

20 0.2941 BRD-K11927976 HEPG2 10.0 um 6.0 h
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Table 4. Cont.

Rank Score Perturbation Cell-Line Dose Time

21 0.2941 BRD-K48692744 A549 10.0 um 24.0 h

22 0.2941 BRD-K63606607 MCF7 10.0 um 6.0 h

23 0.2941 ZM-447439 MCF7 3.33 um 24 h

24 0.2941 PD-0325901 HEPG2 10 um 24 h

25 0.2941 GSK-461364 HEPG2 0.12 um 24 h

26 0.2941 KU-60019 HEPG2 10 um 24 h

27 0.2941 torin-2 SKBR3 10 um 24 h

28 0.2941 torin-2 SKBR3 3.33 um 24 h

29 0.2941 NU-7441 SKBR3 10 um 3 h

30 0.2941 torin-2 SKBR3 10 um 3 h

31 0.2941 GSK-2126458 MCF7 3.33 um 3 h

32 0.2941 QL-XII-47 SKBR3 10 um 24 h

33 0.2941 pazopanib HCC515 3.33 um 24 h

34 0.2353 NOCODAZOLE HA1E 10.0 um 24.0 h

35 0.2353 CYCLOHEXIMIDE VCAP 10.0 um 6.0 h

36 0.2353 CARBAMAZEPINE VCAP 10.0 um 6.0 h

37 0.2353 CGS 15943 MCF7 10.0 um 6.0 h

38 0.2353 N9-isoproplyolomoucine A549 122.55 um 6.0 h

39 0.2353 PROSTAGLANDIN A1 A673 1.0 um 6.0 h

40 0.2353 PI 103 hydrochloride A673 11.1 um 6.0 h

41 0.2353 AG14361 AGS 25.0 um 6.0 h

42 0.2353 COT-10b AGS 44.4 um 6.0 h

43 0.2353 AG14361 CORL23 25.0 um 6.0 h

44 0.2353 Narciclasine CORL23 10.0 um 6.0 h

45 0.2353 16-HYDROXYTRIPTOLIDE DV90 0.08 um 6.0 h

46 0.2353 QUINACRINE
HYDROCHLORIDE DV90 10.0 um 6.0 h

47 0.2353 KU 0.060648 trihydrochloride DV90 10.0 um 6.0 h

48 0.2353 COT-10b DV90 44.4 um 6.0 h

49 0.2353 PNU 74654 DV90 80.0 um 6.0 h

50 0.2353 BRD-K68548958 H1299 20.0 um 6.0 h

Table 5. Predicted overlap of L1000 genes with signatures of gene pairs of the opposite direction.
As opposed to the previous table, the histone genes are excluded from the comparison. The highest
overlap, as represented by the score, is 64.71%.

Rank Score Combination

1 0.6471 2. BRD-K12184916 34. NOCODAZOLE

2 0.5882 1. BML-259 2. BRD-K12184916

3 0.5882 1. BML-259 3. Dilazep dihydrochloride

4 0.5882 1. BML-259 9. N9-isoproplyolomoucine

5 0.5882 1. BML-259 19. BRD-K63945320

6 0.5882 3. Dilazep dihydrochloride 34. NOCODAZOLE

7 0.5882 4. 16-HYDROXYTRIPTOLIDE 34. NOCODAZOLE

8 0.5882 5. TG101348 34. NOCODAZOLE
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Table 5. Cont.

