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Abstract: The fibrinolytic system is a key player in keeping the haemostatic balance, and changes
in fibrinolytic capacity can lead to both bleeding-related and thrombosis-related disorders. Our
knowledge of the fibrinolytic system has expanded immensely during the last 75 years. From the
first successful use of thrombolysis in myocardial infarction in the 1960s, thrombolytic therapy is
now widely implemented and has reformed treatment in vascular medicine, especially ischemic
stroke, while antifibrinolytic agents are used routinely in the prevention and treatment of major
bleeding worldwide. Despite this, this research field still holds unanswered questions. Accurate
and timely laboratory diagnosis of disturbed fibrinolysis in the clinical setting remains a challenge.
Furthermore, despite growing evidence that hypofibrinolysis plays a central role in, e.g., sepsis-
related coagulopathy, coronary artery disease, and venous thromboembolism, there is currently no
approved treatment of hypofibrinolysis in these settings. The present review provides an overview
of the fibrinolytic system and history of its discovery; measurement methods; clinical relevance of the
fibrinolytic system in diagnosis and treatment; and points to future directions for research.
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1. Introduction

The fibrinolytic system, also termed the plasminogen–plasmin system, is an important
physiological system and a key player in the haemostatic balance. Fibrinolysis is the process
of fibrin degradation by plasmin and is activated when fibrin is formed as the end product
of blood coagulation [1]. Thus, the fibrinolytic system is crucial in regulating intravas-
cular fibrin deposition and clearance, maintaining haemostasis and facilitating wound
healing while avoiding thrombosis. In addition, plasmin is involved in other important
physiological processes such as tissue remodelling, angiogenesis, and inflammation [2,3].

The discovery and characterisation of the components of fibrinolysis as we know
them today were made in the 1900s; thus, our knowledge of the fibrinolytic system is
relatively new and is still expanding. A major breakthrough was the discovery of exogenous
plasminogen activators in the 1930’s [4], which led to the development of thrombolytic
agents, initially used for treatment of pleural adhesions and later for treating coronary
artery thrombosis. Recombinant plasminogen activators were approved for use in the
1980’s and are still used worldwide for the treatment of myocardial infarction, pulmonary
embolism, and ischemic stroke. Simultaneously, antifibrinolytic agents are increasingly
used to prevent and treat major blood loss in trauma, postpartum bleeding, and surgery,
and prehospital administration of antifibrinolytic drugs is now standard care for major
trauma worldwide [5,6].

Over the years, the process of fibrinolysis has been subject to a multitude of studies
in the laboratory, but in vivo fibrinolytic capacity can be challenging to quantify in an
accurate and timely fashion, since fibrin clot degradation occurs slowly compared with

Int. J. Mol. Sci. 2023, 24, 14179. https://doi.org/10.3390/ijms241814179 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms241814179
https://doi.org/10.3390/ijms241814179
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-2978-5185
https://doi.org/10.3390/ijms241814179
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms241814179?type=check_update&version=2


Int. J. Mol. Sci. 2023, 24, 14179 2 of 19

other enzymatic processes due to the presence of endogenous inhibitors in plasma, and
since total fibrinolytic capacity is determined not only by plasmin activity in plasma but
also by fibrin clot structure and interactions with blood cells and endothelium. While a
plethora of fibrinolysis assays have been developed and are in use for research [7], very few
options currently exist for measuring fibrinolysis in the clinical setting. Viscoelastic tests
may provide clinically relevant information on the patient’s fibrinolytic capacity, especially
with modifications to existing standard protocols, but remain to be validated further in
clinical settings.

This review presents a history of the discovery of fibrinolysis and our current under-
standing of the fibrinolytic system. It provides an overview of available laboratory methods
to measure fibrinolysis, and of different clinical conditions in which disturbed fibrinolysis
plays a role. Finally, the fibrinolytic system as a treatment target and future perspectives
are discussed.

2. Historical Discovery of the Fibrinolytic System and Current Concepts

It was discovered by the Italian anatomist and physician Giovanni Battista Morgagni
in the 18th century that in some cases, blood does not coagulate after sudden death. In 1861
Denis described spontaneous clot dissolution post mortem in trauma patients [1]. In the
late 19th century, it was observed that dissolved fibrin could not be brought to clot again
despite the addition of thrombin. This indicated that fibrin clot breakdown was the result
of enzymatic digestion [8]; in 1889, Denys and De Marbaix postulated the existence of a
dormant enzyme that could dissolve blood clots, and the term “fibrinolysis” appears to
have been used for the first time by Dastre in 1893 [9].

The exact mechanisms behind fibrinolysis and the regulation of the process were still
unknown, but the first half of the 20th century saw a rise in research on the fibrinolytic
system, including the development and refinement of laboratory techniques. Gradually,
the different components of the fibrinolytic system were elucidated. It became evident that
a “dormant” enzyme (what we today call a zymogen) did indeed circulate in plasma and
could be activated by different substances. The terms “plasminogen” and “plasmin” were
proposed by Christensen and MacLeod in 1945 and were quickly adopted [10]. It was also
recognised that plasma contained one or more inhibitors of fibrinolytic activity and that
this inhibitory effect could be inactivated by substances such as chloroform or alleviated
through plasma fractionation. A seminal paper by MacFarlane and Biggs in 1948 (75 years
ago at the time of writing) summarised state-of-the-art knowledge of the fibrinolytic system
at the time, establishing plasmin as the main fibrinolytic enzyme, present in zymogen form
in the globulin fraction of plasma, and antiplasmin (now known as α2-antiplasmin) as the
main inhibitor of fibrinolysis, present in the albumin fraction [9].

It was well known at this time that fibrin clots would dissolve under physiological
conditions if left standing, albeit slowly, indicating spontaneous plasmin activity; but some
conditions could induce a pronounced increase in plasmin activity, e.g., trauma, surgery,
“shock”, and sudden death. It was considered that the release of a kinase (or plasminogen
activator) into the bloodstream was involved, and the source was much sought after from
the early 1900s and forward, with extensive investigations into the fibrinolytic activity of
different tissues [9]. In 1952, Astrup and Stage succeeded in extracting the “fibrinokinin”
from porcine heart tissue in water-soluble form [11]. It was discovered later that tissue
plasminogen activator (tPA), as we know it today, is synthesized in the endothelium and
released upon endothelial stimulation [12,13], and thus is present in tissue throughout the
body. It was also recognised that fibrinolysis inhibitors other than antiplasmin existed and
probably exerted their antifibrinolytic effects through plasminogen activator inhibition;
however, it was not until the 1980s when specific assays and cloning techniques became
available that plasminogen activator inhibitor-1 and -2 (PAI-1 and PAI-2) were characterised.

