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Abstract: Kidney disease is a global health and healthcare burden. Glomerulonephritis (Gn), both
primary and secondary, is generally characterized by an inflammatory glomerular injury and may
lead to end-stage renal disease. Kidney biopsy is fundamental to the diagnosis; however, kidney
biopsy presents some concerns that may partly hamper the clinical process. Therefore, more accurate
diagnostic tools are needed. Extracellular vesicles (EVs) are membranous vesicles released by cells
and found in bodily fluids, including urine. EVs mediate intercellular signaling both in health and
disease. EVs can have both harmful and cytoprotective effects in kidney diseases, especially Gn.
Previous findings reported that the specific cargo of urinary EV contains an aerobic metabolic ability
that may either restore the recipient cell metabolism or cause oxidative stress production. Here, we
provide an overview of the most recent proteomic findings on the role of EVs in several aspects of
glomerulopathies, with a focus on this metabolic and redox potential. Future studies may elucidate
how the ability of EVs to interfere with aerobic metabolism and redox status can shed light on aspects
of Gn etiology which have remained elusive so far.

Keywords: biomarkers; extracellular vesicles; focal segmental glomerulosclerosis; IgA nephropathy;
membranous nephropathy; glomerulonephritis; glomerular disease of systemic lupus erythematosus;
nephrotic syndrome; proteinuria

1. Introduction

Kidney disease (KD) is a rapidly increasing global health and healthcare burden,
with a relevant impact on national health systems, especially in low- and middle-income
countries [1,2]. In a large number of cases, KD may lead to loss of kidney function, re-
sulting in chronic kidney disease (CKD) [3]. CKD is present in around 9% of the global
population, representing one of the main leading causes of death worldwide [4]. End
Stage Kidney Disease (ESKD) is the final stage of CKD, defined by the need for renal
replacement through dialysis or renal transplantation. Recent epidemiological studies
suggested that the number of people needing renal replacement therapy is foreseen to
double to 5.4 million by 2030 [5]. Hypertension and diabetes mellitus (DM) are the most
common causes of CKD [2], while glomerulonephritis (Gn) represents the third leading
causes of CKD [6]. Gn includes a heterogeneous group of renal disorders characterized
by glomerular inflammation as a consequence of different pathogenic factors, such as
autoimmunity, activation of complement cascade and other components involving both
innate and the adaptive immunity. Despite its causes, Gn is histologically characterized by
proliferation of renal cells (mesangial, endothelial, and epithelial cells) and by infiltration
of immune cells (neutrophils, T and B cells, etc.). Therefore, different causative triggers
may result in homogeneity of inflammatory responses and the Gn classifications include
both causative and pathological factors. Among others, membranous nephropathy (MN),
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lupus nephritis (LN), and antineutrophil cytoplasmic autoantibody (ANCA)-associated Gn
represent different Gn resulting from autoimmune disorders. By contrast, immunoglobulin
A (IgA) membrane proliferative and post-infective Gn are characterized by renal deposition
of immune complexes (IC) unrelated to autoimmune disease. Clinical manifestations of Gn,
including hematuria, proteinuria, and renal impairment, are not so specific for distinguish-
ing between different forms of glomerular involvement; usually, a kidney biopsy is needed.
Kidney biopsy is fundamental to characterizing the etiology, severity, and chronicity of the
glomerular lesions [7], and it is essential for a specific therapeutical approach. However,
kidney biopsy may present some intrinsic limits. Without considering the procedural
risks, the limited biopsy samples may not be very representative of the disease. Moreover,
histological findings are common for the different forms of Gn, and it may be difficult to
determine a single primary diagnosis. Therefore, more tools may be required. The nephron
and the urogenital tract cells continuously release Extracellular Vesicles (EVs) [8] which
are involved in renal physiology and pathology [9]. EVs is a collective term for heteroge-
neous lipid vesicles, which are not able to replicate that range from 30 nm to 1 µm in size
released by most cells, and are present in all bodily fluids [10] as well as in tissues [11]. EVs
carry a cargo of proteins, lipids, nucleic acids, and metabolites that acts as a mediator of
cell-to-cell signaling in several physiological and pathological conditions [12], comprising
inter-kingdom communication [13]. In recent years, the involvement of EVs in kidney
disease has been a major topic of investigation [14–16]. Urinary EVs deeply impact the
recipient cells participating in kidney development, playing a role in the physiology and
pathology of the urinary tract [17]. Urinary EVs represent a valuable non-invasive source
of molecular biomarkers of renal disease, as “liquid biopsy” [8]. In fact, large volumes
of urine can be easily collected and analyzed [18]. In this review, we will summarize the
latest progress and recent advances in the potential role of EVs in pathogenesis of Gn,
with a focus on EVs’ ability to relay information on the metabolic and redox status of the
parent cell.

