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Abstract: Recurrent implantation failure (RIF) is a challenging scenario from different standpoints.
This study aimed to investigate its correlation with the endometrial metabolic characteristics. Tran-
scriptomics data of 70 RIF and 99 normal endometrium tissues were retrieved from the Gene Expres-
sion Omnibus database. Common differentially expressed metabolism-related genes were extracted
and various enrichment analyses were applied. Then, RIF was classified using a consensus clustering
approach. Three machine learning methods were employed for screening key genes, and they were
validated through the RT-qPCR experiment in the endometrium of 10 RIF and 10 healthy individuals.
Receiver operator characteristic (ROC) curves were generated and validated by 20 RIF and 20 healthy
individuals from Peking University People’s Hospital. We uncovered 109 RIF-related metabolic genes
and proposed a novel two-subtype RIF classification according to their metabolic features. Eight
characteristic genes (SRD5A1, POLR3E, PPA2, PAPSS1, PRUNE, CA12, PDE6D, and RBKS) were
identified, and the area under curve (AUC) was 0.902 and the external validated AUC was 0.867.
Higher immune cell infiltration levels were found in RIF patients and a metabolism-related regulatory
network was constructed. Our work has explored the metabolic and immune characteristics of RIF,
which paves a new road to future investigation of the related pathogenic mechanisms.

Keywords: recurrent implantation failure; metabolism-related genes; metabolic subtypes; immune
infiltration

1. Introduction

Embryo implantation is a delicate and tightly regulated process, achieved by a syn-
chronized and coordinated crosstalk between the embryo and the endometrium [1]. In
recent decades, despite the tremendous advances in reproductive medicine, recurrent im-
plantation failure (RIF) is still a controversial and poorly understood clinical problem. RIF
affects about 10% worldwide patients undergoing in vitro fertilization and embryo transfer,
being a challenge and a setback for both patients and clinicians [2]. RIF etiology is complex
and is usually grouped into three categories involving the receptivity of the endometrium,
the embryo, and their interacting environment. Within assisted reproductive technologies
in which good-quality embryos are implanted, insufficient endometrial receptivity has
resulted in approximately two-thirds of all implantation failures [3]. Thus, identifying
molecular markers and clarifying the mechanisms is a strategy with important theoretical
and clinical value.

The dynamic endometrial changes during the menstrual cycle are metabolically de-
manding. Aerobic glycolysis and lactate accumulation are important additional metabolic
requirements of the implantation process [4–6]. During early pregnancy, the lactated
uterine microenvironment seems to be favorable to embryo implantation [7]. During the
decidualization process, genes and other factors related to aerobic glycolysis are extensively
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induced. On the other hand, the inhibition of lactate production can lead to decidua dam-
age [8]. In addition, hyperinsulinemia and insulin resistance have been proven to inhibit
the expression of endometrial receptivity markers, such as the insulin-like growth factor
type 1 receptor [9]. Clinically, the low fertility of patients with metabolic diseases, such
as polycystic ovary syndrome and diabetes, suggests that metabolic imbalance may affect
endometrial receptivity and embryo implantation [10]. Nevertheless, the metabolic charac-
teristics related to endometrial receptivity in RIF patients, and their potential influencing
mechanisms and regulatory pathways, are still unclear.

Embryo invasion also requires specific immune activation at the maternal-fetal interface [11].
There are several types of immune cells in the endometrium, such as natural killer cells,
macrophages, dendritic cells, and T cells. These cells are essential in regulating endometrial
receptivity and embryo implantation [12]. Local immune dysfunction can damage endome-
trial receptivity and lead to RIF. Moreover, impairments in the maternal immune system
during pregnancy can improve the susceptibility to viral infections, ultimately leading to an
impairment of the embryo formation [13]. Several comprehensive bioinformatic analyses
have indicated differences in immune cell infiltration levels between RIF patients and
healthy individuals [14]. However, the mechanisms underlying immune cell infiltration in
RIF patients are still worthy of further exploration.

In recent years, the rapid development of sequencing technology has provided us with
a novel view of gene and protein expression patterns that could help to understand the
mechanisms of implantation failure from different aspects [15–17]. However, most of these
studies have a small sample size and have not been validated through an independent
cohort. Moreover, the characteristics and mechanisms related to their metabolic component
were not comprehensively analyzed in these studies. In view of the RIF complexity, it
is necessary to explore its characteristics and pathogenesis from different perspectives,
with the help of the rapidly developing high-throughput sequencing technology. This
alternative approach can help to seek more efficient treatment strategies for RIF patients.

In the present study, we aimed to accurately explore metabolism-related genes related
to endometrial receptivity, which enables the prediction of RIF occurrence from metabolic
features. Moreover, a novel RIF classification, containing two subtypes with different metabolic
characteristics, is proposed. Furthermore, we also investigated the immune infiltration and
constructed the microRNA (miRNA)-transcription factor (TF)-genes network to gain a better
understanding of the potential molecular metabolic process related to RIF occurrence.