Rank Score Combination

9 0.5882 6. HLI 373 34. NOCODAZOLE

10 0.5882 7. 528116.cdx 34. NOCODAZOLE

11 0.5882 10. BRD-K68756823 34. NOCODAZOLE

12 0.5882 11. vorinostat 34. NOCODAZOLE

13 0.5294 1. BML-259 4. 16-HYDROXYTRIPTOLIDE

14 0.5294 1. BML-259 5. TG101348

15 0.5294 1. BML-259 6. HLI 373

16 0.5294 1. BML-259 7. 528116.cdx

17 0.5294 1. BML-259 8. BRD-K68548958

18 0.5294 1. BML-259 10. BRD-K68756823

19 0.5294 1. BML-259 11. vorinostat

20 0.5294 1. BML-259 12. TG101348

21 0.5294 1. BML-259 16. chaetocin

22 0.5294 2. BRD-K12184916 17. NCGC00185090-03

23 0.5294 1. BML-259 18. BRD-K23657553

24 0.5294 2. BRD-K12184916 19. BRD-K63945320

25 0.5294 1. BML-259 20. BRD-K11927976

26 0.5294 2. BRD-K12184916 21. BRD-K48692744

27 0.5294 1. BML-259 23. ZM-447439

28 0.5294 2. BRD-K12184916 23. ZM-447439

29 0.5294 1. BML-259 24. PD-0325901

30 0.5294 2. BRD-K12184916 25. GSK-461364

31 0.5294 1. BML-259 26. KU-60019

32 0.5294 1. BML-259 27. torin-2

33 0.5294 1. BML-259 28. torin-2

34 0.5294 1. BML-259 30. torin-2

35 0.5294 1. BML-259 31. GSK-2126458

36 0.5294 1. BML-259 32. QL-XII-47

37 0.5294 1. BML-259 34. NOCODAZOLE

38 0.5294 8. BRD-K68548958 34. NOCODAZOLE

39 0.5294 9. N9-isoproplyolomoucine 34. NOCODAZOLE

40 0.5294 12. TG101348 34. NOCODAZOLE

41 0.5294 13. 528116.cdx 34. NOCODAZOLE

42 0.5294 14. curcumin 34. NOCODAZOLE

43 0.5294 16. chaetocin 34. NOCODAZOLE

44 0.5294 18. BRD-K23657553 34. NOCODAZOLE

45 0.5294 20. BRD-K11927976 34. NOCODAZOLE

46 0.5294 22. BRD-K63606607 34. NOCODAZOLE

47 0.5294 24. PD-0325901 34. NOCODAZOLE
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Table 5. Cont.

Rank Score Combination

48 0.5294 26. KU-60019 34. NOCODAZOLE

49 0.5294 27. torin-2 34. NOCODAZOLE

50 0.5294 28. torin-2 34. NOCODAZOLE
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2.5. Alternative Splicing Changed at Both Event and Isoform Level

AS analysis events and isoforms in the independent design for two types of tissues are
shown in Table 6. NPS samples show three genes with differentially spliced transcripts and
three genes with differentially spliced events, with DCUN1D3 appearing in both groups.
BL samples show thirteen genes with differentially spliced transcripts and three genes with
differentially spliced events without mutual overlap. There were no overlapping genes
between NPS and BL samples.

Table 6. Overview of alternatively spliced events and isoform across nasopharyngeal swabs (NPS)
and blood (BL) samples.

Tissue Type ID dPSI p-Value Gene

Nasal Event ENSG00000137502.10;SE:chr11:82987770-
82994039:82994122-82997224:− 0.2929 0.0475 RAB30

ENSG00000188215.10;AF:chr16:20862643-
20868895:20868980:20862643-
20900204:20900358:−

−0.0801 0.0490 DCUN1D3

ENSG00000198089.16;AF:chr22:31604314:31604404-
31604869:31604569:31604671-31604869:+ −0.1146 0.0485 SFI1

ENSG00000271503.6;SE:chr17:35872464-
35875561:35875642-35878528:− 0.2111 0.0470 CCL5

Isoform ENST00000599180.2 0.0977 0.0345 FFAR2
ENST00000601590.1 −0.1032 0.0345 FFAR2
ENST00000324873.8 −0.4075 0.0485 NUPR1
ENST00000395641.2 0.2033 0.0485 NUPR1
ENST00000567646.1 0.2043 0.0485 NUPR1
ENST00000324344.9 0.0801 0.0255 DCUN1D3
ENST00000563934.1 −0.0801 0.0255 DCUN1D3
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Table 6. Cont.

Tissue Type ID dPSI p-Value Gene

Blood Event
ENSG00000115993.13;AF:chr2:201420706-
201433464:201433554:201420706-
201451350:201451458:−

0.2195 0.0470 TRAK2

ENSG00000115993.13;AF:chr2:201420706-
201433464:201433554:201420706-
201451350:201451500:−

0.2052 0.0470 TRAK2

ENSG00000205542.11;RI:chrX:12975110:12975168-
12976246:12976361:+ −0.0441 0.0435 TMSB4X

ENSG00000251562.8;AF:chr11:65504519:65505019-
65506386:65505207:65505662-65506386:+ 0.1279 0.0130 MALAT1

