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Abstract: Chromosomal rearrangements play a significant role in the evolution of fish genomes,
being important forces in the rise of multiple sex chromosomes and in speciation events. Repetitive
DNAs constitute a major component of the genome and are frequently found in heterochromatic
regions, where satellite DNA sequences (satDNAs) usually represent their main components. In this
work, we investigated the association of satDNAs with chromosome-shuffling events, as well as their
potential relevance in both sex and karyotype evolution, using the well-known Pyrrhulina fish model.
Pyrrhulina species have a conserved karyotype dominated by acrocentric chromosomes present in all
examined species up to date. However, two species, namely P. marilynae and P. semifasciata, stand
out for exhibiting unique traits that distinguish them from others in this group. The first shows a
reduced diploid number (with 2n = 32), while the latter has a well-differentiated multiple X1X2Y
sex chromosome system. In addition to isolating and characterizing the full collection of satDNAs
(satellitomes) of both species, we also in situ mapped these sequences in the chromosomes of both
species. Moreover, the satDNAs that displayed signals on the sex chromosomes of P. semifasciata
were also mapped in some phylogenetically related species to estimate their potential accumulation
on proto-sex chromosomes. Thus, a large collection of satDNAs for both species, with several
classes being shared between them, was characterized for the first time. In addition, the possible
involvement of these satellites in the karyotype evolution of P. marilynae and P. semifasciata, especially
sex-chromosome formation and karyotype reduction in P. marilynae, could be shown.

Keywords: satDNAs; lebiasinidae; sex chromosomes; karyotipic reduction

1. Introduction

Fishes are an incredibly diverse group with many chromosomal variations, includ-
ing polyploidy, supernumerary chromosomes, distinct sex chromosome systems, and
polymorphisms [1]. In fact, most cases of postzygotic isolation are caused by genetic in-
compatibilities, among which chromosomal rearrangements play a fundamental role [2–4].
Chromosomal changes have the potential to limit introgression, thus facilitating the origin
and maintenance of reproductive isolation through recombination suppression [5,6]. How-
ever, one of the most interesting evolutionary events refers to the emergence of neo-sex
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systems, when multiple sex chromosomes arise because of rearrangements between an
autosome and a sex chromosome. This evolutionary step, also known as sex chromo-
some turnover, has the potential to suppress recombination next to breakpoints, creating
new linkage groups between genes from distinct chromosomes, increasing the number of
sex-linked genes, and accelerating the accumulation of genetic incompatibilities between
populations [7].

The impact of chromosomal rearrangements in fish karyotype evolution has been
studied primarily from a cytogenetic point of view, with a particular emphasis on the
chromosomal mapping of repetitive DNA sequences. The latter has proven to be a valu-
able source of information on the role of such sequences in genome organization and
evolution [8,9]. Satellite DNAs (satDNAs) are one of the most common repeated sequences,
forming extensive arrays of largely similar repeating units (monomers) that make up
a significant percentage of genomes (reviewed in [10]). Recently, given the integration
of cytogenetics with high-throughput sequencing data from next-generation sequencing
methods (NGS), the whole collection of different satDNA families (satellitome) of several
species has been characterized, providing insights into several evolutionary issues, such
as karyotype evolution, genome diversity, and phylogenetic relationships [11–20]. These
satellites (satDNAs) are also thought to play a role in the evolution and structure of sex
chromosomes, as well as chromosome-based speciation [13,14,21–25].

Pyrrhulina Valenciennes 1846 (Characiformes, Lebiasinidae) is the most diverse genus
of the fish subfamily Pyrrhulininae, with 19 valid species [26]. Many species remain un-
explored due to their small sizes and, thus, difficult sampling; consequently, the genus
presents unsolved taxonomic issues [27]. Recent research, however, has led to a bet-
ter understanding of the evolution of Lebiasinidae species, including several Pyrrhulina
ones, particularly from a cytogenetic and molecular genetics standpoint [28–36]. In
general, about half (i.e., nine out of the 19) Pyrrhulina species have been cytogeneti-
cally documented, demonstrating a quite conserved diploid chromosome number, rang-
ing from 40 to 42 chromosomes with karyotypes predominantly formed by acrocentric
chromosomes [28–30,37]. Aside from distinctive karyotypes and diploid numbers, ge-
nomic content comparisons among all analyzed species reveal a significant degree of
similarity between their genomes, with most of the variations related to their repetitive
content [30]. Most species have multiple 5S rDNA and 18S rDNA sites, with some species
having a syntenic arrangement of these rDNAs [28–30]. Among all Pyrrhulina species,
P. marilynae and P. semifasciata stand out for exhibiting characteristics that distinguish them
from other species in the genus. In the first case, P. marilynae shows a significant karyotypic
reduction, presenting 2n = 32 chromosomes with four metacentric pairs not observed in
other species, presumably due to secondary fusions [30]. P. semifasciata, on the other hand,
contains the sole morphologically differentiated sex chromosome system found in the
genus, i.e., the multiple X1X1X2X2/X1X2Y system [29].