The interest in extrinsic plasminogen activators gained speed after the observation
by Tillett and Garner in 1930s that streptococcal cultures contained a fibrinolysis activator,
which appeared to work through the activation of plasminogen, later termed streptoki-
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nase [4]. The therapeutic potential was obvious, and in 1949, thrombolytic therapy with
streptokinase was used for the first time for the treatment of pleural adhesions [14]. The
following decades saw many studies on the use of streptokinase and later urokinase and
tPA for the dissolution of intravascular thrombi in, e.g., myocardial infarction, pulmonary
emboli, and peripheral artery disease. Though thrombolysis has been widely replaced
by primary percutaneous coronary stenting (PCI) in the setting of myocardial infarction,
thrombolysis with recombinant tPA is still used for the treatment of pulmonary embo-
lus [15] and, most notably, in the treatment of ischaemic stroke where the beneficial effect
on mortality and functional outcome after stroke has been firmly established [16].

Fibrinolytic activity in urine was described in 1947 [9], which led to the discovery of
another plasminogen activator, initially named urokinase or urokinase-type plasminogen
activator (uPA), present not only in urine but also in blood and extracellular matrix. It
was discovered that uPA could induce cell migration and tissue degradation, and the
cell-bound uPA receptor (uPAR) was described and characterised in the 1980s [17]. During
inflammation, uPAR is shed from cell surfaces and circulates in soluble form (suPAR). Since
its discovery at the beginning of the 1990s [18], the potential of suPAR as a diagnostic and
prognostic biomarker has been explored in a range of clinical conditions, including cancer,
cardiovascular disease, sepsis, and acute and chronic kidney disease [19–21]. Whether su-
PAR is merely a marker of immune activation or plays an active part in pathophysiological
processes has been discussed; however, it has been documented that suPAR is a scavenger
of circulating uPA and is a chemotaxant for neutrophils [22]. Thus, it could be a future
treatment target in a range of inflammatory conditions.

As molecular studies of plasminogen and plasmin were carried out using newer
techniques, the list of known substrates for plasmin expanded, and today we know that
plasmin cleaves not only fibrin but also a wide range of proteins, including coagulation
factors, hormones, growth factors and extracellular matrix proteins [3]. This has led to
the realisation that the fibrinolytic system—or the plasminogen–plasmin system—is not
only an important player in thrombosis and haemostasis, but is also involved in many
other processes including tissue remodelling, angiogenesis, trophoblast invasion, neural
development and inflammation [23–27]. These effects are crucial in physiological growth
and development, but may also contribute to pathophysiological processes such as tumour
growth and invasion, angioedema, or neovascularisation seen in, e.g., age-related macular
degeneration [28–30]. These topics have been reviewed in detail by others [2,3] and are
outside the scope of the review, but open interesting perspectives for future treatment of
inflammatory and malignant diseases.

Our Current Understanding of Fibrinolysis

After the activation of the coagulation system and thrombin generation, thrombin
converts fibrinogen to fibrin through cleavage of the A and B domains (Figure 1). This
allows the fibrin molecules to polymerise and form the insoluble fibrin clot, which is then
further stabilised via covalent cross-linking by coagulation factor (F) XIIIa. The cross-linked
fibrin exposes lysine residues, which provide a binding surface for plasminogen [31].

Intravascular conversion of plasminogen into plasmin is induced mainly by tPA. This
serine protease is constitutively active but its plasminogen conversion activity increases
up to 1000-fold in the presence of fibrin [32]. This ensures that under physiological condi-
tions, intravascular plasmin activity is localised to fibrin clots and disseminated plasmin
activation is avoided. In contrast, uPA activation requires binding to its receptor uPAR
present on immune cells, endothelial cells, megakaryocytes, and in other tissues, but does
not require co-localisation with fibrin [22]. This determines the localisation of uPA activity
mainly to cell surfaces.
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Figure 1. Schematic overview of activators and regulators of fibrinolysis. As a result of coagulation 
activation, fibrinogen A and B domains are cleaved from fibrinogen by thrombin, giving rise to fibrin 
monomers, which subsequently polymerise to form the fibrin clot. The clot is then stabilised by 
covalent crosslinking of D-domains induced by coagulation factor (F) XIIIa. Plasmin is the main 
enzyme responsible for fibrin clot degradation (fibrinolysis) and is activated by tissue-type plasmin-
ogen activator (tPA) in the presence of fibrin, or by urokinase-type plasminogen activator (uPA) in 
the presence of its cellular receptor (uPAR). Important regulators of fibrinolysis are plasminogen 
activator inhibitors (PAI)-1 and -2, which inhibit tPA and uPA activity; α2-antiplasmin binds and 
inhibits plasmin directly, and thrombin-activatable fibrinolysis inhibitor (TAFI) cleaves lysine resi-
dues from the fibrin clot and thereby impedes plasminogen binding to fibrin. (a) denotes activated 
enzyme. 

Intravascular conversion of plasminogen into plasmin is induced mainly by tPA. This 
serine protease is constitutively active but its plasminogen conversion activity increases 
up to 1000-fold in the presence of fibrin [32]. This ensures that under physiological condi-
tions, intravascular plasmin activity is localised to fibrin clots and disseminated plasmin 
activation is avoided. In contrast, uPA activation requires binding to its receptor uPAR 
present on immune cells, endothelial cells, megakaryocytes, and in other tissues, but does 
not require co-localisation with fibrin [22]. This determines the localisation of uPA activity 
mainly to cell surfaces. 