2. Results
2.1. Identification of Differentially Expressed Genes and Functional Enrichment Analysis

An overview of the workflow is shown in Figure 1. Initially, we combined the expres-
sion profiles of 70 RIF and 99 normal endometrium tissues from the GSE58144, GSE103465
and GSE111974 datasets cohorts. Before removing batch effects, endometrium tissues
from different platforms showed significantly different clustering patterns but grouped
together after batch correlation (Figures 2A,B and S1A,B). According to the predefined
cut-off criteria, we detected a total of 1185 differentially expressed genes (DEGs), including 619
downregulated genes and 566 upregulated genes between the two groups of endometrium
tissues among 17,407 genes, as presented in Figure 2C,D. Gene Ontology (GO) enrichment
analysis revealed that DEGs were enriched in regulation of mRNA metabolic process, histone
modification, phosphoprotein phosphatase activity and so on (Figures 2E and S1C,D). In addi-
tion, the results of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis
indicated that DEGs were enriched in ubiquitin mediated proteolysis, glycerophospholipid
metabolism, protein processing in endoplasmic reticulum and other functions (Figure 2F).
Moreover, the GO and KEGG enrichment analyses of separated upregulated and downreg-
ulated RIF-related DEGs are shown in Figure S2. These results demonstrated that these
DEGs were involved in various metabolic processes.
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Figure 1. Diagram of the study design. Abbreviations: DEGs: differently expressed gene, GO: Gene 
Oncology, ssGSEA: single-sample gene set enrichment analysis, GSVA: Gene set variation analysis, 
KEGG: Kyoto Encyclopedia of Genes and Genomes, LASSO: least absolute shrinkage and selection 
operator, miRNA: microRNA, PKUPH: Peking University People’s Hospital, RIF: recurrent 

Figure 1. Diagram of the study design. Abbreviations: DEGs: differently expressed gene,
GO: Gene Oncology, ssGSEA: single-sample gene set enrichment analysis, GSVA: Gene set vari-
ation analysis, KEGG: Kyoto Encyclopedia of Genes and Genomes, LASSO: least absolute shrinkage
and selection operator, miRNA: microRNA, PKUPH: Peking University People’s Hospital, RIF: recur-
rent implantation failure, ROC: receiver operating characteristic, RT-qPCR: real time-quantitative
PCR, SVM-RFE: support vector machine-recursive feature elimination, TF: transcription factor.

2.2. Expression of Metabolism-Related Genes in Recurrent Implantation Failure Patients

We overlapped 1660 metabolic genes with the DEGs from the three merged datasets.
The Venn diagram analysis revealed 109 overlapped metabolism-related genes, which
were selected for further analysis. Of these, 54 were upregulated and 55 were downregu-
lated (Figure 3A,B). To analyze the overall expression levels of metabolism-related genes,
a volcano plot (Figure S3A) and heatmap (Figure S3B) of the expression levels of these
metabolism-related genes were constructed. Through the GO and KEGG functional analy-
ses, these metabolism-related genes were mainly linked to glycolipid metabolic processes,
such as the phospholipid, glycerolipid, glycerophospholipid, and cholesterol metabolism,
as well as fatty acid metabolism and biosynthesis, glycolysis/gluconeogenesis, and other
metabolic pathways (Figures 3C–E, S3C,D and S4A–D).

2.3. Construction and Characterization of Two Metabolic Subtype Models of Recurrent
Implantation Failure

Through the consensus clustering approach, RIFs were clustered in accordance with
expression profiling of 109 metabolism-related genes. The optimal clustering stability was
identified when K = 2, which was determined using a consensus matrix plot, a cumulative
distribution function (CDF) plot, relative alterations in the area under the CDF curve,
and a tracking plot (Figures 4A and S5A–C). The two metabolic subtypes were termed
subtype-A and subtype-B, including 31 and 39 patients, respectively. Principal component
analysis (PCA) revealed a remarkable difference between the two subtypes (Figure 4B).
The heatmap and boxplot revealed a notable heterogeneity in the expression levels of these
metabolism-related genes between two RIF subtypes (Figure 4C,D).