In this study, we selected those two Pyrrhulina species that underwent substantial, cy-
togenetically visible chromosomal rearrangements to examine the involvement of satDNAs
in these chromosome-shuffling events and their putative role in both sex and karyotype
evolution. Apart from performing a comprehensive analysis of their satellitomes, the
satDNAs located on P. semifasciata’s sex chromosomes were also mapped in two phyloge-
netically related species (P. brevis e P. obermulleri) to check their possible accumulation on
proto-sex chromosomes.

2. Results
2.1. SatDNA Content of P. marilynae and P. semifasciata

We applied the satMiner pipeline using short-read libraries of P. semifasciata (female)
and P. marilynae (for more detailed information, see the material and methods section).
After three iterations of each of the satMiner protocols, we found 70 and 71 satDNA families
for P. marilynae (Pma) and P. semifasciata (Pse), respectively. The repeat unit lengths ranged
from 23 to 4663 bp, with a median of 443.5 bp for P. marilynae, and from 6 to 2510 bp, with
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a median of 39 bp in P. semifasciata. In P. marilynae, the A + T content of satDNAs ranged
from 39.2 to 71.8% with a mean of 60%, whereas in P. semifasciata, it ranged from 39.2 to
78.5% with a mean of 60%. In total, 64 and 77 satDNAs in P. marilynae and P. semifasciata,
respectively, had an A + T content of more than 50%. Long satDNAs (>100 bp sensu [12])
were predominant in both satellitomes, with 39 and 44 satDNA families in P. marilynae
and P. semifasciata, respectively. The complete results for each satellitome are described
in Tables S1 and S2. Sequences are available on the NCBI-Genbank, under the accession
numbers OR094701-OR094771 (P. semifasciata) and OR094772-OR094841 (P. marilynae).

2.2. Chromosomal Distribution of PmaSatDNA in P. marilynae

To examine the chromosomal location and distribution of the PmaSatDNAs, we used
both female and male mitotic metaphase plates of P. marylinae in our two-color fluorescence
in situ hybridization (FISH) experiments. Within 10 successfully amplified satDNAs
families, six of them produced visible FISH signals, yielding the same result in both sexes
(Figure 1). PmaSat04, PmaSat07, and PmaSat10 were mostly found in the telomeric and
centromeric regions of most chromosomes, with the presence of bitelomeric signals for
PmaSat04 and PmaSat10 (Figure 1). In addition, PmaSat06, PmaSat07, PmaSat09, and
PmaSat10 were observed in the pericentromeric regions of some chromosomes (Figure 1).
The satDNAs PmaSat02, PmaSat03, and PmaSat08 did not produce any FISH signal.
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Figure 1. Metaphase plates of Pyrrhulina marilynae highlighting the chromosomal location
PmaSatDNAs. The satDNA family names are indicated on the left top, in red (Atto550-labeled)
or green (Atto488-labeled). Scale bar = 10 µm.

2.3. Chromosomal Distribution of PseSatDNA in P. semifasciata

To examine the chromosomal location and distribution of PseSatDNAs, we used both
female and male mitotic metaphase plates of P. semifasciata in the same two-color FISH
sets as before for P. marilynae. Within the 16 successfully amplified satDNA families, ten
produced visible FISH signals, yielding the same result in both sexes, except the ones located
on the sex chromosomes. Most of the analyzed PseSatDNAs were found in the centromeric
and pericentromeric regions of the autosomal chromosomes (Figure 2). PseSat01, PseSat04,
PseSat38, and PseSat55 hybridized in the autosomes and sex chromosomes of P. semifasciata
(Figure 2). PseSat01, the most abundant satellite DNA, was located on two autosomes, the
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X2 and the Y chromosome (Figures 2 and S1). The sequences PseSat06, PseSat32, PseSat39,
PseSat57, PseSat61, and PseSat67 did not produce any visible FISH signals.
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Figure 2. Male metaphase chromosomes of Pyrrhulina semifasciata after FISH with 10 PseSatDNAs.
The satDNA family names are indicated in the top left corner in red (Atto550-labeled) or green
(Atto488-labeled). The sex chromosomes X1, X2, and Y are indicated. Scale bar = 10 µm.

