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Abstract: Systemic sclerosis, commonly known as scleroderma, is an autoimmune disorder charac-
terized by vascular abnormalities, autoimmunity, and multiorgan fibrosis. The exact etiology is not
known but believed to be triggered by environmental agents in a genetically susceptible host. Vascu-
lar symptoms such as the Raynaud phenomenon often precede other fibrotic manifestations such as
skin thickening indicating that vascular dysfunction is the primary event. Endothelial damage and
activation occur early, possibly triggered by various infectious agents and autoantibodies. Endothelial
dysfunction, along with defects in endothelial progenitor cells, leads to defective angiogenesis and
vasculogenesis. Endothelial to mesenchymal cell transformation is another seminal event during
pathogenesis that progresses to tissue fibrosis. The goal of the review is to discuss the molecular
aspect of the endothelial dysfunction that leads to the development of systemic sclerosis.
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1. Introduction

Systemic sclerosis (SSc) is an autoimmune connective tissue disease. The disease is
characterized by vascular defects, progressive fibrosis, and skin thickening [1]. There are
two known types of SSc: limited and diffuse. These two forms can be distinguished by
variations in the degree of skin involvement, association with specific autoantibodies, and
the pattern of organ involvement. While the exact cause of SSc is unknown, the disease
is believed to be a result of environmental factors and genetic predisposition. Family
history plays a role in the development of SSc, and it can amplify the risk of developing
the disease in an individual [1]. Three distinct underlying mechanism drive the disease:
(a) aberrant innate and adaptive immunity leading to production of autoantibodies and
cellular autoimmunity; (b) vascular dysfunction, and (c); defective fibroblasts leading
to excessive collagen and matrix component deposition in vessels and various organs
including skin [1].

Impaired vascular tone and permeability are some of the earliest signs of vascular
dysfunction [2]. Dysregulation of vascular tone leading to vasospasm and compromised
blood flow is the underlying mechanism of vascular dysfunction. This dysregulation of
vascular tone results from the imbalances of vasodilator mediators, e.g., nitric oxide (NO)
and vasoconstrictor, e.g., endothelin. Besides this, cellular changes such as large gaps
between endothelial cells, vacuolization of endothelial cell cytoplasm, loss of membrane
bound storage vesicles are some of the earliest endothelial cell changes [3–5]. Along with the
endothelial cell changes, capillary enlargement and capillary losses continue progressively
and furthermore intimal proliferation and proteoglycans accumulate in arterioles and small
arteries [6,7].

The vascular endothelium maintains vascular tone, regulates platelet function, and
controls inflammation. It plays a significant role in the tissue remodeling through angio-
genesis and vasculogenesis [8]. Early in the disease process, typical vascular symptoms,
e.g., Raynaud’s phenomenon precede tissue fibrosis suggesting that microvascular injuries
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and dysfunctions involving the vascular endothelial cells (VECs) and capillaries are the
initial event [9]. This clinical observation led to the conclusion, as early as 1975, that the
primary cause of SSc involves endothelial damage and dysfunction [10]. Furthermore,
the interaction of endothelial cells with other cells, e.g., smooth muscles, platelets, fibrob-
lasts, and pathways, e.g., the coagulation system and immune system drive the disease
process [9].

Four major distinct processes involving the endothelial cells are crucial in the patho-
genesis of SSc: Endothelial cell injury, defective angiogenesis, defective vasculogenesis,
and endothelial to mesenchymal transformation (Figure 1). These processes are discussed
more in detail below.
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2. Endothelial Cell Injury