Isoform ENST00000379359.4 0.1200 0.0450 RGCC
ENST00000487837.1 −0.1200 0.0450 RGCC
ENST00000393085.4 0.1020 0.0470 MTPN
ENST00000435723.1 −0.1020 0.0470 MTPN
ENST00000489359.1 0.2418 0.0400 LIPA
ENST00000229595.6 0.1735 0.0435 ASF1A
ENST00000511766.2 −0.1735 0.0435 ASF1A
ENST00000252818.5 −0.0756 0.0490 JUND
ENST00000600972.1 0.0756 0.0490 JUND
ENST00000259456.7 0.2388 0.0115 HEMGN
ENST00000616898.2 −0.2388 0.0115 HEMGN
ENST00000373474.9 0.1640 0.0405 LMX1B
ENST00000526117.6 −0.1889 0.0405 LMX1B
ENST00000390539.2 0.3873 0.0325 IGHA2
ENST00000497872.4 −0.3873 0.0325 IGHA2
ENST00000390559.6 0.1967 0.0070 IGHM
ENST00000637539.2 −0.1967 0.0070 IGHM
ENST00000414005.1 −0.1595 0.0380 Lnc-TMEM121-3
ENST00000418566.1 0.1595 0.0380 Lnc-TMEM121-3
ENST00000560255.2 0.1866 0.0445 ST20-AS1
ENST00000618735.1 −0.1866 0.0445 ST20-AS1
ENST00000601040.1 0.1474 0.0410 Lnc-TMEM38A-2
ENST00000601687.1 −0.1474 0.0410 Lnc-TMEM38A-2

3. Discussion

To date, published studies have focused only on local nasal or systemic gene expression
in acute COVID-19. It was unknown if there were any changes when the acute illness
resolved. Taking this hypothesis into account, we examined gene expression profiles in
paired designed samples of total RNA in acute and resolved SARS-CoV-2 infection to
assess complete characterization and time-related differences of host-viral relationship in
COVID-19 patients. The pathways that were mostly enriched were largely ones that control
infection and inflammation, smell function, as well as a major portion of the receptor
signaling and oxygen binding pathways. Besides identified biomarkers, this study revealed
new drug co-targeting pathways.

Considering that the blood transcriptome reflects signals from different tissues and
host biochemical processes, dispersion in RNA quantification could weak and mask many
of those tissue-specific signals [21]. Moreover, individual variability influences the ca-
pacity to identify the processes primarily located in the blood, such as immune response
pathways [17]. Thus, a larger sample size and additional standardizations in biological
sampling are required. In our study, the blood samples would yield no usable results after
removing the failed samples. On the other hand, nasopharyngeal swabs seem relatively
robust towards the individual variability—the smaller set of genes is expressed in differen-
tiated tissues such as nasal mucosa, thus increasing the number of transcripts per gene and
the power of the study.

Using sample pairing design in this study increased the number of significant genes
from 2 to 78, enabling a meaningful pathways analysis and functional/clinical validation
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of the project. Although this design represents a simple method for increasing power when
interpersonal variability is large, genomic studies rarely take advantage of it when it comes
to transcriptome analysis. Single-cell sequencing could be done at multiple time points to
characterize cells in both time and space, but we strive to measure the improvement when
applied in bulk sequencing for the characterization of systemic effects [22]. The pairing
of samples does require repeated visits, patient tracking, and follow-up. Additionally,
it is easier to find healthy controls for infectious diseases characterized by a complete
resolution, while chronic infections with pathogen persistence or disease progression do
not allow sampling due to the lack of a clear healthy control phase [23]. Regardless of the
impossibility of obtaining RNA biomarkers of a specific disease, it is still possible to sample
the RNA at two distinct time points and evaluate biomarkers of disease progression instead
of the disease itself. Therefore, we emphasize that the gain in statistical power could be
utilized in multiple fields and clinical problems.