In all experiments, a second FISH experiment using PseSat01 and/or the Y-specific
PSEMI-Y probe was carried out to accurately identify the X1, X2, and Y sex chromosomes
(Figure 3).
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Figure 3. Male and female metaphase plates of Pyrrhulina semifasciata showing that the hybridization
pattern of PseSat01 (first column) is coincident with the X2 and Y sex chromosomes, as indicated by
the whole-chromosome painting with the PSEMI-Y probe (second column), which is derived from
the microdissection of the Y chromosome. Scale bar = 10 µm.
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2.4. Chromosomal Distribution of PseSatDNA in Other Pyrrhulina Species

All PseSatDNAs located on the sex chromosomes of P. semifasciata (i.e., PseSat01,
PseSat04, PseSat38, and PseSat55) were also hybridized against P. obermulleri, P. brevis,
and P. marilyanae metaphase chromosomes. All these satDNAs delivered evaluable results
in all species (Figure 4), except for PseSat38, which was not visible in the chromosomes
of P. obermulleri (Figure 4c). PseSat04 hybridized in the centromeric region of almost all
chromosomes in P. obermulleri and P. brevis (Figure 4b,f), whereas in P. marilynae, visible
signals were seen in the centromeric, pericentromeric, or telomeric regions on most chromo-
somes (Figure 4j). PseSat01, on the other hand, was present in only two chromosome pairs
in P. obermulleri and P. marilynae (Figure 4a,i) and in nearly all chromosomes in P. brevis
(Figure 4e). PseSat55 was found in the centromeric and telocentromeric regions of most
P. obermulleri and P. brevis chromosomes (Figure 4d,h). In P. marilynae, on the other hand,
it was mapped exclusively in the centromeric region of most chromosomes (Figure 4l).
Except for PseSat38, which was not present in P. obermulleri, and PseSat01, which did not
exhibit visible signals in P. marilynae proto-sex pairs, all three species had at least one pair of
putative proto-sex pairs that exhibited positive signals for each of the selected PseSatDNAs
(Figure 5). Again, in all slides, a second FISH experiment with the Y-specific PSEMI-Y
probe was carried out to accurately identify the proto-sex chromosomes.
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Figure 4. Metaphase plates of Pyrrhulina obermulleri (a–d), P. brevis (e–h), and P. marilynae (i–l)
highlighting the chromosomal location of PseSatDNAs that were mapped in the sex chromosomes of
P. semifasciata. The satDNA family names are indicated in the upper left in red (if labeled with Atto550-
dUTP) or green (if labeled with Atto488-dUTP). The arrows indicate the proto-sex chromosomes.
Scale bar = 10 µm.
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chromosomes, PseSat55 is found in the pericentromeric regions of six autosomes in both 
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Figure 5. (A) Pyrrhulina semifasciata male (first column) and female (second column) sex chromosomes
highlighting the hybridization pattern of the four PseSatDNAs that produced visible signals, with each
line matching to a satellite sequence indicated on the left. The third, fourth, and fifth columns show the
hybridization patterns of those satellites in the P. obermulleri, P. brevis, and P. marilynae chromosomes,
respectively. Scale bar = 10 µm. (B) Phylogenetic relationships of Pyrrhulina species (green lines)
based on [38] plotted with main events of origin, loss, and T/R (transposition or recombination) of
PseSatDNAs, and origin of the multiple sex chromosome system (MSC) (pink lines).

2.5. Minimum Spanning Trees: MSTs

We have chosen PseSat55 to generate minimum spanning trees (MST). The other
satDNAs clustered in P. semifasciata’s sex chromosomes contain more than 150 bp, making
it impossible to create an MST. In addition to the identical locations of the X1 and Y
chromosomes, PseSat55 is found in the pericentromeric regions of six autosomes in both
males and females (Figure 6). Even among the less common haplotypes, this sharing is
observed, with only a few sequences being exclusive, mostly in females. The MST results
show that PseSat55 is homogeneous in both sexes, with just a few unique haplotypes,
suggesting a certain degree of recombination between the X and Y chromosomes.
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Figure 6. Linear MSTs of PseSat55 obtained from reads of females (pink) and males (green). The
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3. Discussion
3.1. General Features P. marilynae and P. semifasciata Satellitomes