Initial vascular endothelial cell damage followed by vascular remodeling with arteri-
ole intimal proliferation, capillary breakdown and vascular occlusion are some of the key
events in the progression of SSc [11]. Endothelial cell injury is accompanied by lymphocytic
and mononuclear lymphocytic perivascular infiltration in the affected tissues are few of
the earliest changes seen in SSc [12]. Infectious agents, cytotoxic T cells, autoantibodies
against the endothelial cells and NO-related free radicals have been cited for the endothe-
lial cell damage but the exact role of each of these agents is not clear [2]. Evidence of
endothelial cell injury, e.g., high serum levels of circulating von Willebrand (VW) factor,
endothelin-1, circulating viable and dead endothelial cells, and soluble JAM-1 are present
in the circulation [2,13–17]. There is increased expression of the genes encoding the von
Willebrand factor (vWF), tissue factor (F3), ephrin A1, and ET-1 in stimulated endothelial
cells suggestive of endothelial cell activation and damage [18]. Among the infectious
agents, viral agents have been proposed as possible trigger of endothelial cell injury [19].
Cytomegalovirus has been implicated in the pathogenesis of SSc for its potential to infect
endothelial cells and there is increased prevalence of anti-Hcmv antibodies in the sera of
subjects with SSc [20,21]. There could also be activation of the autoreactive B cell clones
through molecular mimicry as anti-topoisomerase I antibodies recognize a pentapeptide
of the autoantigen-sharing homology with the hCMV-derived UL70 protein [22]. There is
presence of anti-HCMV antibodies directed against an epitope (VTL GGAGIWLPP) con-
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tained within UL94, a human cytomegalovirus-derived protein expressed in the infected
endothelial cells. UL94 is localized in the nucleus of infected endothelial cells and may
be responsible for the regulation of viral and/or cellular gene expression. The antibodies
bind to the endothelial cell surface receptor NAG-2, bearing similarity to UL94 and cause
endothelial apoptosis, which is a key event in SSc pathogenesis [18,23]. There is a signifi-
cantly higher prevalence of HHV-6A/B DNA in both the blood and peripheral tissues of
SSc patients compared to controls [24]. Even among the SSc patients one subgroup has
higher viral load compared to another group suggesting that it may be responsible for a
subgroup of patients. The authors were further able to demonstrate that human herpes
virus A and B (HHV-6 A and B) interferes with normal function of the endothelial cells
and causes pro-fibrotic molecule expression in the endothelial cells. Prior parvovirus B19
infection could result in increased expression of TNF-α in the endothelial cells, which may
be of pathologic significance in SSc [25]. Epstein bar virus (EBV) has also been implicated
in endothelial cell injury in SSc [26]. In an in vitro model, the investigators demonstrated
that the human monocytes bound to the recombinant EBV act as a shuttle, EBV virus
can infect the endothelial cells, and there is overexpression of the EBV early lytic genes.
The EBV induces activation of the TLR9 innate immune response and type I IFN. Type
I interferons (IFNs) are known to promote endothelial cell death, inhibit endothelial cell
migration [27], and may play a role in endothelial cell injury in SSc [26]. It is possible
that the expression of the EBV early lytic genes in the infected endothelial cells may cause
vascular endothelial cell apoptosis [26]. Even though SARS-CoV-2 infection is a more acute
process, it has a lot of similarity with early endothelial damage and vasculopathy seen
in SSc [28]. CD4+ Cytotoxic T-cells and CD8+ cytotoxic T-cells are expanded in early SSc
patients [29]. They are found near the endothelial cells undergoing apoptosis. Peripheral
T-cell tolerance breakdown may lead these T-cells to interact with the endothelial cells pre-
senting self-antigens in conjunction with HLA class II or HLA class I molecule resulting in
the endothelial cell apoptosis. Apoptotic cells trigger TAM family kinases on macrophages
and potentially could accelerate wound healing [30]. In another study, the authors found
that CD226+CD8+ T cells produced a higher number of various cytokines than CD226−