 Fibrinolysis is regulated by several antifibrinolytic proteins, of which α2-antiplasmin 
is considered the most important plasmin inhibitor. Α2-antiplasmin is incorporated into 
the fibrin clot during the fibrin cross-linking and inhibits plasmin directly via plasmin-
antiplasmin (PAP) complex formation [33]. Other important regulators of fibrin clot break-
down are PAI-1, PAI-2, and thrombin-activatable fibrinolysis inhibitor (TAFI). The PAIs 
are serine protease inhibitors (SERPINs) and exert their antifibrinolytic effects through 
direct complex formation and the inhibition of tPA and uPA. PAI-1 is synthesised in the 
endothelium and in platelets and is the most abundant plasminogen activator inhibitor in 
vivo, while PAI-2 is synthesised mainly in placental tissue and may be involved in the 
regulation of trophoblast invasion [34]. The carboxypeptidase TAFI is synthesised in the 
liver and activated by thrombin in the presence of thrombomodulin. The activated prote-
ase (TAFIa) cleaves lysin residues from fibrin, and since the lysin residues are binding 
sites for plasminogen, TAFI effectively impairs plasminogen–fibrin binding, plasminogen 
activation, and fibrin degradation [35]. 

Not only plasma concentrations of pro- and antifibrinolytic proteins, but also the 
structure of the fibrin clot itself influence the fibrinolytic process. The properties of the 
fibrin network, i.e., fibre diameter, density, and pore size, determine clot stability and lysis 

Figure 1. Schematic overview of activators and regulators of fibrinolysis. As a result of coagulation
activation, fibrinogen A and B domains are cleaved from fibrinogen by thrombin, giving rise to fibrin
monomers, which subsequently polymerise to form the fibrin clot. The clot is then stabilised by
covalent crosslinking of D-domains induced by coagulation factor (F) XIIIa. Plasmin is the main
enzyme responsible for fibrin clot degradation (fibrinolysis) and is activated by tissue-type plasmino-
gen activator (tPA) in the presence of fibrin, or by urokinase-type plasminogen activator (uPA) in the
presence of its cellular receptor (uPAR). Important regulators of fibrinolysis are plasminogen activator
inhibitors (PAI)-1 and -2, which inhibit tPA and uPA activity; α2-antiplasmin binds and inhibits
plasmin directly, and thrombin-activatable fibrinolysis inhibitor (TAFI) cleaves lysine residues from
the fibrin clot and thereby impedes plasminogen binding to fibrin. (a) denotes activated enzyme.

Fibrinolysis is regulated by several antifibrinolytic proteins, of which α2-antiplasmin
is considered the most important plasmin inhibitor. A2-antiplasmin is incorporated into
the fibrin clot during the fibrin cross-linking and inhibits plasmin directly via plasmin-
antiplasmin (PAP) complex formation [33]. Other important regulators of fibrin clot break-
down are PAI-1, PAI-2, and thrombin-activatable fibrinolysis inhibitor (TAFI). The PAIs
are serine protease inhibitors (SERPINs) and exert their antifibrinolytic effects through
direct complex formation and the inhibition of tPA and uPA. PAI-1 is synthesised in the
endothelium and in platelets and is the most abundant plasminogen activator inhibitor
in vivo, while PAI-2 is synthesised mainly in placental tissue and may be involved in the
regulation of trophoblast invasion [34]. The carboxypeptidase TAFI is synthesised in the
liver and activated by thrombin in the presence of thrombomodulin. The activated protease
(TAFIa) cleaves lysin residues from fibrin, and since the lysin residues are binding sites for
plasminogen, TAFI effectively impairs plasminogen–fibrin binding, plasminogen activation,
and fibrin degradation [35].

Not only plasma concentrations of pro- and antifibrinolytic proteins, but also the
structure of the fibrin clot itself influence the fibrinolytic process. The properties of the
fibrin network, i.e., fibre diameter, density, and pore size, determine clot stability and lysis
resistance. These properties are highly dependent on concentrations of fibrinogen and
thrombin at the time of clot formation. At low thrombin concentrations, the fibrin clot
consists of thick fibres with a loose clot structure and large pore size highly susceptible
to fibrinolysis. In contrast, higher thrombin concentrations yield thinner fibrin fibres
and denser fibrin clots with smaller pores [36]. The denser fibrin structure hinders the
diffusion of plasminogen and tPA and thereby renders the clot more lysis-resistant [37,38].
Furthermore, enhanced FXIII and TAFI activation by thrombin will also increase clot
stabilisation by FXIIIa and decrease clot lysability through TAFIa lysin residue removal.
The plasma concentration of fibrinogen also impacts fibrin clot properties; higher fibrinogen
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levels result in more compact and lysis-resistant clots [39]. Moreover, qualitative alterations
of fibrinogen, such as phosphorylation, glycation, or oxidation can lead to altered clot
structure and thereby possibly to impaired fibrinolysis [40,41].

3. Measuring Fibrinolysis

Fibrinolysis testing in a clinical setting has historically lagged far behind coagulation
testing, in particular tests sensitive to decreased fibrinolytic capacity (hypofibrinolysis) [7].
This is for several reasons. First, the process of fibrinolysis is slow (hours–days) compared
with coagulation (seconds–minutes); therefore, it is difficult to design tests with a clinically
relevant turnaround time, which reflect in vivo fibrinolysis. Second, it has been difficult
to show consistent associations between laboratory markers of fibrinolysis and clinical
outcomes, possibly due to lack of intra- and inter-laboratory standardisation; thus, the
definitions of clinically relevant hypo- and hyperfibrinolysis are not clear-cut. Furthermore,
the therapeutic options for modulating fibrinolysis have been limited compared with
options for anticoagulant medication and haemostatic agents, and thus the need to develop
reliable assays for monitoring of fibrinolysis has been less pronounced. Nonetheless, a
wide array of methods for measuring fibrinolysis is currently available in the research
laboratory. The emergence of the turbidity clot formation and lysis assay, fluorescence
assays for plasmin generation, development in microscope imaging methods, and, in
recent years, modification of viscoelastic tests for increased sensitivity to hyper- and
hypofibrinolysis, have all contributed to fibrinolysis research and have furthered our
understanding of fibrinolysis. Below, an overview is given on the most widely used
methods for measuring fibrinolysis.