Here, we show that a significant proportion of satDNA families (38 satDNAs) are
shared between the satellitomes of P. marilynae (70 satDNAs) and P. semifasciata (71 satDNAs)
(Table S4). Such a scenario (i.e., the conservation and sharing of satDNA families) is not an
exclusive feature of Pyrrhulina but is also observed in other fish species [39–41], as well as
several vertebrates such as snakes [42], primates [43], and true toads [44]. According to the
library hypothesis [45], satellite sequences are preserved over long evolutionary timescales
because closely related species share a common library of these sequences, with quantitative
changes brought on by differential amplification. Investigations suggested that the satDNA
libraries can disappear or be formed de novo following cladogenetic events [46]. According
to this theory, the acquisition of a biological function that will ultimately be preserved by
natural selection is necessary for conservation over a lengthy evolutionary time. Although
both species analyzed retained about half of their satDNA families, evidencing a common
library between them, the observed differences in the abundance of these shared families
are also remarkable, a fact predicted by the library hypothesis [45]. Among the 38 shared
satDNAs, six of them were selected for FISH experiments (Table S4) and revealed the same
accumulation pattern in both species.

The heterochromatic regions differ substantially between Pyrrhulina species, with
large accumulations in centromeric and telomeric regions, as well as pericentromeric and
interstitial regions [28–30]. The karyotype of P. semifasciata has considerable accumula-
tions of heterochromatin in centromeres and telomeres [29], whereas P. marilynae has these
accumulations mainly in the centromeric region of most chromosomes [30]. In the same
way, the in situ mapping revealed a predominance of PseSatDNAs in the centromeric
regions of P. semifasciata (Figure 2). This type of association can be suggestive of a probable
relationship with centromere development, as well as an essential role in genome integrity
by preserving the higher-level nucleus structure [47]. Although satellite DNA sequences
are often abundant in heterochromatic regions [10,48], as indicated in P. semifasciata, their
occurrence in euchromatic regions has been emphasized in many species, including bi-
valves [49], insects [13,17,50], mammals [51], and fishes [39,40,52], as well as P. marilynae
(Figure 1). PmaSat01 constitutes approximately 4% of the P. marilynae genome (Table S1),
while the most abundant satellite of P. semifasciata (PseSat01) only represents about 0.5% of
its genome (Table S2). However, the satellitomes of both species are very similar in the num-
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ber of clusters recovered by TAREAN (i.e., 70 PmaSatDNAs and 71 PseSatDNAs). Among
fishes, other Characiformes species, such as representatives of Astyanax, Characidium, and
Psalidodon, also carry similar numbers of satDNA families [41,53]. However, species with
more satDNAs have previously been identified, such as in Megaleporinus, demonstrating a
great dynamic of such sequences in fish genomes. Owing to the various processes involved
in their dynamics throughout cladogenetic genomic development, the variety of satellito-
mes among different species of animals and plants is rather significant, both in terms of the
number of satDNA families and the proportion of the genome they occupy [10,54].

3.2. Satellite DNA Contribution in the Significant 2n Reduction Observed in P. marilynae

P. marilynae stands out for presenting the most rearranged karyotype among all
Pyrrhulina species, with 2n = 32 and formed by large and unusual metacentric pairs [30].
Many studies have found that satellite DNAs can induce chromosomal rearrangements and
thus have a direct impact on karyotype evolution due to their dynamic and fast-evolving
nature [55–59]. Thus, the occurrence of centric fusions and fissions is frequently associated
with the fast dynamics of satDNAs, which are located mostly in the centromeric and peri-
centromeric regions of chromosomes [60–63]. Interestingly, our experiments demonstrate
that PmaSatDNAs hybridized at telomeres or centromeres of P. marilynae chromosomes,
including bitelomeric signals from PmaSat04 and PmaSat10, and pericentromeric signals
on both arms with PseSat01 (Figure 1). These results imply that chromosomal reduction in
P. marilynae is directly linked to centric fusion processes that result in the large metacentric
chromosomes found in this species’ karyotype. Notably, the satellite DNA sequences did
not experience any accumulation or loss after the fusion process.