The enrichment analysis has shown down-regulation of olfactory receptor, G protein-
coupled receptor activity, and up-regulation of cytokine receptor binding in the nasal
epithelium of paired samples, of which the first two were also down-regulated in paired
blood samples. Olfactory dysfunction is a common symptom experienced by almost 53%
of COVID-19 patients and affects approximately 7% of the COVID-19 convalescents [24,25].
There are several proposed mechanisms for SARS-CoV-2-related hyposmia/anosmia, one
of them being T-cell–mediated inflammation persistent in the olfactory epithelium and the
associated decline in the number of olfactory sensory neurons (OSNs) [26–28]. The exact
mechanism of OSN decline is still not clear. The cilia of the OSNs have G-protein-coupled
olfactory receptors involved in the transduction of extracellular signals through second
messenger cascades controlled by heterotrimeric guanine nucleotide-binding proteins [29].
It is tempting to speculate that found down-regulation of olfactory receptor and G protein-
coupled receptor activity may initiate the olfactory dysfunction in COVID-19 patients.
Further, persistent viral infection could also drive ongoing damage to OSNs [30]. Indeed,
the evidence for active SARS-CoV-2 infection was found in all of our nasopharyngeal swabs,
although the cases’ mean log-transformed value was bigger (0.008 vs. 0.002, p = 0.019),
indicating a significant reduction in the viral RNA abundance at the control stage.

Transcriptionally, our samples are characterized by the enrichment of pathways in-
volved in cytokine receptor binding in nasal epithelium. After the appearance of SARS-
CoV-2, cytokine storm was indicated as a main pathogenetic factor in COVID-19 [31]. A
large number of studies have shown that COVID-19 patients have raised levels of several
inflammatory cytokines, including IL-1β, IL-2, IL-6, IL-10, IFN-γ, TNF-α, IFN-γ-inducible
protein 10 (IP-10), granulocyte macrophage-colony stimulating factor (GM-CSF), and mono-
cyte chemoattractant protein-1 (MCP-1), that could be identified as the indicators of disease
progression [32–34].

IFI27, interferon alpha inducible protein 27, transcription has recently been a proven
predictor for COVID-19 outcomes [35]. A higher level of IFI27 with a lower level of
DCUN1D3 is said to increase the risk for COVID-19 [36]. Earlier, it was also known as a
biomarker for discrimination between influenza and bacteria in patients with suspected
respiratory infection [37]. In our study, regardless of the type of sample, this was the
strongest upregulated gene in acute COVID-19. These data, together with previously
published studies, suggest that prognostic biomarkers targeting the family of IFI27 genes
could potentially replace conventional diagnostic tools [35]. It could be of particular
importance in future virus pandemics because IFI27 expression appears to be specific to
viral illness [38]. Moreover, as the kinetics of IFI27 expression are poorly understood, the
unresolved dilemma reported by other researchers was whether serial measurement of
IFI27 expression would be more informative than a single time point measurement [35]. In
order to resolve those dilemmas, genomic patterns from double-paired samples were, for
the first time, comprehensively analyzed in our work. In this way, our results confirmed
the hypotheses of previous authors.
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Viruses manipulate cell cycle progression to generate resources and conditions fa-
vorable for viral production. Still, the effect of SARS-CoV-2 on cell cycle progression
remains largely unknown [39]. Therefore, the identification of novel drug targets is an
essential puzzle of comprehensive research. In the present study, we aimed to identify
gene expression patterns with both single and co-targeted highly potent therapeutics. The
L1000 perturbagens analysis showed BML-259, a potent cyclin-dependent kinase 5 (CDK5)
inhibitor, as the top-ranking drug for acute COVID-19. As CDKs are key regulators of cell
cycle progression, they represent promising therapeutic goals for cancer and neurodegener-
ative diseases. CDK has also been the target of various viral infections such as HIV, Herpes
simplex virus, Zika, and Hepatitis B viruses, where its expression is altered in the affected
cell [40]. Interestingly, when it comes to potential COVID-19 treatment, most literature data
have been focused on CDK2, but not CDK5, identified by our study [40,41].