3.1. Early Observations and Methods

The earliest observations of fibrinolytic activity were based on visual inspection
of clot formation and subsequent dissolution in whole blood or plasma. This gave an
excellent functional view of the patient’s intrinsic fibrinolysis speed, but did not provide
information on underlying mechanisms and under physiological conditions, and it was
a slow process (many hours to obtain spontaneous lysis of the clot). An important step
was the development and refinement of fibrin plate techniques, which used preformed
fibrin clots obtained by clotting purified fibrinogen with thrombin in a Petri dish under
standardized conditions [42,43]. The sample of interest was then added onto the plate
and the diameter of the lysed area was measured at specified time points. The fibrin plate
technique allowed the study of fibrinolytic activity in different plasma fractions and tissue
extracts, and thus facilitated much of early research on the fibrinolytic system.

3.2. Dynamic Assays
3.2.1. Euglobulin Lysis Time and Plasma-Based Clot Formation and Lysis Assays

The euglobulin lysis time (ELT), based on early fibrin plate techniques, is still per-
formed today and exists in several variant forms [44,45]. Common to the different methods
is that the (eu)globulin fraction is separated from plasma for analysis to avoid the influence
of α2-antiplasmin (coincidentally, PAI-1 and TAFI are also excluded). The globulin fraction
can be added to a preformed fibrin clot, or the patient’s own fibrinogen, contained in the
globulin fraction, can be clotted with thrombin. In both cases, lysis time is subsequently
registered. In early days, the assay was performed using Petri dishes and visual inspection
as described above, while nowadays microtiter plates are used and fibrin breakdown
is assessed with automated continuous absorbance reading. The ELT is sensitive to the
fibrinolytic capacity of the patient’s plasminogen/plasmin-tPA system, but it has the dis-
advantage of excluding the effect of antifibrinolytic proteins. Furthermore, the preformed
fibrin clot techniques do not take the patient’s own fibrin structure and lysis resistance
into consideration.

Clot formation and lysis assays performed on plasma (as opposed to the euglobulin
fraction) solved some of these problems. In these assays, plasma is clotted using either
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thrombin or tissue factor, and fibrin formation and breakdown is assessed by measuring
changes in plasma turbidity. However, as lysis is much slower in plasma than in the
globulin fraction because of the presence of inhibitors, an exogenous plasminogen activator,
e.g., recombinant tPA, is added simultaneously with the clot activator. Thus, these assays
are not as sensitive to the patient’s endogenous tPA activity as the ELT, but provide a picture
of the patient’s overall fibrinolytic capacity, including the effect of fibrinolysis inhibitors
and, especially for variants of the assays using tissue factor instead of thrombin, also of the
patient’s own clotting capacity and fibrin clot lysability. Clot formation and lysis assays are
widely used for research purposes but are difficult to standardise between laboratories, as
they are highly sensitive to reagents, buffers and even equipment [46].

3.2.2. Plasmin Generation

Assessing the kinetics of plasmin formation and inhibition in plasma is another way
to look at the patient’s dynamic fibrinolytic capacity. The plasmin generation assay was
inspired by the similar thrombin generation assay and exists in several variants [47]. The
assays use a fluorogenic substrate with high specificity for plasmin and continuously
measure fluorescence after sample activation with tissue factor and tPA. The fluorescent
signal is converted to plasmin activity units and different variables can be derived from
the plasmin generation curve, e.g., time to plasmin formation, velocity, peak plasmin
activity, area under curve, etc. Importantly, the assay not only gives information on plasmin
formation, but also on the rate of plasmin inhibition, i.e., it is sensitive to α2-antiplasmin
and other plasmin inhibitors. However, like the clot formation and lysis assay, exogenous
tPA is added to enhance fibrinolysis and so the assay is less sensitive to the effect of the
patient’s endogenous tPA.

3.2.3. Fibrin Clot Structure

Besides plasmin activity, fibrin clot structure, i.e., fibre thickness, fibrin density and
pore size, are the main determinants of lysis time. It can be assessed in the microscope or
determined through measuring fibrin clot permeability. As microscope-imaging techniques
have improved and become more widely available over time, this method is valuable for
research into determinants of fibrin clot structure and it can be applied on clots generated
from both plasma and whole blood [41]. The fibrin clot permeability method is performed
by clotting the patient’s plasma with thrombin and letting buffer flow through the formed
fibrin clots under standardised pressure. The permeability constant is calculated and is
proportional to pore size and inversely proportional to fibrin clot density. This method is
widely applied for research purposes [48].

3.2.4. Viscoelastic Tests

Viscoelastic tests include thromboelastography (TEG®), rotational thromboelastom-
etry (ROTEM®), and Sonoclot®. Tests are performed in whole blood and the kinetics of
clot formation, as well as clot breakdown, is recorded through measuring the changing
viscoelastic properties of the clotting blood, either as mechanic resistance between a rotat-
ing pin-and-cup system or as ultrasound waves. The viscoelastic tests are implemented
worldwide to guide transfusion strategy in the bleeding patient [49]. Clot breakdown in
the cup will change the viscoelastic properties, and therefore these analyses are sensitive
to pronounced hyperfibrinolysis and are used to guide treatment with antifibrinolytic
agents [50]. However, milder cases of hyperfibrinolysis will not be registered [51]. Fur-
thermore, standard viscoelastic protocols do not contain fibrinolysis activator and, since
physiological fibrinolysis is slow, they will not reveal decreased fibrinolytic activity within
standard runtimes (60 min). This is illustrated by the fact that 0% lysis is contained in the
reference intervals of standard protocols. Modified protocols with added tPA or urokinase
have recently been developed for research use with both ROTEM® and TEG® [52–54] and
one is available with Sonoclot®, and they have the potential to assess fibrinolytic capacity
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in whole blood with clinically relevant runtimes. However, data on association with clinical
outcomes are still awaited.

3.3. Measurement of Circulating Factors
3.3.1. Circulating Pro- and Antifibrinolytic Proteins

Specific assays are available either in-house or commercially for most of the pro-
and antifibrinolytic proteins known today, including plasminogen, α2-antiplasmin, PAP
complex, tPA, PAI-1 and -2, and TAFI. These are typically either chromogenic activity or
antigen assays employing immunometric methods. They are widely used in research, but
the clinical relevance of measuring single protein markers to assess fibrinolysis is currently
limited, except perhaps in the face of suspected inherited deficiencies of, e.g., PAI-1 (which
may lead to increased bleeding tendency) [55] or plasminogen (which is not associated
with increased thrombosis risk but with ligneous conjunctivitis) [56]. Furthermore, there is
lack of standardisation between assays, and for tPA and PAIs the additional problem exists
that the available assays will have varying degrees of specificity for free protein versus
tPA-PAI complex or active versus latent PAI-1 [57]. This can make interpretation tricky.