PmaSatDNAs 04, 07, 09, and 10 accumulate in telomeres and (peri)centromeres, es-
pecially in the large metacentric pairs. These large chromosomes probably originate from
chromosome fusions, restricting recombination to the distal ends [64–66]. Repetitive se-
quences, such as satellites and rDNAs, often make up the subtelomere region, also known
as the buffer zone between the internal chromosome and telomere. Given that the lat-
ter is made up of telomeric motifs interspersed with other repeated sequences [67], such
subtelomere sequences can also be found in interstitial telomeric sites (ITSs). As sub and
telomeric arrays help to stabilize new ends [68], it is likely that the FISH signals observed
directly represent the fusion process that P. marilynae went through throughout its kary-
otypic reduction (Figure 1). The expansion and contraction of those telomere-associated
satellite motifs that remained even after the inactivation of the telomeric region near the
newly formed centromere may be fostered by repair mechanisms [69]. This scenario is not
exclusive to P. marilynae. Other fish species also carry a series of repetitive DNA in their
chromosome fusion points, as observed in Rineloricaria [70,71], for example.

SatDNAs are a significant and prominent component of the so-called “dark matter of
genomes” [72]. In fact, multiple pieces of evidence show that satellite DNAs are sequences
that can participate in centromere and telomere formation besides presenting fundamental
roles and specific functions in the genome [40,54,73,74]. Although no functional experi-
ments have been performed here, the majority of the PmaSatDNAs are found in centromeric
and telomeric regions and may be directly linked to their formation, in addition to possibly
playing a role in P. marilynae’s reduction and karyotypic evolution.

3.3. SatDNAs and the Evolution of Multiple Sex Chromosomes

Repetitive sequences are great tools for the study of sex chromosomes, where species
with heteromorphic sex chromosomes show a difference in the accumulation of some
sequences between males and females, emphasizing the existence of several W/Y-specific
satDNAs [13,14,18,75]. Despite the presence of a well-differentiated X1X2Y sex chromosome
system, minor differences in haplotype accumulation between males and females were
observed (Figure 6). Although four PseSatDNAs were mapped in this study to either X1,
X2, or neo-Y chromosomes, no neo-Y-specific satDNA was identified (Figure 5), contrasting
with Eneoptera surinamensis [76] and Ronderosia bergii [14], which show a large accumulation
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of satDNAs in neo-sex chromosomes. These species, however, lack synapses between
sex chromosomes, demonstrating significant differentiation between them. Multiple-sex
chromosome systems, in contrast to simple ones, are known to have a more recent ori-
gin and still exhibit considerable recombination rates, resulting in few or no sex-specific
sequences [75]. A similar scenario has already been reported in other animal species, such
as the frog Proceratophrys boiei. Despite having a simple and heteromorphic ZZ/ZW sex
chromosome system, it is distinguished by the absence of sex-specific satDNAs and low
sex divergence, indicating their early stage of sex chromosome differentiation [77].

There are no dated phylogenetic reconstructions for Pyrrhulina species. As a result,
determining when the multiple-sex chromosome system emerged is not feasible, regardless
of other cytogenetic traits that suggest its recent origin. The X1, X2, and Y sex chromosomes
lack strong differences in size and accumulation of heterochromatic regions [29], as in the
satellite distribution. Accordingly, the MST generated for PseSat55 also did not point to
any difference in the abundance of the haplotypes obtained from reads of females and
males (Figure 6). Such low heterochromatin is also observed in other species with recent
diversification of multiple sex chromosomes, such as Hoplias malabaricus and Erythrinus
erythrinus [78,79]. Considering the formation of a trivalent during the meiosis process,
multiple-sex chromosome systems (such as the X1X2Y of P. semifasciata) could not accumu-
late large heterochromatic blocks; otherwise, they could impair its correct segregation [80].
In this sense, the presence of PseSatDNAs in the homologous regions of the multiple sex
chromosomes of P. semifasciata can be indicative of their role in the modulation of gene
expression. Under stress circumstances, euchromatic copies of pericentromeric satDNAs in
Tribolium castaneum are functionally relevant in modifying chromatin and the expression of
adjacent genes [81]. In Drosophila melanogaster, more than a thousand euchromatic copies of
satDNAs are mainly found near genes and are thought to have a function in the modula-
tion of gene expression [82]. Similarly, those euchromatin-dominant satellite DNAs share
characteristics regarding their structure, organization, and evolution (reviewed in [10,83]).