The greatest significance of our survey is that it reveals new co-targeting pathways of
high potential for the success of synergistic drug action of nocodazole and BRD-K12184916.
Even 65% of genes of acute COVID-19 patients are included in described co-targeted
pathways: microtubule cytoskeleton organization and condition of hypoxia. These gene
co-targets could serve as a promising step toward the identification of additional drug
options, especially because some of them are already in use in other indications. The
cytoskeleton, in particular, microtubules, have an essential role in cell mitosis, organization
of cytoplasm, and controlling of cell movement, cell signaling, and trafficking of organelles.
Their disruption leads to cell cycle arrest and loss of cellular architecture [42]. Therefore,
various microtubule inhibitors, especially those that lead to cell arrest and apoptosis,
such as nocodazole, have been used in the treatment of malignancies to synchronize cell
proliferation. Moreover, there are indications that this mechanism could also be used for the
purpose of antiviral action in human infections caused by West Nile virus, Cytomegalovirus,
and even SARS-CoV-2 [43–45]. Inhibitors of the PI3K/AKT/mTOR signaling pathway,
such as dactolisib, have potential antineoplastic activity targeting tumor cell apoptosis and
growth inhibition in PI3K/mTOR-overexpressing tumor cells. In addition, those inhibitors
have been shown as novel candidates to treat pathologic hypoxia that occurs in most human
solid tumors [46]. Finally, even without these relatively new anti-hypoxia theories, those
inhibitors have also been investigated in COVID-19. As they could upregulate IFN-induced
antiviral responses, research was focused on reducing the COVID-19 severity and use in
COVID-19 post-exposure prophylaxis in elderly patients [47,48].

The main limitation of the study was the sample size and the lack of clinical meta-
data that would enable further clinical correlations and stratification with transcriptomic
biomarkers. The sample size was sufficient for the paired analysis performed without
additional covariates but would be insufficient for investigating a subsample defined with
the additional clinical data. As a consequence, even with strong statistical signals arising
from the transcription of individual genes such as IFI27, we were unable to extrapolate
their prognostic value to a broader clinical context. On the other hand, the study managed
to unify the molecular mechanisms regardless of the differences in the clinical presentation
of the disease, which could be considered a result that overcomes the described limitations.

Metagenomics analyses from the total RNA are susceptible to bias from existing
fragments and show positive results even when conventional testing methods give a
negative signal. However, the coexistence of other RNA viruses was not shown during the
active disease or in the convalescence period.

Designing genomic research on a relatively novel subject harbors difficulty in formally
estimating the required sample size and the proper design since maximizing the study
power increases the probability of its success. Nasopharyngeal swabs are viable targets for
both host and viral expression studies. Although they do not require sample pairing, those
samples give limited insight into the systemic events. On the other hand, the analysis of
blood samples benefits immensely when a sample pairing strategy is applied. In particular,
the unpaired expression analysis performed in our research essentially failed to pinpoint
significant changes, but the pairing successfully elucidated different pathways as well
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as the potential therapy targets with high concordance to clinical insights. Thus, the
obtained results essentially showed that pairing is a determinant between a failed and a
comprehensive study.

4. Patients and Methods
4.1. COVID-19 Patients and Samples

We performed a prospective analysis of nasopharyngeal swabs (NPS) and blood
(BL) samples collected from 18 COVID-19 patients infected between December 2020 and
April 2021. The patients were all recruited in the acute phase of COVID-19, during the
7-day period from the onset of the disease. Among 18 patients, 12 were hospitalized but
with different disease severity, and 6 non-hospitalized individuals were tested due to mild
symptoms and suspicion of COVID-19. Hospitalized patients were treated at the University
Hospital Center Dr Dragisa Misovic, Belgrade, and the Serbian Institute of Occupational
Health, Belgrade. Patients with mild symptoms were tested on request in the Laboratory of
Molecular Microbiology, Institute for Biocides and Medical Ecology, Belgrade.

Both NPS and BL samples were collected from every participant immediately after
inclusion in the study, and they were defined as “cases.” Their samples were paired during
the second sampling (nasopharyngeal swab and blood) after resolving the SARS-CoV-2
infection (2–3 weeks after initial recruiting and sampling), and then they were defined
as “controls”. At the moment of the first sampling, according to the set inclusion criteria,
nasopharyngeal swabs all tested positive for SARS-CoV-2 RNA by Real-Time PCR. On
the other hand, paired nasopharyngeal swabs taken after resolving the acute infection all
tested negative for SARS-CoV-2 RNA by the same methodology.