2. Extracellular Vesicle Definition, Biogenesis, and Isolation

EVs have been classified into three sub-populations: exosomes (30–150 nm), mi-
crovesicles, (0.1–0.35 µm), and apoptotic bodies (0.8–5 µm) [10,19,20], each with their
own biogenesis and functions. However, the updated guidelines of the International
Society for Extracellular Vesicles, 2018 (MISEV2018), state that EV classification should
be based on characteristics such as dimensions, density, and biogenesis, rather than on
surface markers [21]. In fact, EV subtypes are heterogeneous, but often overlap in size
and molecular content. Therefore, this review will use the collective term “EVs”, referring
to exosomes as small (sEVs) and to microvesicles as large EVs (lEVs) [10,22]. sEVs are
generated through an endocytic pathway, budding in the early endosome as intraluminal
vesicles, with the participation of the endosomal sorting complex required for transport
(ESCRT) [23]. Then, late endosomes (multivesicular bodies, MVBs) can either release the
sEVs into the extracellular space or traffic them to lysosomes for degradation. lEVs are
a heterogeneous vesicle population, originating from blebbing of the plasma membrane,
which carry a cargo dependent upon the parent cell type [24]. Apoptotic bodies are large
(500–4000 nm) membrane blebs formed during programmed cell death [19]. Analysis of the
EV content has been conducted using high-throughput analytical techniques [25–27]. There
is now interest in determining the topology (i.e., luminal-versus surface) of the protein
EV components [10]. For a complete and detailed review of the heterogeneity of EV, refer
to previous reports [25–27]. The whole human proteome EVs data were computed from
published accessible databases such as Vesiclepedia [28] and ExoCarta [29]. EV release
spans the evolutionary eras and is common to all kingdoms [13,30]. In humans, EV release
is increased by inflammation, hypoxia, oxidative stress [31], and shear stress [32]. In turn,
EV uptake depends on both the vesicles cargo and the recipient cell type [33], involving
receptor-mediated endocytosis [20], clathrin or caveolin-mediated endocytosis, lipid raft
interactions, macro-pinocytosis, and phagocytosis [33], or fusion with the membrane of the
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recipient cell [34]. Over the past decade, considerable progress has been made in relation
to EV isolation methods [35]. Precipitation techniques, such as differential and density
gradient ultracentrifugation, are currently considered the gold standard [36]. Size-based
methods and affinity-based isolation methods are also applied [37]. Isolation methods are
characterized by differential yield and specificity, but none of these can isolate EVs without
the presence of contaminants. Commercial kits for EV isolation are also available [38].
In Table 1, we summarize the main techniques available for the EV isolation and com-
pares their pros and cons. EVs can be analyzed via imaging techniques, such as scanning
(SEM) [39], transmission (TEM), or cryo-EM electron microscopy [40–42]; scanning-probe
microscopy (SPM); atomic force microscopy (AFM) [43]. EV size is routinely studied using
nanoparticle tracking analysis [44–46]. The EV function is still largely debated, but there is
consensus on their action in the regulation of inflammation, tumor microenvironment, and
extracellular matrix modulation.

Table 1. Main methods currently available for extracellular vesicle (EVs) isolation.

Method Advantage Disadvantage Average Size (nm) Ref.

Ultracentrifugation Simple procedure;
reproducible; most
widely used *

Specific equipment; allows
us to process only six
samples at the same time;
high aggregation of
exosomes; potential
contamination with non-EVs
particles such as lipoproteins.

sEV: 20–200
lEV: 1000

[10,47–53]

Ultracentrifugation
with density gradient

Pure exosome
preparation;
reproducible.

Specific equipment; allows
us to process only six
samples at the same time;
usable only for exosomes.

sEV: 20–120
lEV: 1000

[10,53–63]

Ultrafiltration Simple procedure;
allows us to process
many samples at the
same time.