Despite the absence of neo-Y-specific satDNA sequences in P. semifasciata, we demon-
strate that several motifs are shared between this species’ sex chromosome and the proto-sex
pairs in other Pyrrhulina representatives (Figure 5). Considering the absence of specific
sequences such as PseSat38 in P. obermulleri, it is also noteworthy to emphasize the high
dynamism of these sequences in the cladogenetic history. Both a seemingly complete
absence of these sequences and their low-copy numbers can be explained by the absence
of detectable FISH signals. Unequal crossing over between sister chromatids or intra and
interchromosomal recombination may significantly decrease the copy number of satel-
lite DNAs [84]. On the other hand, sequences such as PseSat01, PseSat04, and PseSat55
suffered expansions and retractions in the number of loci, including changes between
both proto-sex pairs. In some instances, site-directed recombination between homologous
motifs in satellite repeats and in the target genomic sequence, most likely mediated by
extrachromosomal circular DNA, can explain the dispersion of satellites [85]. Alterna-
tively, such translocation can be due to transposable elements (TEs) that are known to
participate in the origin and the dispersal of satDNA repeats [86]. Through amplifying
tandem repeats within them, TEs may also capture satDNA motifs and generate new
satDNAs, which can then be disseminated over other regions of the genome and preserved
through nonreciprocal transfer mechanisms such as unequal crossover [87]. Indeed, TEs
such as Rex3 were already mapped in Pyrrhulina chromosomes, showing a high dispersal
tendency [28]. However, the extremely similar size and shape of those chromosomes, as
well as the frequent translocations between them, might also be the result of putative
pseudo-homologous regions (PHRs), which are thought to be due to recombination be-
tween non-homologous sequences [88] or due to the presence of pseudoautosomal regions
(PARs) with high recombination rates [89] in these proto-sex chromosomes.

It is noteworthy that some conserved PseSatDNAs across distinct Pyrrhulina species
(Figure 4) are present in the pericentromeric region of the sex chromosomes in P. semifasciata
and the proto-sex pairs of P. brevis, P. obermulleri, and P. marilynae. From the canonical
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model of sex chromosome evolution, when the recombination between the sex-related
chromosomes is ceased, the sex-specific chromosome is invaded by several repetitive se-
quences, including satDNAs (reviewed in [90]). However, the presence of such satDNAs
in the proto-sex chromosomes leads us to two main questions: i) Can the accumulation of
the same PseSatDNAs (i.e., PseSat01, PseSat04, PseSat38, and PseSat55) in proto-sex and
multiple-sex chromosomes indicate the presence of a plesiomorphic and homomorphic
XX/XY in P. brevis, P. obermulleri, and P. marilynae? Or ii) Were those sequences simply con-
served in these acrocentric pairs, given their putative role in the centromeric structure and
genome integrity? To fully solve these questions, however, a high-quality reference genome
is mandatory, and the next steps involve generating a high-quality genome assembly with
PacBio having access to an end-to-end solution.

4. Materials and Methods
4.1. Material, Mitotic Chromosomes and DNA Sequencing

Samples of four Pyrrhulina species were collected in Brazilian rivers, according to
Table 1. To obtain mitotic metaphase chromosomes, the animals were euthanized with
eugenol, as approved by the Ethics Committee on Animal Experimentation of the Uni-
versidade Federal de São Carlos, Brazil (Process number CEUA 7994170423), and cell
suspensions were obtained from kidney cells [91]. For DNA sequencing, we selected
P. marilynae (one male) and P. semifasciata (one male and one female) individuals. Then,
total DNA was extracted from muscle tissues using a spin-column-based protocol (Cellco
Biotech, São Carlos–SP, Brazil). The purified DNAs were then sequenced in the BGISEQ-500
platform (2× 150 bp; BGI Shenzhen Corporation, Shenzhen, China). Short-read sequencing
yielded between 2.14 Gb (in P. semifasciata female) and 2.44 Gb (in P. marilynae). Raw reads
were deposited in the sequence read archive (SRA-NVBI) and are available under the
accession numbers (SRR25467276, SRR25476502, and SRR25476501).

Table 1. Species, locality, and number of individuals (N) used in the present study.

Species Locality N Voucher

P. brevis Adolfo Ducke Reserve- Igarapé Barro Branco,
Manaus–AM (2◦56′04.6′′ S 59◦58′10.6′′ W) 04♂; 07♀ MZUSP 123077

P. marilynae Ipiranga do Norte–MT (11◦36′02′′ S 55◦56′27′′ W) 13♂; 04♀ UFPB 12080

P. obermulleri Tefé-AM (3◦25′50.7′′ S 64◦44′54.8′′ W) 06♂; 04♀ UFPB 12079

P. semifasciata Adolfo Ducke Reserve- Igarapé Barro Branco,
Manaus–AM (2◦56′04.6′′ S 59◦58′10.6′′ W) 07♀; 12♂ MZUSP 123080

MT = Mato Grosso and AM = Amazonas Brazilian States.