ones, and CD226highCD8+ T cells from SSc patients showed upregulated IL-13 produc-
tion and positive correlation with the cytotoxic capacity of CD8+ T cells against human
umbilical vascular endothelial cells (HUVECs) [31]. However, neutralization of CD226 in
CD8+ T cells impaired costimulation, cytokine production, and cytolysis against HUVECs.
Ischemia reperfusion events, e.g., the Raynaud phenomenon, results in oxidative stress in
SSc leading to the formation of reactive oxygen species, e.g., including superoxide anion
radical (O2•), hydroxyl anion (•OH), and hydrogen peroxide (H2O2) [32]. The source of
these reactive oxygen species varies from the peripheral blood cells in the vessel lumen
or monocytes, endothelial cells, fibroblasts in response to various noxious stimuli. These
reactive oxygen species inhibit the release of NO, prostacyclin, tissue plasminogen activator,
protein S and heparin sulphate from the endothelial cells leading to the alteration of the
vascular tone [33]. Anti endothelial cell antibodies (AECA) are found in 22–68% of patients
with SSc [34]. These antibodies cause endothelial cell apoptosis by both the fas-independent
mechanism and the antibody-dependent cellular cytotoxicity mechanism [35,36]. In an
invitro model, in human microvascular endothelial cells (HMVECs), when cultured with
AECA, there is endothelial apoptosis and the HMVECs release endothelin 1 [37]. AECAs in
SSc are linkedto higher levels of total and activated circulating endothelial cells suggestive
of endothelial cell damage. Levels of AECAs are correlated with the number of apoptotic
endothelial microparticles. Impairment of vascular repair by having fewer endothelial
cell progenitors is seen in subjects with AECAs [38]. Immune complexes (ICs) containing
SSc specific antibodies (anti-centromere, anti-topoisomerase I, and anti- RNA polymerase)
induce the endothelial cells to a pro-inflammatory and pro-fibrotic phenotype [39]. Incu-
bation of the endothelial cells with SSc-ICs increased the expression of several molecules
which can cause vascular dysfunction (ET-1, IL-8), inflammation (IL-6 and ICAM-1), and
fibrosis (TGF-β1).
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3. Defective Angiogenesis

Angiogenesis is dysregulated in SSc indicating defective microvascular cell differen-
tiation from the preexisting vessels to form new blood vessels [40,41]. The endothelial
cells showed reduced angiogenic properties [42,43]. These cells have intrinsic defect in NO
production due to the downregulation of the endothelial NO synthase [44]. There is overex-
pression of proangiogenic factors like VEGF-1 and endothelin-1 [45,46], but VEGF receptor
signaling may be impaired [42]. There is also an impaired response to pro-angiogenic
chemokines Gro-γ/CXCL3, GCP-2/CXCL6, or CXCL16. The endothelial cells do not mi-
grate in response to the chemokines and vascular endothelial growth factor (VEGF) because
of defective signaling pathways. Studies have found that the anti-angiogenicVEGF165 b
isoform of VEGF is overexpressed compared to the proangiogenic VEGF165. Binding of
VEGF165 to the tyrosine kinase receptor VEGFR-2 results in insufficient tyrosine kinase
phosphorylation/activation and incomplete signaling, leading to incomplete angiogenic
response. The authors have also demonstrated that the plasma level of VEGF165 b is as-
sociated with severity of microvascular damage suggesting that this isoform of VEGF is
responsible for vasculopathy in SSc [47,48]. Vascular abnormality and reduced capillary
density alter blood supply and tissue oxygenation in SSc. Chronic hypoxia leads to an
increase in VEGF level and disturbs VEGF receptor signaling [49]. VEGF promotes angio-
genesis by activating the endothelial cells and the endothelial progenitor cells [50]. VEGF
further promotes angiogenesis by acting synergistically with the platelet derived growth
factor (PDGF) and fibroblast growth factor [51]. Aberrant overexpression of the VEGF-like
seen in SSc induces vascular malformations [52]. The vascular malformation is attributable
to two specific endothelial cell activities: (i) neovascularization in normally avascular areas
and (ii) the unregulated, excessive fusion of vessels. Hypoxia-inducible-factor-1-ά, though,
is expected to be high in SSc because of ongoing hypoxia but studies have shown otherwise,
levels are low in the skin compared to the healthy controls [53]. Another mechanism of
angiogenesis inhibition is through increased glycolytic metabolism of dermal fibroblasts
leading to extracellular acidification [54]. The authors have demonstrated that acidosis
in general and lactic acidosis impair in vitro endothelial cell capillary network/lumen
formation and invasion without altering cell viability. The abnormality was corrected
following PH adjustment. This response to acidic PH is secondary to MMP-12 upregulation
by endothelial cells and expression of cleaved uPAR (urokinase-type plasminogen activator
receptor). Endostatin, an inhibitor of angiogenesis has been found to be upregulated in
SSc [55]. There is alteration of signal transduction, e.g.,: ang/Tie signaling pathways [56]
and Upar truncation [57]. Friend leukemia virus integration 1 (FLI1) is a transcription factor
and its expression is suppressed both genetically and epigenetically in SSc patients [58].
CCN1 expression was suppressed uniformly and remarkably in dermal blood vessels of
Fli1(+/−) mice and partially in those of endothelial cell-specific Fli1 knockout mice [59].
Serum CCN1 levels were significantly decreased in SSc patients with previous and current
histories of digital ulcers, as compared to those without the ulcerations. This suggests that
epigenetic endothelial CCN1 downregulation is at least partially due to Fli1 deficiency and
may contribute to the development of digital ulcers in SSc patients [59]. FLI1 deficiency
suppresses the expression of CD31, VE-cadherin, S1P1, and PDGF-B in the endothelial cells,
while upregulating matrix metalloproteinase-9 and CCR6 resulting in vascular destabiliza-
tion and angiogenesis [60]. Desmoglein-2 belongs to the family of desmosomal cadherins
and is involved in cell adhesion, morphogenesis, cytoskeletal organization, and cell sort-
ing/migration [61]. There is reduced expression of desmoglein-2 (DSG2) in the endothelial
cells of SSc patients shown by differential transcriptome profiling and by immunohisto-
chemistry of the endothelial cells (EC) [62]. This has been linked to defective angiogenesis
in SSc [63]. Circulating CXCL4 levels are elevated in SSc [64]. The proliferation, migration,
and tube formation of human umbilical vein endothelial cells (HUVECs) are inhibited
by CXCL4 or SSc derived plasma. This is reversed by the CXCL4 neutralizing antibody.
CXCL4 downregulates Friend leukemia integration factor-1 (Fli-1) via c-able signaling in
the endothelial cells and inhibits angiogenesis [64].
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4. Defective Vasculogenesis