3.3.2. Fibrin Degradation Products

Measurement of fibrin degradation products (FDPs) in plasma has been performed
for decades [58], and FDPs in some form are among the most commonly investigated
coagulation biomarkers worldwide. Semiquantitative assays and radioimmunoassays for
FDPs were introduced in the early 1970s [59,60]. However, there were problems with
standardisation as FDP’s are heterogeneous, and cross-reactivity with fibrinogen and
fibrinogen breakdown products could not be avoided. The fibrin D-dimer fragment was
discovered and isolated in the 1970s [61]. Fibrin D domain crosslinking only takes place after
fibrin formation and FXIIIa crosslinking, and the fibrin D-dimer fragment is only released
from the clot upon plasmin digestion; thus, the presence of fibrin D-dimer in plasma
signifies ongoing fibrin formation and breakdown. Furthermore, the fibrin D-dimer is more
well-defined and homogeneous than the broad array of FDPs previously investigated, and
this facilitated the development of D-dimer-specific antibodies with much less potential
for cross-reaction. The first ELISAs were developed in the late 1980s, and fibrin D-dimer
measurement was in clinical use in 1991 [62]. This marker has since been implemented in the
diagnosis of various prothrombotic conditions, most notably venous thromboembolism and
disseminated intravascular coagulation. However, as fibrin D-dimer and other FDPs reflect
both fibrin formation and breakdown, they are not particularly specific for fibrinolysis
speed, and plasma levels of FDPs have not been demonstrated unambiguously to be good
markers for increased or decreased fibrinolytic capacity. Other routine coagulation assays,
such the prothrombin time (PT/INR) and activated partial thromboplastin time (aPTT),
reflect clotting times only and are not sensitive to fibrinolytic capacity at all. Thus, we still
lack reliable markers for fibrinolysis in the routine coagulation laboratory.

4. Fibrinolysis in Specific Clinical Settings

As previously mentioned, definitions of hypo- and hyperfibrinolysis are less clear-cut
than the definitions of hypo- and hypercoagulable states. That being said, disturbed fibri-
nolysis is recognised as a part of the pathophysiology in a wide range of clinical conditions
and has been correlated with clinical outcomes. Inherited disorders of fibrinolysis are rare,
while acquired hyper- or hypofibrinolysis is more common. Acquired hyperfibrinolysis is
separated into primary or secondary based on whether fibrinolysis is primarily increased
by the presence of tPA (primary) or the absence of fibrinolysis inhibitors (secondary) [63]:
primary hyperfibrinolysis can be seen in, e.g., acute promyelocytic leukaemia, orthotopic
liver transplantation and post-partum haemorrhage, while secondary hyperfibrinolysis can
follow excessive activation of coagulation, e.g., cardio-pulmonary bypass, or in chronic
liver disease. Trauma is classified as both primary and secondary hyperfibrinolysis.
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Acquired hypofibrinolysis is often related to substantially elevated PAI-1 levels. El-
evated PAI-1 levels are found in obesity [64], aging, thrombosis, trauma, COVID-19 [65],
sepsis [66] and in postoperative fibrinolytic shutdown [67]. Furthermore, changes in the
amount of α2-antiplasmin incorporated in the clot structure and levels of FXIII [68], as well
as increased procoagulant activity and fibrinogen concentrations, may change susceptibility
to lysis [69].

The following sections provides an overview of our current knowledge of changes
in fibrinolysis in selected clinical conditions and of the potential therapeutic implications
(Table 1).

Table 1. Changes in the fibrinolytic system in specific clinical settings.

Clinical Setting Changes in the Fibrinolytic System

Liver disease

Stable cirrhosis

Alcoholic cirrhosis: increased fibrinolysis due to
release and defective clearance of tPA
Non-alcoholic steatohepatitis cirrhosis:
hypofibrinolysis due to increased levels of PAI-1

Decompensated cirrhosis and
acute-on-chronic liver failure

Highly variable, ranging from severely
hypofibrinolytic to hyperfibrinolytic

Acute liver failure Profound hypofibrinolysis, uncertain clinical relevance

Liver transplantation

Hyperfibrinolysis due to defective clearance of tPA in
the anhepatic state and increased release from the
donor liver. Antifibrinolytic therapy is recommended
during surgery

Trauma

Major trauma

Hyperfibrinolysis, hypofibrinolysis, and fibrinolytic
shutdown. Antifibrinolytic therapy increases survival
after major trauma with haemorrhagic shock if
administered less than 3 h after trauma

Brain trauma
Variable, both hyperfibrinolysis and hypofibrinolysis.
Early antifibrinolytic therapy may be beneficial in
mild-to-moderate brain injury

Sepsis

Consistent findings of hypofibrinolysis in correlation
with organ failure. Increased levels of PAI-1,
TAFIa/TAFIa, and fibrinogen, decreased levels of
plasminogen

Cardiovascular disease

Both stable atherosclerosis and ACS are associated
with decreased fibrin clot permeability and prolonged
lysis times. Clot structure and lysis time may be
prognostic marker for reinfarction or cardiovascular
mortality in ACS patients

Venous thromboembolism (VTE)

DVT
A high PAI-1 level predisposes to VTE. Patients with
recurrent DVT have higher PAI-levels than patients
without recurrence of DVT.

PE

Patients with PE may have looser clot structure than
patients with isolated DVT. In high-risk PE patients,
systemic thrombolysis is indicated. In cases of
contraindications, catheter-based thrombo-aspiration
is an alternative.

Abbreviations: ACS: acute coronary syndrome; DVT: deep vein thrombosis; PAI-1: plasminogen activator
inhibitor-1; PE: pulmonary embolism; TAFI: thrombin-activatable fibrinolysis inhibitor; tPA: tissue plasminogen
activator; and VTE: venous thromboembolism.