4.2. Bioinformatic Analyses and satDNA Library

Firstly, we trimmed the raw reads with Trimmomatic [92] to select the pair-end
reads with Q > 20 for all nucleotides. Then, the satDNA catalogs from P. semifasciata
and P. marilynae were independently characterized on TAREAN [93] with the satMiner
pipeline [12]. Specifically, the consensus satDNA sequences outputted in TAREAN were
filtered from the genomic libraries with DeconSeq [94], and subsequent iterations were
performed on TAREAN until no satDNA was found. Then, a homology search with
RepeatMasker [95] was performed to group the sequences into variants, families, and su-
perfamilies, as suggested by [12]. We also calculated the abundance and divergence values
of the satDNA families by selecting 10,000,000 reads (2 × 5,000,000) from each genomic
library and masking against their own catalog of satDNAs with RepeatMasker [95]. After
that, we named the satDNA families according to their abundance in each species.

Since P. semifasciata exhibits a multiple-sex chromosome system, we calculated the
male: female (M/F) abundance ratio of each satDNA family in this species (quotient
between the abundance of the same satellite DNA in male and female). Then, we selected
those with an M/F ratio greater than 1.2 as putatively sex-specific accumulating satDNAs.
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Finally, both satellitomes were BLAST-searched [96] against the NCBI nucleotide collection
to check for the presence of conserved satDNAs. We constructed a minimum spanning
tree (MST) for PseSat55 using PHYLOVIZ [97] to describe the proportions of the male and
female haplotypes.

4.3. Primer Design and DNA Amplification via Polymerase Chain Reaction (PCR)

We designed primers for 21 out of the 70 PseSatDNAs and for 10 of the 71 PmaSatDNAs
that were characterized. As a criterion for primer selection, we selected the ten most
abundant ones (in P. marylinae, Table S1), the five most abundant, and those with some
difference in abundance between sexes (in P. semifasciata, Table S2). PCR procedures used
the optimal amplification temperatures and DNA template concentrations for each satDNA,
according to [12]. For each sequence, the following cycles were used: initial denaturation
at 95 ◦C for 5 min; 29–35 cycles with denaturation at 95 ◦C for 15 s; annealing at 50 ◦C to
62 ◦C for 30 s (Table S3); extension at 72 ◦C for 10 s, and final extension at 72 ◦C for 10 min.
To validate the amplification and ensure the integrity of the satDNAs, the PCR products
were checked by electrophoresis on 2% and 1% agarose gels. Finally, they were quantified
using the NanoDrop spectrophotometer (ThermoFisher Scientific, Branchburg, NJ, USA).

4.4. Fluorescence In Situ Hybridization (FISH)

The probes derived from the satDNA’s PCRs were labeled with Atto550-dUTP or
Atto488-dUTP by Nick-Translation (Jena Biosciences, Jena, Germany) and used for FISH
experiments. The hybridization mixes were composed of 100 ng of each labeled satellite
DNA plus 50% formamide, 2 × SSC, 10% SDS, 10% dextran sulfate, and Denhardt’s buffer
at pH 7.0 in a total volume of 20 µL, following high-stringency conditions for FISH [98].
We hybridized the above-mentioned selected sequences in both species (i.e., P. marilynae
and P. semifasciata), then selected those satDNAs that displayed positive signals on the sex
chromosomes of P. semifasciata to hybridize in P. brevis and P. obermulleri chromosomes.
For the satDNA FISH experiments, glass slides containing metaphase chromosomes were
aged for 1 h at 60 ◦C, following a treatment at 37 ◦C for 5 min with 0.005% pepsin solution
(99 µL H2O, 10 µL HCl, and 2.5 µL pepsin (20 mg/mL). Chromosomes were denatured
in 70% formamide/2 × SSC at 72 ◦C for 3 min, while probes were at 85 ◦C for 10 min,
then cooled at 4 ◦C for 2 min before application. Hybridization occurred overnight in a
moist chamber at 37 ◦C. Next, the slides were washed for 5 min in 1 × SSC at 65 ◦C and
4 × SSC/Tween at room temperature, following a quick wash in 1 × PBS for 1 min. The
slides were dehydrated in an ethanol row (70%, 85%, and 100%) before the counterstaining
of the chromosomes with DAPI mounted in Vectashield (Vector Laboratories, Burlingame,
USA). We also used whole-chromosome painting (WCP) using a Y-specific probe (Psemi-Y)
previously obtained [29] to detect the sex chromosomes of P. semifasciata and the proto-
sex pairs in P. brevis and P. obermulleri. For this, sequential FISH/WCP was performed
following [99]. In total, 10 PseSatDNAs showed visible FISH signals in P. semifasciata, and
07 PmaSatDNA showed a visible FISH signal in P. marilynae.