Gene set variation analysis (GSVA) was further conducted to explore any differences
in metabolic pathway enrichment between the two subgroups. As shown in Figure 4E,F, the
subtype A group was enriched in inflammasomes, inflammatory response, and adhesion
molecules. The subtype B group was enriched in the biosynthesis of unsaturated fatty acids,
fatty acid metabolism, mitochondrial fatty acid beta-oxidation, and cholesterol biosynthesis
and homeostasis. While subtype A might have connections with inflammation pathways,
subtype B was more closely associated with lipid metabolism.
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Figure 2. Data processing and DEGs identified of the derivation cohort. PCA of GSE58144, 
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Figure 2. Data processing and DEGs identified of the derivation cohort. PCA of GSE58144, GSE103465
and GSE111974 datasets before (A) and after (B) batch correlation. (C) RIF-related DEGs volcano
plot with log2FoldChange in the horizontal coordinate and −log10 (adjust p value) in the vertical
coordinate. (D) Heatmap of RIF-related DEG expression levels: pink indicates high gene expression,
and light blue indicates low gene expression. (E) Main BPs and (F) KEGG pathways enriched by RIF-
related DEGs. Each term’s p value is colored according to the legend. Abbreviations: BP: biological
process, DEG: differentially expressed gene, GO: Gene Oncology, KEGG: Kyoto Encyclopedia of
Genes and Genomes, PCA: principal component analysis, RIF: recurrent implantation failure.
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Figure 3. Screening of metabolism-related DEGs and enriched items in GO and KEGG analyses. Venn
diagram of (A) metabolic genes and upregulated DEGs, and (B) metabolic genes and downregulated
DEGs. (C) Enriched items in GO-BP analysis. (D) Enriched items in KEGG pathway analysis.
Each term’s p value is colored according to the legend. Different colored bubbles reflect different
pathway terms. (E) Net plot showing the top 5 signaling pathways enriched by KEGG analysis.
Abbreviations: DEG: differentially expressed gene, GO: Gene Ontology, BP: biological process, KEGG:
Kyoto Encyclopedia of Genes and Genomes.
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Figure 4. Construction of two metabolic subtypes of RIF based on metabolism-related DEGs.
(A) Consensus matrix heatmap when K = 2. (B) PCA plots demonstrating that RIF specimens
are categorized as two subtypes (subtype-A and subtype-B) in accordance with the expression pro-
filing of metabolism-related DEGs. (C) Heatmap visualizing the expression of metabolism-related
genes in the two subgroups. (D) Box plots showing the mRNA expression of characteristic genes
in two metabolic subtypes. * p < 0.05; ** p < 0.01; and *** p < 0.001. (E) Reactome and (F) KEGG
terms are utilized for GSVA illustrating the difference in metabolic pathways between two sub-
types. Abbreviations: DEG: differentially expressed gene, GSVA: gene set variation analysis, KEGG:
Kyoto Encyclopedia of Genes and Genomes. PCA: principal component analysis, RIF: recurrent
implantation failure.

DEGs were identified between the two clusters. To explore the underlying signaling
mechanisms, functional analyses were performed. A total of 296 DEGs were detected,
from which 98 genes were downregulated and 198 genes were upregulated in cluster 2, as
compared with cluster 1 (Figure 5A). GO enrichment analysis showed that the DEGs were
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enriched in the hormone metabolic process, alcohol metabolic process, peptidase regulator
activity, and endopeptidase regulator activity (Figure 5B). KEGG analysis showed that the
DEGs were enriched in arachidonic acid metabolism, retinol metabolism, and linoleic acid
metabolism (Figure 5C).
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Figure 5. DEGs analysis of two subtypes and functional analyses. (A) Volcano plot showing the DEGs
between the two subgroups. (B) Bar plot visualizing the biological processes enriched by GO analysis.
(C) Net plot showing the top 5 signaling pathways enriched by KEGG analysis. Abbreviations:
DEG: differentially expressed genes, BP: biological process, CC: cellular component, MF: molecular
function, GO: Gene Ontology, KEGG: Kyoto Encyclopedia of Genes and Genomes.

2.4. Selection of Characteristic Genes by Machine Learning Methods

Three algorithms were utilized for screening characteristic genes among key metabolism-
related genes. For the least absolute shrinkage and selection operator (LASSO) algorithm, we
selected the minimum criteria for building the LASSO classifier due to higher accuracy
by comparisons and 40 characteristic genes were identified (Figure 6A,B). For the ran-
dom forest algorithm, the top 10 characteristic genes with relative importance >0.5 were
determined (Figure 6C,D). For the support vector machine-recursive feature elimination
(SVM-RFE) algorithm, when the feature number was 28, the classifier had the minimum
error (Figure 6E). Following the intersection, 8 characteristic genes shared by the three algo-
rithms were finally identified (SRD5A1, POLR3E, PPA2, PAPSS1, PRUNE, CA12, PDE6D,
and RBKS; Figure 6F). Compared with the control group, the expression of PAPSS1 was
upregulated in the RIF group, while the other genes were downregulated.
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Figure 6. Selection of characteristic genes among key metabolism-related DEGs. (A) LASSO logistic
regression algorithm to screen associated genes with ten-time cross-verification. Each curve corre-
sponds to a single gene. (B) LASSO coefficient profiling. (C) Random forest for the relationships
between the number of trees and error rate. (D) The rank of genes in accordance with their relative
importance. (E) SVM-RFE algorithm for feature selection. (F) Venn diagram showing the overlapping
genes. Abbreviations: LASSO: least absolute shrinkage and selection operator, SVM-RFE: support
vector machine-recursive feature elimination.

2.5. Characteristics of Metabolism-Related Hub Genes

The analysis revealed a positive correlation between the expression levels of SRD5A1,
POLR3E, PPA2, PRUNE, CA12, PDE6D, and RBKS. PAPSS1 showed a significant negative
correlation with SRD5A1, POLR3E, CA12, and RBKS. Among these genes, the strongest
correlation existed between PAPSS1 and RBKS (Figure 7A). Correlation analysis between
the eight characteristic genes and all genes from the three datasets was carried out. The
50 genes with the strongest correlation were displayed in a heatmap (Figure S6). Based
on the correlation analysis results, the gene set enrichment analysis (GSEA) of the single
gene based on KEGG was prosecuted to evaluate signaling pathways involved in the
characteristic genes (Figure 7B–I). Among them, PAPSS1 was mainly involved in the
metabolic pathways and amino sugar and nucleotide sugar metabolism. PRUNE, PPA2
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and CA12 were mainly involved in the metabolic pathways, carbon metabolism and fatty
acid metabolism. RBKS was mainly involved in the carbon metabolism and propanoate
metabolism. SRD5A1 was mainly involved in the glycolysis/gluconeogenesis, steroid
hormone biosynthesis and carbon metabolism.
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Figure 7. The correlation analysis and GSEA signaling pathways involved in the characteristic genes.
(A) Interactions between characteristic genes at the molecular level. The red line represents positive
correlation, the green line represents negative correlation, and the darker the color, the stronger the
correlation. (B–I) The main signaling pathways that are significantly enriched in high expressions
of characteristic genes. The x-axis displays the enrichment fractions, and greater than 0 indicates a
positive correlation between genes and pathways, and less than 0 indicates a negative correlation.
Abbreviations: GSEA: gene set enrichment analysis.