4.1. Fibrinolysis in Trauma

Trauma is a leading cause of death worldwide, particularly among the young. One-
quarter to one-third of trauma patients suffer from traumatic coagulopathy. Kashuk et al.
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introduced the concept of the “Bloody vicious cycle” in the early 1980s where coagulopa-
thy, hypothermia, acidosis, and tissue hypoxia pushes the haemostatic balance towards
bleeding, which again aggravates hypoperfusion, hypoxia, and consumptive coagulopa-
thy and speeds up the vicious cycle [70]. This was increasingly recognised as leading to
higher mortality rates and led to the formalisation of damage control surgery and resus-
citation techniques [71]. In the 2000s, Brohi, Cohen, and colleagues described the entity
of trauma-induced coagulopathy having a significant impact on functional outcome and
mortality [71]. Trauma-induced coagulopathy is considered a multifactorial phenomenon,
with changes in both clot formation and fibrinolysis, in combination with the failure of
vascular homeostasis and immunoactivation [72]. The following will focus on changes in
fibrinolysis in major trauma and brain trauma.

4.1.1. Major Trauma

The fibrinolytic system is activated in severe trauma with three recognised phenotypes
of fibrinolysis in trauma: hyperfibrinolysis, hypofibrinolysis, and fibrinolytic shutdown [73].
Elevated PAP levels on admission to hospital is seen in 90% of trauma patients and indicates
prior activation of fibrinolysis and subsequent shutdown [74]. Ongoing hyperfibrinolysis at
admission measured by viscoelastic assays is present in less than 20% of the most severely
injured trauma patients [71], but is associated with a high mortality rate and massive
transfusion requirements.

Low fibrinolytic activity in trauma is also associated with increased mortality. Cur-
rently two definitions dominate, hypofibrinolysis and fibrinolytic shutdown, with fibri-
nolytic shutdown being the most prevalent. Hypofibrinolysis is a condition with impaired
activation of fibrinolysis per se, and fibrinolytic shutdown is characterised by initial activa-
tion of fibrinolysis with subsequent shutdown by substantial release of PAI-1 [73]. Patients
with fibrinolytic shutdown often have prolonged prothrombin time, platelet dysfunction,
and low fibrinogen levels, and do not generally benefit from antifibrinolytic treatment,
though it may be beneficial in selected patients with impaired platelet function and/or
prolonged clotting time [75]. Furthermore, fibrinolytic shutdown beyond 24 h of injury is
associated with increased mortality and ventilator requirements. The Clinical Randomisa-
tion of an Antifibrinolytic in Significant Hemorrhage 2 (CRASH-2) trial evaluating the effect
of tranexamic acid versus placebo in severe trauma with suspected or present haemorrhagic
shock has led to a widespread use of tranexamic acid in the trauma setting. It must be held
in mind that tranexamic acid administrated later than 3 h after injury increased mortality [5],
and recent studies have not confirmed the findings of the CRASH-studies [76–78].

4.1.2. Brain Trauma

Alterations in markers of fibrinolysis in traumatic brain injury (TBI) may be useful
for predicting neurological outcome, but may also guide clinical management. A TEG®-
guided classification of fibrinolytic phenotypes, hyperfibrinolysis, physiologic fibrinolysis
and fibrinolytic shutdown, has been suggested [79,80], but rests on observed mortality
rates rather than specific changes in fibrinolytic markers [81]. However, the elevation of
D-dimer levels has repeatedly been associated with poor outcome in TBI, as have low
levels of fibrinogen [80,81], and dysregulated fibrinolysis adds to the risk of progressive
intracerebral haemorrhage following TBI [81]. Investigating the time course of changes in
coagulation and fibrinolysis in 61 TBI patients, Nakae et al. [82] reported that patients with
a poor outcome had significantly higher levels of PAI-1 and D-dimer on the first day than
patients with a good outcome. A positive correlation was found between D-dimer and PAI-
1, and these findings were interpreted as hypercoagulability on admission was followed by
increased fibrinolysis (D-dimer) and subsequent fibrinolytic shutdown (increased PAI-1).
To some degree, these results conflict with Samuels et al. reporting hypocoagulation, but
also some degree of fibrinolytic shutdown in TBI patients, when compared to trauma
patients with no TBI [80]. The CRASH-3 trial, in which almost 13,000 patients with isolated
TBI were randomised to tranexamic acid or placebo, the administration of tranexamic acid
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within 3 h of injury provided significant clinical benefit, but only in patients with mild-
to-moderate brain injury, and had no effect in patients with more severe brain injury [83].
The results from the CRASH-3 trial have by others been interpreted as tranexamic acid
should only be administrated to TBI patients with a Glasgow come scale score of 9–12 [84].
The diversity of these results and conclusions emphasise that we need better fibrinolytic
markers to classify fibrinolytic phenotype.

4.2. Fibrinolysis in Coronary Artery Disease

Despite improved treatment options, coronary artery disease (CAD) is still the number
one cause of mortality in the Western world, and the prevalence is increasing worldwide.
Established risk factors such as smoking, hypercholesterolemia, and hypertension can be
targeted through life style changes or pharmacological prophylaxis, but only partly explain
the pathophysiology of CAD. Regarding acute coronary syndrome (ACS), thrombolytic
therapy has been used since the late 1950s for the treatment of acute myocardial infarc-
tion (AMI) to dissolve the coronary thrombus [85]. However, thrombolysis is now only
recommended in ST-elevation myocardial infarction if primary percutaneous coronary
intervention (PCI) is not available within 120 min of diagnosis [86]. Changes in fibrinolytic
capacity may be present already during early stages of CAD and may contribute to disease
progression. Studies consistently found decreased clot permeability and prolonged lysis
times in patients with stable CAD [87–89], as well as in ACS patients [90,91]. Traditional
CAD risk factors may partly explain this, [92] especially diabetes mellitus. PAI-1 release
from the atherosclerotic endothelium may be an important contributor to hypofibrinol-
ysis in CAD. Increased local thrombin formation around the atherosclerotic plaque may
also contribute to decreased clot permeability. Furthermore, sustained hypofibrinolysis
is associated with unfavourable outcomes in CAD patients, including the development
of ACS in stable CAD [93] and ACS recurrence and cardiovascular mortality in ACS pa-
tients [94,95]. Though the role of fibrinolysis in CAD is increasingly recognised, the clinical
consequence is yet limited, since no profibrinolytic agents are approved for treatment of
global, low-grade hypofibrinolysis.