Specific equipment;
expensive; proteins
contamination; usable only
for exosomes.

sEV: 50–300
lEV: No

[10,53,55,56,64]

Size-exclusion
chomatography

Pure preparation;
reproducible.

Specific equipment; allows
us to process only one
sample at a time; usable only
with small-volume samples
at high EVs content;
potential contamination with
non-EVs particles such as
lipoproteins.

sEV: 50–250
lEV: 1000

[10,51,53,64–69]

Precipitation with
chemical reagents
(polymers, organic
solvent, etc)

Simple procedure;
allows us to process
many samples at the
same time.

Retention of chemical
compounds used in the
isolation process; chemical
compounds used can
damage EVs function
activity; potential
contamination with non-EVs
particles such as lipoproteins.

sEV: 50–200
lEV: 1000

[10,53,54,65,70–74]

Affinity (lectin,
antibodies, etc.)

Pure preparation;
reproducible; simple
procedure; allows us to
process many samples
at the same time.

Expansive; eluting buffers
can damage EVs function
activity.

sEV: 20–120
lEV: 1000

[10,53,56,58,75–82]

Microfluidic Pure preparation. Specific equipment;
expensive; fast only for small
quantities.

Allows us to choose
the size

[10,37,53,76,81,83–88]
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3. Extracellular Vesicles in Renal Disease

Urinary EVs play a dual role in KD: they can contribute to the onset or progression
of the disease [89–91] and, on the other hand, they can be a source of disease biomarkers
and bear a potential therapeutic role [92,93]. The involvement of EVs in the Gn causative
mechanisms was recently reviewed [94]. More than 98% of the proteins expressed in the
urinary EVs are released from cells of the urogenital tract, mainly glomerular, tubular,
and bladder cells, which renders EVs a source of pathological determinants as well as
of potential biomarkers [8]. Moreover, proteins are more efficiently preserved in EVs
than in urine, a challenging milieu. Consistently, sEVs have been shown to concentrate
biomarkers [68]. The opportunity offered by urinary EVs in the search for renal disease
biomarkers was confirmed by a comprehensive proteome analysis of normal urine and
of urinary EVs, showing that most of the identified proteins (1615 out of 3429 total) were
contained in EVs [95]. Autosomal dominant polycystic kidney disease (ADPKD) is the
most common inherited KD, due to mutations in the polycystic kidney disease 1 and 2
(PKD1 or PKD2) genes [96]. EVs derived from cystic renal epithelia cells would promote
cyst formation in ADPKD by lowering the amount of polycystin 1 in the cystic kidneys,
affecting the biology of PKD1 heterozygous renal epithelial cells [97]. A proteomic study of
urinary EVs from subjects affected by ADPKD reported increase in periplakin, envoplakin,
villin-1, and complement C3 and C9, respect to healthy controls, suggesting a possible role
of EVs in the disease progression [98].