There has been a lot of interest in the role of endothelial progenitor cells which
contribute to the postnatal vasculogenesis in SSc [65]. These cells are identified in flow
cytometry as CD34+, CD133+, and/or CD309/VEGFR2+ [66]. There is correlation between
digital ulcers and a reduced number of endothelial progenitor cells in SSc patients [66–68].
Low progenitor cell numbers are independent predictors of new digital ulcers on longi-
tudinal follow up and associated with late pattern nail fold capillaroscopic changes in
SSc [69,70]. In the Fra-2 transgenic mice model, the pulmonary vasculature remodeling
was attenuated by blocking MMP-10 and there is increased expression of stromelysin 2
(MMP-10) in pulmonary vasculature and serum among subjects with SSc [71]. Multiple
initial studies have been conflicting regarding the number of circulating endothelial progen-
itor cells in subjects with SSc [66–68,72,73]. However, these conflicting results, later found
to be from different protocols used in different labs, and now using standardized protocols,
it has been found that circulating progenitor endothelial cells are in fact reduced in numbers
compared to the healthy controls [74]. Circulating lymphatic endothelial progenitor cells
(CD34+CD133+VEGFR3+), are also found to be reduced in SSc subjects with active digital
ulcers [75]. Besides that, there is inability of endothelial progenitor cells in SSc patients
to differentiate into mature endothelial cells. This has been demonstrated in in vitro cul-
tures using angiogenic growth factors [76] and using a murine tumor neovascularization
model [77]. Several mechanisms have been proposed behind the qualitative and qualitative
defects of the endothelial progenitor cells. An altered bone marrow microenvironment, as
evidenced by increased fibrosis and reduced microvascular density, may alter progenitor
endothelial capacity to differentiate into the endothelial cells [78]. Circulating pentraxin-3
potentially inhibits progenitor cell differentiation through FGF2 mediated progenitor cell
differentiation. The authors have demonstrated that the number of progenitor cell counts
varies inversely with circulating levels of Pentraxin-3 [79]. It has also been found that
endothelial progenitor cells are defective before they are released from the bone marrow as
they do not differentiate well in long-term culture with a proangiogenic growth factor [67].
Others have postulated that progenitor cells may undergo immune mediated apoptosis in
circulation, which is mediated through the Akt-FOX03a-bim signaling pathway [72].