4.5. Images and Confirmation of Results

To confirm the FISH results, we analyzed a minimum of 30 metaphase spreads per
individual. Images were captured with CoolSNAP on an Axioplan II microscope (Carl
Zeiss Jena GmbH, Jena, Germany) and processed with ISIS (MetaSystems Hard & Software
GmbH, Altlussheim, Germany).

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/ijms241713654/s1.
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oyster Crassostrea gigas reveals new pattern of satellite DNA organization, highly scattered across the genome. Int. J. Mol. Sci.
2021, 22, 6798. [CrossRef]

50. Pereira, J.A.; Milani, D.; Ferretti, A.B.S.; Bardella, V.B.; Cabral-de-Mello, D.C.; Lopes, D.M. The extensive amplification of
heterochromatin in Melipona bees revealed by high throughput genomic and chromosomal analysis. Chromosoma 2021, 130,
251–262. [CrossRef]

51. Valeri, M.P.; Dias, G.B.; do Espírito Santo, A.A.; Moreira, C.N.; Yonenaga-Yassuda, Y.; Sommer, I.B.; Kuhn, G.C.; Svartman, M.
First description of a satellite DNA in manatees’ centromeric regions. Front. Genet. 2021, 12, 694866. [CrossRef]

52. Crepaldi, C.; Martí, E.; Gonçalves, E.M.; Martí, D.A.; Parise-Maltempi, P.P. Genomic differences between the sexes in a fish species
seen through satellite DNAs. Front. Genet. 2021, 12, 728670. [CrossRef]

53. Serrano-Freitas, E.A.; Silva, A.M.Z.A.; Ruiz-Ruano, F.J.; Utsunomia, R.; Araya-Jaime, C.; Oliveira, C.; Camacho, J.P.M.; Foresti, F.
Satellite DNA content of B chromosomes in the characid fish Characidium gomesi supports their origin from sex chromosomes.
Mol. Genet. Genom. 2020, 295, 195–207. [CrossRef]

54. Garrido-Ramos, M.A. Satellite DNA: An evolving topic. Genes 2017, 8, 230. [CrossRef]
55. Paço, A.; Chaves, R.; Vieira-da-Silva, A.; Adega, F. The involvement of repetitive sequences in the remodelling of karyotypes: The

Phodopus genomes (Rodentia, Cricetidae). Micron 2013, 46, 27–34. [CrossRef] [PubMed]
56. Vieira-da-Silva, A.; Louzada, S.; Adega, F.; Chaves, R. A high-resolution comparative chromosome map of Cricetus cricetus and

Peromyscus eremicus reveals the involvement of constitutive heterochromatin in breakpoint regions. Cytogenet. Genome Res. 2015,
145, 59–67. [CrossRef] [PubMed]

57. Gatto, K.P.; Mattos, J.V.; Seger, K.R.; Lourenço, L.B. Sex chromosome differentiation in the frog genus Pseudis involves satellite
DNA and chromosome rearrangements. Front. Genet. 2018, 9, 301. [CrossRef] [PubMed]

58. Escudeiro, A.; Ferreira, D.; Mendes-da-Silva, A.; Heslop-Harrison, J.S.; Adega, F.; Chaves, R. Bovine satellite DNAs–a history of
the evolution of complexity and its impact in the Bovidae family. Eur. Zool. J. 2019, 86, 20–37. [CrossRef]

59. de Lima, L.G.; Ruiz-Ruano, F.J. In-depth satellitome analyses of 37 Drosophila species illuminate repetitive DNA evolution in the
Drosophila genus. Genome Biol. Evol. 2022, 14, evac064. [CrossRef]

60. Slamovits, C.H.; Cook, J.A.; Lessa, E.P.; Rossi, S.M. Recurrent amplifications and deletions of satellite DNA accompanied
chromosomal diversification in South American tuco-tucos (genus Ctenomys, Rodentia: Octodontidae): A phylogenetic approach.
Mol. Biol. Evol. 2001, 18, 1708–1709. [CrossRef]
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