4. Extracellular Vesicles as Biomarker Source in Glomerular Disease

Glomerular diseases comprise distinct subsets of CKD causes that are potentially
susceptible to therapy. Primary Gn encompass idiopathic nephrotic syndrome, thin base-
ment membrane nephropathy (TBMN), Immunoglobulin A nephropathy (IgAN), Alport
syndrome, and membranous nephropathy [6]. Secondary Gn, such as lupus nephritis (LN),
DN, and postinfectious GN are the consequence of systemic diseases [6]. In Gn, novel
biomarkers are needed, as currently kidney cellular injury is not assessed. In fact, clinical
practice only follows through markers or renal functional loss, such as serum creatinine
and proteinuria. The current clinical markers of disease, such as serum creatinine, or urine
albumin levels, are not very sensitive and have limitations (the accuracy of creatinine
levels depends on muscle mass; some patients regress to normo-albuminuria, etc.); also,
they do not provide information about the cause of the renal injury and are a late sign
of kidney damage. The proteins found in EVs comply with the characteristics required
for a biomarker, being up/downregulated in the target population, non-invasive, readily
available, and bearing diagnostic/prognostic significance (see detail in Supplementary
Table S1). For example, a main target of glomerular disease is the podocyte, the specialized
epithelial cell that constitutes the glomerular filtration barrier. A study set to characterize
urinary EVs from patients with Gn showed that some of those expressed podocalyxin and
fibroblast-specific protein 1 (FSP1), considered by the Authors as markers of their origin
from podocytes [99]. In particular, FSP1 positively correlated with active glomerular injury
such as biopsy-proven crescent formation [99]. To detect podocyte loss in kidney biopsies,
staining for Wilms tumor factor-1 (WT-1) is utilized. Consistently, urinary sEVs may be a
potential noninvasive biomarker of podocyte injury, as they express WT-1, which increases
upon podocyte damage. This was the case for urinary sEVs from focal segmental glomeru-
losclerosis (FSGS), which encompasses a number of distinct pathological conditions that
share a significant podocyte damage [100]. A major cause of ESKD in children and young
adults is FSGS, histologically characterized by fibrosis and glomerular sclerosis. While
primary FSGS is due to genetic mutations, in most cases secondary FSGS is idiopathic [101].
Significantly increased WT-1 expression was found in urinary sEVs from children with
FSGS nephrotic syndrome [100] compared with healthy controls. The same study showed
that WT-1 expression increased in urinary sEVs from an animal model of glomerulopathy
prior to albuminuria [100]. WT-1 expression in urinary sEVs was also elevated in patients
with Diabetic Nephropathy (DN), related to glomerular function decline, supporting the
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role of EV WT-1 as a biomarker of podocyte injury and of disease progression [102]. EVs
play a role in renal fibrosis, the common pathological process through which all types of
CKD progress to ESKD [103]. It was shown that EVs may contribute to FSGS pathogenesis
and progression as EVs from FSGS patients stimulate mesangial cell proliferation and
upregulate the signal transducer and activator of transcription 3 (STAT-3) pathway [104].
EVs from FSGS patients also contain information that reflects disease severity. Our first
comprehensive proteomic analysis assayed mesothelial sEVs from peritoneal dialysis (PD)
effluent of subjects affected by FSGS, in comparison to subjects bearing other KDs. PTP4A1
was the most statistically significant biomarker associated with PD vintage and loss of
peritoneal membrane function, caused by peritoneal fibrosis, due to the unphysiological
composition of PD fluids [82]. As peritoneal fibrosis is a frequent evolution of PD, which
can limit the efficacy of dialytic treatment [82], it would be useful to validate PTP4A1 as
a prognostic biomarker to predict the progression of renal fibrosis in PD. ANXA13, the
founder member of the annexin (ANX) family, was able to distinguish with 100% accuracy
sEVs from PD effluent from FSGS patients versus those without FSGS [103]. ANXA13 binds
to negatively charged membrane phospholipids in a calcium-dependent manner and was
shown to play a role in FSGS kidney evolution to CKD; on the other hand, ANXA13 has
the potential to be a biomarker of disease evolution.

Membranous nephropathy (MN) is the leading cause of nephrotic syndrome in the
adult non-diabetic population. In about 80% of cases, MN is primary. Like FSGS, MN
is characterized by the absence of inflammation, and by podocyte injury. The latter is
due to the deposition of IC between podocytes and the glomerular basement membrane.
The search for serum antibodies against phospholipase A2 receptor (PLA2R) is utilized
for MN diagnosis, with about 98% specificity. Importantly, PLA2R expression was found
in sEV which represents a promising non-invasive method for diagnosing this form of
MN [105]. IgAN is the most incident and prevalent primary Gn affecting both children and
adults worldwide, and an important cause of ESKD [106,107]. IgAN is characterized by
mesangial cell proliferation with inflammation, secondary to Ig deposition. Renal biopsy
demonstrating mesangial IgA1-dominant or co-dominant deposits is needed for diagnosis.
Complement C3 is also detected in most cases, and is frequently concomitant with fibrosis,
as outlined in the Oxford classification [108,109]. Urinary EV protein expression displays
different profiles specific to different forms of glomerular diseases. Studies in IgAN have
focused on urinary sEVs, whose excretion is increased in IgAN patients compared to healthy
controls or minimal change disease (MCD) subjects [110]. MCD is the most frequent cause
of nephrotic syndrome, especially in younger subjects [111]. Urinary sEV chemokine ligand-
2 (CCL2) expression was increased in IgAN patients compared with healthy controls [110].
IgAN clinical presentation is identical to that of thin basement membrane nephropathy
(TBMN), whose clinical outcomes are less severe than that of IgAN. TBMN is usually
linked to heterozygous collagen type IV alpha 3 and 4 chain (COL4A3 or COL4A4) gene
mutations, often representing an autosomal recessive Alport syndrome status [112]. In the
absence of diagnostic biomarkers, only kidney biopsy can differentiate IgAN from TBMN.
Interestingly, early IgAN could be differentiated from TBMN on the basis of the different
expression in urinary sEVs of aminopeptidase-N and vasorin precursor, which are higher
in TBMN, and α-1-antitrypsin and ceruloplasmin, which are higher in IgAN patients [113].