2.6. Immunological Infiltration Features of Recurrent Implantation Failure

Immunological features were evaluated through the assessment of immune cell in-
filtration. There were also some interactions between immune cell populations across
RIF (Figure 8A). Compared with the control group, more activated B cells, mast cells, and
monocytes were found in RIF patients presenting higher immune infiltration levels (Figure 8B).
Moreover, as illustrated in Figure 8C, the analyses displayed positive interactions between
characteristic genes and immune cell infiltrations. The most strongly associated pairs included
SRD5A1 and immature B cell (r = 0.26, p < 0.001), POLR3E and type 17 T helper (Th17) cell
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(r = −0.42, p < 0.001), PPA2 and neutrophil (r = −0.41, p < 0.001), PRUNE and CD56bright
natural killer (NK) cell (r = −0.24, p = 0.002), CA12 and T follicular helper cell (r = 0.39,
p < 0.001), PDE6D and CD56bright NK cell (r = −0.44, p < 0.001), RBKS and CD56dim NK
cell (r = 0.47, p < 0.001), PAPSS1 and type 1 T helper (Th1) cell (r = −0.47, p < 0.001). Hence,
the characteristic genes might modulate immunological features during the occurrence
of RIF.
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negative correlation, and the bigger and darker the color, the stronger the correlation. (B) Box plots 
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0.05, * p < 0.05, and ** p < 0.01. (C) Correlation between each characteristic gene and infiltrating 
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Figure 8. Immunological infiltration features of RIF. (A) Heatmaps depicting the correlations between
distinct immune cell compositions in RIF. The size of the colored bubbles represents the strength
of correlation. The red bubble represents positive correlation, the blue bubble represents negative
correlation, and the bigger and darker the color, the stronger the correlation. (B) Box plots depicting
the infiltration levels of immune cells in RIF (orange) and normal (blue) tissues. ns p ≥ 0.05, * p < 0.05,
and ** p < 0.01. (C) Correlation between each characteristic gene and infiltrating immune cells. The
size of the dots represents the strength of the correlation between genes and immune cells; the larger
the dots, the stronger the correlation. The color of the dots represents the p value. Abbreviations: RIF:
recurrent implantation failure.
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2.7. Diagnostic Efficacy and Validation of Characteristic Genes for Recurrent Implantation Failure
Prediction

In the three combined cohorts, the diagnostic performance of each characteristic gene
in RIF prediction was evaluated. The AUC values of the receiver operator characteristic
(ROC) curves are shown in Figure 9A, indicating that these characteristic genes enabled
to estimate the occurrence of RIF. When all of them were fitted into one variable, the area
under curves (AUC) of the ROC curve was 0.902. Then, the diagnostic performance of
the characteristic genes was validated by our patient cohort. Clinical characteristics of the
recruited healthy individuals and RIF patients are presented in Table 1. The AUC was
0.867, which indicates that these eight genes were also potentially diagnostic markers for
RIF (Figure 9B).Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 12 of 23 
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curves estimating the diagnostic performance of characteristic genes (A) in the combined GSE58144,
GSE103465 and GSE111974 datasets (AUC = 0.902), and (B) in the validated cohort patients enrolled
from PKUPH (AUC = 0.867). (C) Establishment of a nomogram integrating characteristic genes
for predicting RIF. In the nomogram, each variable corresponds to a score, and the total score can
be calculated by adding the scores for all variables. (D) Calibration curve estimates the prediction
accuracy of the nomogram. (E) Decision curve analysis shows the clinical benefit of the nomo-
gram. Abbreviations: AUC: area under curve, RIF: recurrent implantation failure, PKUPH: Peking
University People’s Hospital, ROC: receiver operating characteristic.
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Table 1. Characteristics of patients in validation cohort from Peking University People’s Hospital.

Clinical Parameter Control N = 20 RIF N = 20 p Value

Age (years) 34.00 ± 3.34 36.85 ± 2.46 0.004
BMI (kg/m2) 20.10 ± 5.17 21.90 ± 5.79 0.306

Infertility duration (years) 3.11 ± 1.76 4.30 ± 2.23 0.072
Infertility 0.507

Primary infertility 14 (70.00%) 12 (60.00%)
Secondary infertility 6 (30.00%) 8 (40.00%)

Basal FSH (IU/L) 8.75 ± 1.77 8.50 ± 5.12 0.838
Basal LH (IU/L) 4.21 ± 1.81 3.40 ± 1.88 0.179

Prolactin (pg/mL) 12.37 ± 5.50 12.53 ± 6.44 0.936
Basal estradiol (pg/mL) 38.70 ± 13.11 67.76 ± 117.02 0.277

Androgen (pg/mL) 1.84 ± 0.60 1.73 ± 0.96 0.689
AMH (ng/mL) 3.55 ± 2.50 5.32 ± 7.08 0.301

AFC 6.67 ± 2.64 5.08 ± 2.76 0.083
Endometrial type 0.885

Type-A 11 (64.71%) 9 (64.29%)
Type-B 4 (23.53%) 4 (28.57%)
Type-C 2 (11.76%) 1 (7.14%)

Abbreviations: AFC, antral follicle count; AMH, anti-Müllerian hormone; BMI, body mass index; FSH, follicle-
stimulating hormone; LH, luteinizing hormone; RIF, recurrent implantation failure.