4.2. RNA Extraction and Real-Time PCR

RNA isolation and SARS-CoV-2 detection was performed in the Laboratory of Molec-
ular Microbiology, Institute for Biocides and Medical Ecology, Belgrade. RNA extraction
from 200 µL of whole blood or 500 µL of viral transport medium, in which nasopharyngeal
swabs were placed, was carried out using RNeasy Mini Kit (Qiagen, Kit Cat. No. 74104).
Real-time PCR to confirm SARS-CoV-2 positivity was routinely performed from 5 µL of
eluted RNA using GeneFinderTM COVID-19 Plus RealAmp Kit (OSANG Healthcare Co.,
Seongnam, Republic of Korea) following the manufacturer’s protocol. Quant StudioTM 5
Real-Time PCR Instrument (Thermo Fisher Scientific, Waltham, MA, USA) was used for the
amplification and detection of viral RNA. All eluates were stored at −80 ◦C until shipment
to the other laboratory for the NGS analysis.

4.3. Sequencing

Commercial sequencing was carried out at Novogene Bioinformatics Technology Co.,
Ltd., in Beijing, China. Messenger RNA was purified from total RNA using poly-T oligo-
attached magnetic beads after rRNA removal (Illumina, Kit Cat. No. 20020597). After
fragmentation, the first strand of cDNA was synthesized using random hexamer primers,
followed by the second strand of cDNA synthesis (Illumina, Kit Cat. No. 20020597). The
library was ready after end repair, A-tailing, adapter ligation, size selection, amplification,
and purification. Paired-end sequencing of 150 bases each was performed on Illumina
NovaSeq 6000. QC was done according to the sequencing provider’s specification, and
6 samples of blood with their pairs were removed from the blood batch of samples. The
total number of paired samples was 18 pairs of nasopharyngeal swabs and 12 samples of
blood. The average base quality Phred score was above 30 at all locations in all samples.

4.4. Bioinformatic Processing

Both nasopharyngeal and blood samples are quantified in an identical manner using
Kallisto 0.44 [49] for pseudo-alignment to Gencode v35 transcriptome [50]. The internal
probabilistic model assigns reads that do not have a transcript-level unique mapping
with maximum likelihood providing abundance estimated (transcripts-per-million). Raw
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counts per transcript were summed at the gene level. Batch effects were explored and
combated using SVA R-package [51]. The number of estimated surrogate variables by the
Leek method was one, and it did not affect the results. This indicates no significant batch
effects. All the samples were verified to have at least 10% expressed transcripts (non-zero
values), and all the transcripts that had less than one count in more than 90% of samples
rounded were removed. Differentially expressed gene (DEG) analysis was performed using
EdgeR [52], and the normalization of libraries was performed using the TMM method. To
test the effect of pairing, each analysis is repeated with and without the subject ID as a
covariate; no additional covariates were used. The default FDR multiple testing correction
level of 0.05 was used to assess statistical significance. All significant genes and their fold
change were used for discovering affected gene sets and pathways. Using Panther.db with
three separate GO datasets (molecular function, cellular components, biological processes).
The input was the list of genes with their fold changes from EdgeR; the referent gene set
was the built-in complete set of human genes. The chosen test was statistical enrichment
based on Mann-Whitney U-test to utilize the numerical data available.

The significantly affected genes from DEG analysis were separated into two gene sets
according to the direction of change and analyzed with the L1000CDS2 web service to
find the chemical perturbagens with the expression pattern opposite to that of our disease.
The direction of change was taken into account without the numerical values for easier
interpretation of the output. Genes without an HGNC name necessary for this step were
manually added from the latest version of the Ensembl database. Combinations of two
perturbagens were also included in the outputs. The ranking score used was the overlap
ratio, and top-scoring hits were visualized with web Clustergrammer.

TPM results from Kallisto quantification were pooled and processed for the detection
of alternative splicing (AS) changes using the tool Suppa2 [53]. To match the version, both
isoforms and splicing events are quantified with Gencode v35 GTF using the empirical
method for p-value calculation without using a delta PSI threshold. Due to the empirical
nature of the calculation and lack of linear models, the samples were treated as unpaired
(i.e., sample pairing was not accounted for).

Metagenomic analysis was performed by aligning all the samples read-wise to the joint
human-bacteria-virus-SARS-CoV-2 reference using a centrifuge. The numbered of mapped
reads was scaled with the total number of reads in the sample. The difference in medians
between case and control samples was performed using the median test that ignores pairing.
The median test was used instead of the Wilcoxon sign rank due to the immunity to a
large number of ties in most samples. Multiple testing correction was performed using
the Bonferroni method. All 95 columns with different assemblies of SARS-CoV-2 were
summed and log-transformed, and the difference in abundances was tested using the t-test
for dependent samples.
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