Lupus nephritis (LN) is the second most common cause of Gn, and a severe manifesta-
tion of Systemic lupus erythematosus (SLE). SLE is an autoimmune disease characterized
by the glomerular presence of autoantibodies, immune complexes (ICs), and glomerular
complement deposition [114]. LN causes a gradual decline in kidney function, with up to
30% of cases progressing to ESRD. The involvement of urinary EVs in LN is dual, as they
may have pathogenic effects (by carrying autoantigens and contributing to complement
activation and inflammation) }, but can also express protein biomarkers for diagnosing
and predicting LN in SLE [115]. It was demonstrated that elevated expression of the high-
mobility group box 1 molecule (HMGB1) in urinary EV plays a pathogenetic role in SLE
patients with LN. In turn, the increased HMGB1 urinary EV levels render it a promising
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biomarker of LN in SLE [116]. EVs have both a pathogenetic role and a clinical potential for
LN: urinary EVs were shown to carry a substantial part of plasma cell-free DNA (cfDNA),
which may help with the management of patients with LN [117].

DN, a microvascular complication of both type 1 and type 2 diabetes mellitus, is a lead-
ing cause of Gn and CKD. DN is a chronic disease characterized by glomerular hypertrophy,
proteinuria, decreased glomerular filtration, and renal fibrosis, eventually leading to ESRD.
Early detection, before the onset of albuminuria, is essential. Microalbuminuria itself lacks
the sensitivity to predict DN risk. The investigation of noninvasive specific biomarkers to
predict DN takes advantage of EVs, as has recently been reviewed [118]. The study demon-
strates that, also in the case of DN, urinary EVs play a role, but can also be used as potential
biomarkers. EVs are secreted by both glomerular and endothelial cells and have been shown
to play a pathogenic role in DN, possibly inducing the podocyte epithelial–mesenchymal
transition, promoting fibrosis and ultimately progression to ESKD [118]. Elevated glucose
plasma levels may be the stimulus that lead glomerular cells to secrete high amounts of EVs.
Nonetheless, in DN, EV proteome can also serve as a reservoir of potential biomarkers of
disease, as suggested by the first study on human urinary sEV proteome from DN patients,
which identified a panel three proteins (alpha-1-microglobulin/bikunin precursor (AMBP),
mixed-lineage leukemia protein 3 (MLL3) and voltage-dependent anion-selective channel
1 (VDAC1)) whose expression was changed in DN [119]. Considering that the clinical
biomarkers for DN, such as estimated glomerular filtration rate (eGFR) and albuminuria,
are insufficient in DM patients who do not have albuminuria or have DN with preserved
eGFR, EV-derived biomarkers of susceptibility can hopefully be validated for the early
detection of kidney dysfunction onset in DM.