Next, to predict the prevalence of RIF in patients, a diagnostic nomogram was created
based on the eight characteristic genes (Figure 9C). The calibration curves revealed that the
line graph model predictions were nearly identical to those of the ideal model (Figure 9D).
In addition, the single predicted risk score in the decision curve analysis or the composite
genetic model was better than that in the random model. These results imply that decision-
making based on the line graph model could be beneficial for RIF patients (Figure 9E).

2.8. Verification of Characteristic Genes

In order to experimentally validate the bioinformatics results, real time-quantitative
PCR (RT-qPCR) experiments were performed to compare the expression levels of eight
characteristic genes in the endometrium of 10 RIF patients and 10 healthy individuals.
The results revealed that, in comparison with the healthy individuals, the mRNA levels
of SRD5A1, POLR3E, PPA2, PRUNE, CA12, and RBKS were significantly lower, and the
mRNA expression levels of PAPSS1 were significantly higher in the RIF group. More-
over, the mRNA levels of PDE6D in the RIF group were lower than in the control group;
however, there was no statistically significant difference between the two groups. This
observation indicated that the data mining results are reliable and have further research
value (Figure 10).

2.9. Establishment of the microRNA-Transcription Factor-Genes Network

To investigate the associated molecular mechanism, the RegNetwork database was
utilized to identify upstream miRNAs and TFs of the eight target genes. Moreover, their
interaction pairs (potentially involved in RIF regulation) were retrieved, to generate the
regulatory interaction network (Figure 11). In this network, hsa-miR-134 was confirmed
as a coregulator of PAPSS1 and POLR3E, hsa-miR-206 was confirmed as a coregulator
of PAPSS1 and PDE6D, and hsa-miR-485-5p was confirmed as a coregulator of PRUNE
and PDE6D. Furthermore, hsa-miR-580, hsa-miR-30a, and hsa-miR-30b were confirmed as
coregulators of PDE6D and POLR3E. In addition, the TFs of MYC and YY1 were identified
as a coregulator of SRD5A1, POLR3E, and PDE6D; the TFs of MAX and USF1 were proven to
be coregulators of SRD5A1 and POLR3E, and the TF of EGR1 was found to be a coregulator
of SRD5A1. In addition, RBKS and PAPSS1, the TFs of HNF4A and BPTF were confirmed
to be coregulators of RBKS and PRUNE, and the TFs of REST and SP1 were found to be
coregulators of PRUNE and POLR3E.
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3. Discussion

In infertile couples, RIF is a highly frustrating and distressing reproductive problem.
Understanding its pathogenesis is helpful for its treatment and for improving patient
outcomes [18]. Timely implantation of the blastocyst into the uterine endometrium is
essential for the initiation of pregnancy. During early pregnancy in mammals, metabolic
regulation plays important roles in embryo development and uterine receptivity, ultimately
influencing pregnancy efficiency [4–8,19]. Therefore, uncovering metabolic characteristics
related to endometrial receptivity and exploring potential druggable mechanisms can have
a profound impact on improving the outcome of RIF patients.

Nowadays, the etiology, effective diagnostic markers, and therapeutic strategies of
RIF remain to be fully elucidated. In this study, we studied the pathological mechanisms
of RIF from a new perspective. Furthermore, we explored a new strategy for the diag-
nosis of RIF, based on bioinformatic analysis combined with machine learning. Overall,
we probed the involvement of metabolism in the pathological mechanisms of RIF. We re-
vealed the metabolic characteristics in the endometrium during the days 20–24 in the luteal
phase of the menstrual cycle: (1) Through differential expression analysis, we obtained
109 metabolism-related genes in RIF and investigated their specific molecular mechanisms
through functional enrichment analysis. (2) We proposed a novel RIF classification, contain-
ing two subtypes, according to their metabolic features, and analyzed their correlation with
immune infiltration levels. With this approach, we gain a better understanding of the poten-
tial molecular metabolic processes during the occurrence of RIF. (3) We implemented three
machine learning algorithms to accurately explore the metabolic genes related to endome-
trial receptivity, including SRD5A1, POLR3E, PPA2, PAPSS1, PRUNE, CA12, PDE6D, and
RBKS, which enabled the identification of RIF occurrence through metabolic characteristics.
(4) Then, the diagnostic value of the eight gene expression signatures was evaluated by
ROC analysis. This model was validated by an external clinical patient cohort from Peking
University People’s Hospital (PKUPH). In addition, the eight key genes involved in RIF
were validated in the endometrium samples of the enrolled patients. (5) Higher immune
cell infiltration levels were found in RIF, which were positively linked to the characteristic
genes. Our study provided some new insights into the potential pathogenesis of RIF and
future research direction in this field.