4.3. Fibrinolysis in Sepsis

The definition of sepsis has changed significantly over the years, but is currently
defined as “a life-threatening organ dysfunction caused by a dysregulated host response
to infection”. Septic shock is defined as sepsis with need for vasopressor treatment to
maintain mean arterial pressure > 65 mmHg or serum lactate > 2 mmol/L in the absence of
hypovolemia [96]. Sepsis presents with varying degrees of organ dysfunction, evaluated
by use of the Sequential Organ Failure Assessments (SOFA) score, which correlates with
mortality [97,98]. Regarding changes in coagulation, focus has been on the activation of
platelets and thrombin in interaction with the immune system [99]. However, in recent
years the presence and importance of hypofibrinolysis in sepsis has come into play [66].

A consistent finding in sepsis is hypofibrinolysis evaluated by both viscoelastic assays
and dynamic plasma-based assays [52,100,101]. These findings are accompanied by in-
creased PAI-1, decreased plasminogen and increased fibrinogen. The increased fibrinogen
may lead to a denser and more lysis resistant clot structure. Endothelial activation leads
to high levels of circulating tPA, followed by a more sustained increase in PAI-1. In later
stages of sepsis, plasminogen consumption and decreased synthesis will lead to lower
levels of circulating plasminogen [66]. Furthermore, extensive TAFI activation is seen early
in sepsis [102]. Hypofibrinolysis in sepsis may be associated with increase in organ failure
and mortality, but consistent associations with outcome remain to be clarified [66].

Since suPAR is shed during inflammation, it has naturally been investigated as a
prognostic marker in sepsis. Two recent meta-analyses showed moderate-to-good ability
for suPAR to predict mortality with area under receiver operator characteristics (ROC)
curves of approximately 0.65–0.80 [103,104]. It is yet unknown whether suPAR contributes
to altered fibrinolytic capacity in sepsis through interactions with uPA.
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4.4. Venous Thromboembolism

Venous thromboembolism (VTE) covers the spectrum from subclinical deep venous
thrombosis (DVT) to sudden death by pulmonary embolism (PE). PE and DVT are often
seen concurrently. Hence, the two conditions and the biochemical changes related to them
cannot be completely separated. However, in acute VTE, clot lysis time may be shorter in
PE than in DVT without PE, possibly indicating a looser fibrin network, predisposing to
clot fragmentation and the development of PE from DVT [69].

In a population-based nested case-control study from Tromsø, Norway, the future
risk of VTE increased in a dose-dependent manner with increasing PAI-1 at baseline, and
PAI-1 explained approximately 15% of the VTE risk in obesity [64]. Following documented
VTE, impaired fibrin clot lysis is seen, and patients later developing recurrent VTE have
higher PAI-1 levels than patients not experiencing recurrent VTE [69]. As much as 77% of
variation in clot lysis time in DVT patients is attributed to PAI-1, TAFI, and α2-antiplasmin.
Furthermore, among patients with long clot lysis times, oral contraceptives, immobilisation,
and the presence of factor V Leiden mutation increases the risk of VTE substantially in
comparison to patients with short clot lysis times [69]. This indicates synergistic effects of
alterations in the coagulation and fibrinolytic systems on VTE risk.

Pulmonary Embolism

Patients with PE may have looser clot structure compared to patients with isolated
DVT. However, intermediate-to-high-risk PE patients have significantly longer lysis time
than low-and-intermediate-risk PE patients [69]. High PAI-1, low TAFI, and low α2-
antiplasmin indicate a high-risk biomarker profile in acute PE [105]. This may be of clinical
importance when evaluating the results of catheter-based therapy and thrombolysis in PE.
PE complicated with hemodynamic instability (shock or hypotension) should be treated
rapidly with reperfusion techniques, particularly systemic thrombolysis [106]. The greatest
benefit is observed when treatment is initiated within 48 h, but thrombolysis can still
be useful in patients who have had symptoms for 6–14 days. However, this treatment
comes with a high risk of major bleeding, particularly intracerebral haemorrhage, and
in normotensive patients with inter-mediate risk PE, the risk reduction in hemodynamic
decompensation is outweighed by an increased risk of major bleeding [15]. Catheter-based
low-dose thrombolytic therapy can limit the dose of thrombolysis by a factor of four.
Furthermore, the delivery of high-frequency ultrasound within the thrombus may enhance
the action of the thrombolytic therapy, but results are contradictive and primarily evaluated
by right ventricular function and not mortality or recurrent VTE [106]. Thrombo-aspiration
may be a tempting alternative or supplemental to local thrombolysis and is recommended
as an alternative when systemic thrombolysis is contraindicated. Thrombo-aspiration may
improve right ventricular function, but there is a lack of studies evaluating gain with
regards to mortality or recurrence of VTE.

4.5. Fibrinolysis in Liver Disease

Patients with liver disease have been described to have accelerated fibrinolysis [107],
and it is generally accepted that this hyperfibrinolytic state contributes to bleeding [108].
However, when evaluating different aspects of liver disease, nuances can be added.

4.5.1. Cirrhosis

In stable cirrhosis, fibrinolysis is possibly increased [109–112] as tPA is released from
endothelium, and clearance of tPA is reduced due to the diseased liver. However, the
fibrinolytic activity may depend on the aetiology of cirrhosis. In a study comparing
patients with alcoholic cirrhosis (n = 15) and non-alcoholic steatohepatitis (NASH) cirrhosis
(n = 22), patients with NASH cirrhosis had significantly prolonged clot lysis time, indicating
a hypofibrinolytic state, in comparison to patients with alcoholic cirrhosis and healthy
controls [113]. This is in accordance with others who also described hypofibrinolysis in
patients with NASH [114,115] and cholestatic disease [115]. Plasma levels of PAI-1 were
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higher in these two patient groups compared with other aetiologies of cirrhosis and healthy
controls. This hypofibrinolytic state in NASH may explain the increased risk of thrombotic
events observed in these patients [116]. In both alcoholic and non-alcoholic cirrhosis,
hepatocellular carcinoma is associated with hypofibrinolysis [117]. A clear association
between hyperfibrinolysis and bleeding in stable liver cirrhosis has not been described, but
cirrhosis-related bleeding is often not related to haemostatic failure but manifests primarily
as variceal bleeding and bleeding after invasive procedures, where portal hypertension
and local vascular abnormalities are major aetiological factors of the bleed. Many post-
procedural bleedings are likely related to inadvertent vessel wall injury [118,119].