5. Extracellular Vesicles and Oxidative Stress

Mitochondrial dysfunction and oxidative stress are a major cause of many renal dis-
eases [120]. Oxidative stress, resulting from inflammatory cytokine production, impaired
mitochondrial function, and enhanced mitochondrial reactive oxygen species (ROS) pro-
duction is involved in the pathophysiology of CKD [121]. Mitochondrial dysfunction
causes impairment of metabolic and antioxidant activities, both of which are responsible for
oxidative stress production and contribute to cellular damage and Gn progression. A study
found that, in CKD, the mitochondrial respiratory machinery was dysregulated with ox-
idative stress production [122]. Notably, urinary EVs have been shown to affect important
redox processes [9] and to relay bioenergetic and redox information [62,123]. Proteomic
studies have shown the enriched expression of proteins clustering to aerobic metabolism
on the surface of sEVs and lEVs from urine and human umbilical cord mesenchymal stem
cells (HUC-MSC), which express the five mitochondrial respiratory complexes and perform
oxidative phosphorylation [62,63,123]. Consistently, ExoCarta (http://www.exocarta.org)
reports the expression of several subunits of the F1Fo-ATP synthase and the respiratory
chain complexes I to IV in the sEVs. Interestingly, the increased presence of a population
of large EVs carrying mitochondrial molecules that Authors called “mitoEV” has been
demonstrated to be associated with the disease activity in LN. These were shown to be
IgG-coated, which would contribute to IC formation and renal damage [124]. It is tempting
to presume that these “mitoEV” are the consistent subset of EVs that can carry out the
oxidative phosphorylation. The lEV protein complement can recapitulate the bioenergetic
and redox status of the parent cells and was proposed as tool for liquid biopsy [123]. For
example, mitophagy defects were reported to be associated with glomerulosclerosis [26].
EVs from stem cells have been proposed in the therapy of renal diseases [125]. In a rat
model of mesangioproliferative Gn, injection of EVs from endothelial progenitor cells was
able to decrease glomerular cell injury [126]. The aerobic metabolic capacity of the EVs may
exert beneficial action on Gn. EVs may be able to restore the oxidative metabolism, as was
the case for cardiac injured cells [127], independently of transcriptional events. The use of
mesenchymal stem cells (MSC) or MSC-derived EVs for KD repairment has been proposed,
particularly for LN and DN. EVs derived from endothelial progenitor cells have been re-
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ported to exert protective effects in experimental Gn [126]. In fact, although stem cells play
an immunomodulatory role and can regenerate injured tissues, they also carry a potential
risk for dedifferentiation and tumorigenesis. Stem-cell-derived extracellular vesicles were
shown to possess the same anti-inflammatory/immunomodulatory properties of MSC and
to be able to modulate fibrosis, and delay tubular and glomerular damage, without the
inherent risks [128]. There is still a paucity of clinical studies about the role of EVs in KD.
Notably, MSC-sEVs have been shown to possess a bioenergetics ability that may support
and restore that of an injured cell [129].

6. Conclusions

Since the pioneering proteomic analysis of urinary EVs of 2004 showed altered protein
expression in EVs from KD patients [130], it has become clear that urinary EVs allow
detection of high predictive value proteins. Some of those were not previously identified in
urine, due not only to their low abundance, but also because of their origin from specific
cell types, such as the podocyte, which render them useful for gathering information on
the cell status. In this review, we have highlighted the double-faceted nature of EVs, whose
protein cargo can be causative of the disease but may, at the same time, be a source of
biomarkers of susceptibility, ideally enabling the detection of KD onset before changes in
blood or invasive tests are clinically applicable. These may be represented by mutated
proteins or isoforms involved in the pathogenesis of KD. For example, a different proteomic
profile of urinary EVs from patients with medullary sponge kidney (MSK) and ADPKD
was found, related to susceptibility to either disease. MSK is a rare nephron congenital
malformation associated with cystic anomalies and nephrolithiasis [131]. Urinary EVs
of ADPKD subjects was enriched in proteins involved in matrix remodeling associated
with mechanisms involved in cyst formation [132]. By contrast, the proteomic profile
of urinary EVs from MSK highlighted proteins associated with parenchymal calcium
deposition/nephrolithiasis, and bone mineralization defects [132]. Moreover, EVs also
have both harmful and cytoprotective effects in KDs. Among the latter effects is the ability
of EVs to sustain the aerobic metabolic effect on the recipient cells [62].

7. Future Directions

In the foreseeable future, technological progress can pave the way for clinical applica-
tion of “liquid biopsy” to provide information on Gn. Future validation studies may allow
selected EV-derived biomarkers to be introduced into clinical practice for risk assessment
and early diagnosis, mitigating the need for kidney biopsy in Gn. For their application in
clinical nephrology, a standardization of EV extraction, storage and characterization proce-
dures will be required. Notably, the EVs heterogeneous mixture can be further selected by
applying the proper techniques to obtain discrete purified EV populations based on their
surface proteins. Such an ability to isolate disease-specific EVs on the basis of the proteins
they express on their surface will provide new insight into Gn diagnosis. Considering that
proteins from distant anatomical sites were identified in urinary EVs, these will offer a
repertoire of systemic causative biomarkers of disease. From this point of view, a systematic
meta-analysis of proteomic data may help build an atlas of the proteins involved in the
early stages of Gn, to detect it before the disease shows significant progression. This may
help us to predict the evolution of the specific CKD towards ESRD.
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