To establish endometrial receptivity, a large amount of energy metabolism is required
for the adaptation to changes in endometrial morphology, regulation of the endometrial
environment and function, and the preparation for embryo implantation [20]. Among
them, glucose and lipid metabolism play an important role in cellular energy and mate-
rial sources [21]. In the present study, the functional enrichment analysis has uncovered
1185 DEGs between the RIF group and the control group. In addition, 109 overlapped
metabolism-related genes were mainly involved in specific glucose and lipid metabolism
processes. Previous studies have indicated that adequate glucose uptake and normal
metabolism were essential for endometrial differentiation and decidualization, providing a
nutritional and receptive milieu that supports embryo implantation [22]. The process of
endometrial decidualization is inseparable from the activation of glucose metabolism [23].
In RIF patients, glucose transporter 1 expression in endometrial stromal cells is decreased,
indicating impaired glucose metabolism [24]. When the embryo is implanted, the en-
dometrium undergoes epithelial-mesenchymal transition. During this stage, the movement
of epithelial cells also depends on sufficient energy supply [25]. In addition, progesterone
regulates glucose metabolism through the glucose transporter 1, to promote endometrial
receptivity. Such receptivity indirectly reflects the impact of energy metabolism/glycolysis
on embryo implantation [26]. Obesity has various deleterious effects on human repro-
duction [27]. Substantial evidence suggests that an increased body mass index, as well
as dyslipidemia and LDL-C, not only affect the quality of the oocytes and embryos, but
also interfere with embryo implantation and endometrial receptivity, resulting in poor
pregnancy outcomes [28–30]. As the essential energy sources of the human body, fatty
acids contribute to successful embryo implantation. In both animal and human studies,
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prostaglandin and phospholipid-derived endocannabinoids are two widely studied lipid-
derived molecules involved in the establishment of endometrial receptivity [6]. During
implantation, prostaglandin levels increase and affect endometrial receptivity through
interactions with endometrial epithelial and stromal cells. Compared with fertile con-
trols, prostaglandin synthesis appears to be disrupted in RIF patients [31]. The levels
of most phospholipids remarkably increase in the stroma immediately surrounding the
implantation sites, uncovering the complexity of the biological processes involved in em-
bryo implantation [32]. Lysophosphatidic acid 3 signaling is a positive factor in embryo
implantation and decidualization. RIF patients have decreased levels of LPA3 in the en-
dometrium [31]. Thus, glucose and lipid metabolism imbalance in the endometrium may
be a phenotypic alteration that occurs in RIF patients.

Based on the expression profiling of 109 metabolism-related genes, RIF patients were
clustered into two subtypes, which had different metabolic characteristics. GSVA analysis
further identified that subtype B was more closely associated with lipid metabolism, while
subtype A might be related to inflammation pathways. An inflammatory process within
the endometrium may cause cellular and biochemical alterations, leading to the risk of
RIF. Endometrial inflammation changes the mechanisms securing the timely arrival of a
viable blastocyst in a receptive endometrium [33]. Studies have demonstrated that the
expression of the genes potentially associated with embryo receptivity and decidualization
is likely downregulated in the endometrium in RIF cases with chronic endometritis [34]. On
the other hand, embryo attachment-associated inflammation is a balanced and delicately
controlled process. Inflammation-prone locations are favorable sites for embryo implan-
tation. In women with RIF, a local biopsy-induced inflammatory response may facilitate
the preparation of the endometrium for implantation [35]. Therefore, this new classification
helps to accurately determine the RIF etiology and may provide targeted specific intervention
strategies to increase pregnancy probability and promote reproductive health.

Then, the eight metabolism-related genes were selected by performing LASSO regres-
sion analysis, and by the random forest and the SVM-RFE algorithms. These genes included
SRD5A1, POLR3E, PPA2, PAPSS1, PRUNE, CA12, PDE6D, and RBKS. According to the
GSEA analysis, these genes are involved in various metabolic pathways, including amino
acid, sugar, and nucleotide sugar metabolism, carbon metabolism, propanoate metabolism,
glycolysis/gluconeogenesis, steroid hormone biosynthesis, fatty acid metabolism, and
others. They influence the function of the endometrium from different metabolic pathways.
A recent study has demonstrated that SRD5A1 deficiency leads to impaired decidualization,
structural and functional changes to decidual blood vessels, and transcriptomic changes
affecting angiogenesis signaling pathways [36]. SRD5A1 silencing has led to a decrease
in the progesterone metabolism rate (with higher concentrations of unmetabolized pro-
gesterone), indicating that SRD5A1 plays a crucial role in progesterone metabolism [37].
SULT1E1 and PAPSS1 are responsible for estrogen sulfation, by providing enzymes and a
universal sulfate donor [38]. The expression levels of PAPSS1 during the decidualization of
human endometrial stromal fibroblast cells were variable [39]. PPA2 is an important mito-
chondrial metabolic gene, and its abnormal expression levels can result in mitochondrial
dysfunction, leading to embryo implantation failure [40,41]. The expression levels of CA12
are significantly upregulated in macrophages of human hepatocellular carcinoma, which
can enhance the epithelial mesenchymal transition ability of cancer cells and promote
tumor metastasis [42]. The changes prepared for implantation in the endometrium include
epithelial-mesenchymal transition and proliferation of endometrial cells, suggesting that
CA12 mediated carbon metabolism balance also plays an important role in the formation of
endometrial receptivity.