In patients with acutely decompensated cirrhosis or acute-on-chronic liver failure, test
results are highly variable [108,120]. Acutely decompensated cirrhosis patients generally
show hyperfibrinolytic traits in comparison to healthy controls [108], and hyperfibrinolysis
may relate to the presence and degree of ascites [121]. Patients with acute-on-chronic liver
failure show great variation ranging from severely hypofibrinolytic to hyperfibrinolytic
when evaluated by dynamic clot lysis assays [120]. However, clot lysis times were not
associated with bleeding in these patients [120].

4.5.2. Acute Liver Failure and Liver Transplantation

Acute liver failure patients are for the most part in a profound hypofibrinolytic
state [122]. However, this is not related to short-term mortality, and the importance is
uncertain [123]. Whether there is a role for hypofibrinolysis in disease progression in acute
liver failure remains to be elucidated.

In contrast, during orthotopic liver transplantation hyperfibrinolysis is prevalent. The
defective clearance of tPA during the anhepatic phase and increased release of tPA from
injured endothelium in the donor liver after the anhepatic phase, when oxygen-rich blood
is reintroduced after a period of ischemia, may be the cause. In this situation, hyperfibrinol-
ysis is associated with increased perioperative blood loss, as demonstrated by increased
transfusion requirements [124,125]. A randomised trial administering prophylactic antifib-
rinolytic therapy reduced transfusions [126] and the use of aprotinine was not associated
with thrombotic complications [127]. On this basis, antifibrinolytic therapy is recommended
to treat or prevent hyperfibrinolysis in patients undergoing liver transplantation. The eval-
uation of haemostasis and fibrinolysis during surgery may be aided by the use of ecarin
containing viscoelastometric testing [128].

4.6. Beyond Bleeding and Thrombosis Risk: Hereditary Angioedema

Hereditary angioedema is a condition characterised by episodes of increased vascular
permeability which leads to swelling in the deep layers of skin and mucosa/submucosa
and, depending on the localisation (e.g., airways), can be life-threatening [129]. The increase
in vascular permeability is caused by the vasoactive substance bradykinin, an activation
product of the contact system. The background for increased bradykinin production in
hereditary angioedema is most often due to a lack of C1-inhibitor, a regulator of contact
system activation [129]. However, one form of angioedema has been associated with a mu-
tation in the plasminogen gene which renders plasminogen more susceptible to activation
by tPA and uPA [130]. Under physiological circumstances, there is significant crosstalk
between the contact and fibrinolytic systems, as they can activate each other in turn, and
this crosstalk is probably enhanced in angioedema patients [30]. In hereditary angioedema,
there is evidence of increased intra- and extravascular plasmin activation during swelling
episodes, indicated by increased circulating PAP complex [131,132], decreasing PAI-1 [133]
and the upregulation of uPAR in leukocytes [134]. This may in turn aggravate contact and
immune activation. Thus, it is tempting to consider the fibrinolytic system as a treatment
target in hereditary angioedema. However, while antifibrinolytic agents have been found
to be beneficial in early studies, they are probably not as effective as newer drugs targeting
the contact system which include recombinant C1-inhibitor and blockers of bradykinin and
kallikrein [135].
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5. The Fibrinolytic System as a Treatment Target

Anti-fibrinolytic therapy has gone from strength to strength since the presentation of
the CRASH trials, and its use has increased substantially. Its price and availability makes it
an attractive choice in the prehospital and trauma setting, as well as in low-income countries.
However, the studies of trauma patients indicate that time is of the essence, as mortality
increases if tranexamic acid is administered after a certain time window. Furthermore,
fibrinolytic properties change with the injury severity, degree of haemorrhagic shock, and
at a particular time after trauma. As discussed by Honeybul et al., tranexamic acid may not
be as innocuous as currently believed, and future studies need to focus on the timing and
applicability of tranexamic acid administration [84].

While thrombolysis is now less of a cornerstone in the treatment of acute myocardial
infarction, it certainly has a place in the treatment of pulmonary embolism and stroke.
Currently, a phase-3 study is evaluating the effect of non-immunogenic recombinant staphy-
lokinase versus alteplase in massive PE. Further studies focus on catheter-based low-dose
local thrombolysis and thrombo-aspiration in both pulmonary embolism and stroke.

Regarding the treatment of global hypofibrinolysis in, e.g., sepsis- or trauma-associated
fibrinolytic shutdown, there is currently no approved pharmacological therapy. The inhi-
bition of antifibrinolytic proteins has been researched for several decades. Inhibitors of
PAI-1 [136,137], α2-antiplasmin [138], and TAFI [139] have been shown to alleviate throm-
bus formation in several animal models, but have not so far progressed to clinical trials,
partly due to increased bleeding risk. Furthermore, low-dose systemic tPA in lysis-resistant
critical illness may hold potential if reliable biochemical assays allow us to identify which
patients will benefit from this treatment [140].

6. Conclusions and Future Directions

In the last 75 years, the map of the fibrinolytic system has been established and is still
expanding. The routine coagulation laboratory assays still do not allow us to discriminate
between hyper- and hypofibrinolysis in the diagnostic setting, but particularly viscoelastic
assays hold potential in this matter. Studies applying viscoelastic assays, modified to
identify changes in fibrinolysis related to clinical outcome are awaited, as this will identify
patients who will benefit from antifibrinolytic or profibrinolytic treatment. Particularly in
major trauma and brain trauma, fibrinolysis changes with time and may shift from hyper-
to hypofibrinolysis, closing the window for antifibrinolytic treatment within a short time
after trauma.

In sepsis and VTE, hypofibrinolysis predominates, but treatment options are limited
and awaited. Inhibitors of PAI-1, α2-antiplasmin, and TAFI may in time progress to
clinical trials, as may low-dose thrombolysis. In pulmonary embolisms, the refinement
of thrombolysis and mechanical removal of the clot are part of ongoing clinical trials.
In conclusion, investigations of fibrinolysis in the clinical setting, as well as the further
development of laboratory assays, are needed, and hold potential for major improvements
in patient care and outcome.
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