In this study, the immunological features of RIF and the correlation between eight
hub genes and immune cell infiltration levels were analyzed through ssGSEA. As depicted
above, the results have shown that most innate and adaptive immune cells presented
higher infiltration levels in RIF, compared with control patients. A previous study has
indicated that both innate (cytotoxic NK cells, M1 macrophages) and adaptive (Th1 cells,
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Th17 cells, and B cells) immune cell activation led to embryoblast miscarriage in RIF
patients [43]. Abnormal uNK cells may generate adverse outcomes during embryo invasion,
such as vascular remodeling, local ischemia, and oxidative stress, which are detrimental to
implantation [44]. A recent meta-analysis showed that the proportion of CD56+ uNK is
significantly increased in RIF patients, when compared with healthy controls [45]. Further
experimental research is still needed to elucidate the potential pathophysiology of these
immunological characteristic changes.

Furthermore, a risk signature model was established based on gene expression profiles
and the coefficients of their association with RIF. Based on this model, the AUC of the
ROC curves of the enrolled cohort from our own center was as high as 0.867. With sufficient
evidence, we constructed an integrative nomogram to allow for a better prediction of the occur-
rence of RIF. Last but not least, the eight metabolism-related genes were validated by RT-qPCR
in samples from patients from our center. Then, a miRNA-TF-genes network was constructed
based on the RegNetwork database, to provide clues for further mechanistic exploration. Further
attention to these essential genes may help doctors better manage RIF patients.

Up to now, our study is the first to explore the involvement of metabolism in the
pathological mechanisms of RIF. The eight-gene-based metabolism-related characteristic
model and the novel classification of RIF, containing two subtypes with different metabolic
characteristics, have not been previously published. Nevertheless, in the current study,
several limitations should be acknowledged. First, given the complexity and variability of
metabolism, larger sample sizes and broader perspectives are needed in order to explore
the relations and associations between metabolism and RIF. Second, the sample size of our
study was relatively small. Moreover, in vivo and in vitro basic experimental verification
is also needed, to elucidate the molecular mechanisms and increase the reliability and
accuracy of these results. Additionally, functional validation of the constructed miRNA-
mRNA network should be performed in future research.

4. Materials and Methods
4.1. Data Preprocessing

Raw gene expression data of RIF patients were accessed from the GSE58144 [46],
GSE103465 [47] and GSE111974 [48] datasets of the Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/gds, accessed on 9 February 2023) database, using the
“GEOquery” package [49]. The three datasets were separately based on the platforms
of GPL15789 (A-UMCU-HS44K-2.0), GPL16043 [GeneChip® PrimeView™ Human Gene
Expression Array (with External spike-in RNAs)] and GPL17077 (Agilent-039494 SurePrint
G3 Human GE v2 8x60K Microarray). They contained endometrium samples from 43 RIF
patients and 72 healthy individuals, 3 RIF patients and 3 healthy individuals, 24 RIF patients
and 24 healthy individuals, respectively. Their expression profiles were incorporated, and
batch effects were directly adjusted utilizing the Combat function of the “sva” package [50].
PCA was applied for the dimensional reduction of the transcriptomics data and for evaluating
the performance of the Combat function [51].

4.2. Differentially Expressed Genes Screening

The “limma” R package [52] was applied to perform DEG screening analysis between
the RIF and the healthy control groups. The occurrence of false positives was corrected by the
Benjamini-Hochberg multiple-test method. To uncover DEGs, volcano maps and heatmaps
were generated using the “ggplot2” and the “pheatmap” packages [53,54]. Statistically
significantly upregulated or downregulated genes were used for subsequent analysis.

A total of 1660 human metabolism-related genes (from 86 metabolic pathways) were obtained
from the KEGG database (https://www.genome.jp/kegg/, accessed on 9 February 2023) [55].
Differentially expressed metabolism-related genes were identified by intersecting DEGs and
metabolic genes and further displayed using the “VennDiagram” package [56].

https://www.ncbi.nlm.nih.gov/gds
https://www.genome.jp/kegg/
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4.3. Molecular Subtypes Identification

Consistency clustering was a resampling-based approach for identifying each member
and their subgroup number, as well as validating the cluster. To discover various metabolic
patterns, on the basis of those significant metabolism-related DEGs, the “ConsensusClus-
terPlus” package [57] was implemented.

4.4. Functional Enrichment Analysis

To explore the biological significance of DEGs, we performed Gene Ontology (GO)
classification [58] and KEGG pathway analysis using the “clusterProfiler” package [59].
Furthermore, to explore the differences in biological processes between the different sub-
groups, the KEGG and Reactome gene sets were downloaded from the Molecular Signature
Database (http://software.broadinstitute.org/gsea/msigdb, accessed on 9 February 2023)
as the reference set [60]. GSVA was performed to demonstrate the signaling pathways
alteration between the two clusters using the “GSVA” R package [61]. GSEA was imple-
mented for functionally elucidating the biological significance of characteristic genes. For
achieving a normalized enrichment score for each analysis, gene set permutations with
1000 times were conducted. Only terms with a false discovery rate < 0.05 were considered
as statistically significant enrichment.

4.5. Characteristic Gene Selection

Three machine learning algorithms, LASSO [62], random forest [63] and SVM-RFE [64],
were employed for screening key genes. We used the “randomForest” package [65] for
random forest and the “glmnet” package [66] to perform LASSO logistic regression with a
turning/penalty parameter utilizing a 10-fold cross-verification. The SVM classifier was
created using the R package “kernlab” [67]. The three aforementioned classifiable models’
overlapping genes were then uncovered.

4.6. Receiver Operator Characteristic Analysis and Nomogram Construction

Subsequently, the ROC curves were plotted, and the AUC were separately calculated to
evaluate the performance of each signature, using the “rms” and “ROCR” packages [68,69]. Next,
characteristic genes were incorporated to establish a nomogram using logistic regression
analysis. The calibration curve was utilized for evaluating the accuracy of the nomogram.
The clinical usefulness of the nomogram was assessed through decision curve analysis.

4.7. Patient Recruitment for External Validation

Human endometrial tissues were collected from women attending the Department
of Obstetrics and Gynecology, PKUPH, China. All samples were surplus tissue from
endometrial biopsies obtained from patients for diagnostic purposes, between January
2018 and December 2022. The timing of the endometrial biopsy was 5 days after ovulation
(evaluated by ultrasonography), which is equivalent to LH + 7 in a natural cycle. The
patients in the RIF group had suffered at least three embryo transfer failures, in which at
least four morphologically high-grade embryos were transferred in total. There were no
other obvious explanations for the occurrence of RIF. The control group included women
who received artificial reproductive technology due to obstruction of the fallopian tube or
male infertility and confirmed their ability to conceive.

The total RNA was extracted from patient tissue with TRIzol® (Tiangen Biotech
Co., Ltd., Beijing, China) and reverse transcribed into cDNA using the FastQuant RT Kit
(Tiangen Biotech Co., Ltd., Beijing, China). RT-qPCR was performed on a MiniOpticon
Real-Time PCR #CFB3120EDU (Bio-Rad, Hercules, CA, USA) machine, using the SuperReal
PreMix Plus reaction mixture (SYBR Green) (Tiangen Biotech Co., Ltd., Beijing, China).
Gene expression levels relative to GAPDH expression levels were assessed using the 2−∆∆Ct

method. Experiments were conducted in triplicate. Primer sequences (Sangon Biotech,
Shanghai, China) for the reference and candidate genes are listed in Table 2.

http://software.broadinstitute.org/gsea/msigdb
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Table 2. PCR primers.

Gene Forward Primer Sequence Reverse Primer Sequence

PRUNE CTTGAAGATAGGCATGGAGGTTAGG CAACGATCTGTGAAGTCCTGGAAC
SRD5A1 CCTGCCGCTCTACCAGTACG TCCTCCTCGCATCAGAAATGGG

RBKS GAAGCAGTTCCTGTAGCAGCATC TGGTGTGTAAGGTTGGCAAAGATTC
PPA2 AAGGGAAGATATTCGCCACATAGC GCCACCAAGGAGCCAATGAATC

PDE6D TGAACCTTCGGGATGCTGAGAC CCACACCAGGGACAGACAGG
PAPSS1 AGCAACCAATGTCACCTACCAAG CAACCACGAAAGCCACCTCTG
CA12 TCTTGGTGGCTGGCTTGTAAATG CATCTGTATTGTGGTGGTGGTGTC

POLR3E GCCAACTTGATGAGCCTCCTG GACCAACATCGCCACCTTCTG

4.8. Immune Cell Infiltration Evaluation

Single-sample gene set enrichment analysis (ssGSEA) of the R package “GSVA” was
utilized to evaluate the infiltration levels of immune cells in individuals with different
metabolic patterns [70].

4.9. Metabolism-Related Transcription Factor/miRNA Regulatory Network Construction

To study the regulatory mechanisms related to the eight crucial genes, TFs, and miR-
NAs that bind to hub genes, the RegNetwork target gene prediction database
(http://www.regnetworkweb.org/, accessed on 12 February 2023) was used. A TF-miRNA-
gene regulatory network was constructed and visualized using Cytoscape (Version 3.9.1).

4.10. Statistical Analysis

Statistical analyses were performed using R software (Version 4.2.2). Continuous
variables were presented as the mean ± SD (standardized deviation). Categorical variables
were described by frequency (n) and proportion (%). Statistically significant differences
among variables were assessed using Student’s t-tests, nonparametric tests, Chi-square
tests, or one-way ANOVA tests. The correlation between the variables was determined
using Pearson’s or Spearman’s correlation test. All statistical tests were two-tailed, and a p
value threshold of 0.05 was considered statistically significant.

5. Conclusions

In summary, our study investigated the specific metabolism-related molecular mech-
anisms of RIF and determined eight characteristic metabolism-related genes (SRD5A1,
POLR3E, PPA2, PAPSS1, PRUNE, CA12, PDE6D and RBKS) that could possibly predict the
occurrence of RIF. Moreover, we proposed a new molecular classification comprising two
RIF subtypes with different metabolic characteristics. Thus, our study may provide new
insights into the pathogenesis of metabolic disorders affecting human reproductive health.
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