5. Endothelial to Mesenchymal Transition (EndoMT)

In SSc, there is subendothelial accumulation of activated fibroblasts or myofibroblasts
in small arterioles in the lungs and kidneys which produce fibrotic tissue [80]. It has been
demonstrated that some of these mesenchymal cells have originated from the endothelial
cell transformation (EndoMT) [80]. Cipriani et al. showed endothelial cells showed reduced
expression of vWF, CD31, and VE-cadherin (endothelial cell markers) and upregulation
sSm22, α-SMA, and collagen (markers of fibrosis) suggesting the mesenchymal transfor-
mation of endothelial cells [81]. Von Willebrand factor/α-smooth muscle actin-positive
endothelial cells are found in up to 5% of pulmonary vessels in subjects with SSc-associated
pulmonary arterial hypertension and in the hypoxia/SU5416 mouse model [82]. The in-
vestigators demonstrated that transformed EndoMT cells on stimulation by inflammatory
cytokines, e.g., IL-1 β, TNF-α, TGF β caused actin cytoskeleton reorganization, and the
induction of a mesenchymal morphology. These cells showed up-regulation of mesenchy-
mal markers, including collagen type I and α-smooth muscle actin, and a reduction in the
endothelial cell and junctional proteins, including von Willebrand factor, CD31, occludin,
and vascular endothelial-cadherin. Induced EndoMT monolayers failed to form viable bio-
logical barriers and induced enhanced leak in co-culture with pulmonary artery endothelial
cells [82]. CD31+/CD102+EC isolated from SSc lungs expressed simultaneously mesenchy-
mal and EC-specific transcripts and proteins [83,84]. This suggests occurrence of EndoMT
in lung tissues from patients with SSc-associated ILD. Cells in intermediate stages of En-
doMT were identified in dermal vessels of either patients with SSc or bleomycin-induced
and urokinase-type plasminogen activator receptor (uPAR)-deficient mouse models [85].
Various cytokines and growth factors, e.g., TGF-β, PDGF, VEGF, and ET-1 activates the
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vascular endothelial cell and modulates the expression of adhesion molecules on the
endothelial cell surface leading to the recruitment of macrophages and B as well as T
lymphocytes [86–88]. These inflammatory cells further release various growth factors,
e.g., TGF-β and CTGF, in the tissue activating the endothelial cells to release endothelin-1,
which then activates the endoMT cells [89,90]. Levels of leukotriene A4 hydrolase (LTA4 H),
an enzyme for LTB4 synthesis, LTB4, and its receptor, BLT1 were increased in lesional areas
of the skin and lungs of SSc patients, and were abundant in myofibroblasts and endothelial
cells [91]. Fibroblast-myofibroblast and endothelial-mesenchymal transitions (EndoMT)
were promoted via BLT1, and are dependent on activation of the phosphatidylinositol
3-kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) pathway. Various cytokines
and other factors are involved in the EndoMT process, including TGF-β, particularly the
TGF-β 1 [92], Endothelin-1 [81], Wnt3a protein [93], IL-1β [94], TNF-α [95], IFN-γ [96],
microRNAs [97], oxidative stress [98], hypoxia, and hypoxia inducible factor [99]. The
growth factors, cytokines, and their mechanisms of actions are summarized in Table 1.

Table 1. Mediators of Endothelial to Mesenchymal Transition (EndoMT) [74].

Mediators Mode of Action

TGF-β Smad-dependent and independent pathways, e.g., c-abl
kinase, protein kinase c-δ

Caveolin-1(CAV1) Modulation of TGF-β signaling

Endothelin-1 (ET-1) Synergic effect with TGF β, involving Smad pathway

Notch pathway Activation of Snail and upregulate Smad

Wnt pathway Smad-dependent autocrine TGF-β signaling

Hypoxia-inducible factor-1α (HIF-1α) Interaction with TGF-β and VEGF, activation of Snail

6. Other Cytokines and Endothelial Dysfunction

A higher serum level of IL-33 and abnormal expression of IL-33 are found in the
skin of subjects with early stage SSc [100–103]. The IL-33–ST2 axis increases prolifera-
tion, migration, and differentiation of endothelial cells with increased permeability and
angiogenesis [103]. It is possible that IL-33 might mediate early events of SSc through
recruitment and stimulation of ST-2 expressing cells such as immune cells, fibroblast,
and myofibroblast [104]. IL-17 produced by endothelial induces expression of adhesion
molecules and chemokines in HUVEC. It mediates vascular inflammation through ERK
phosphorylation [105].

7. Endothelial Cell Interactions with Other Cells

Interaction between ECs and platelets is important for regulating vascular tone. Acti-
vated platelets induce thymic stromal lymphopoietin (TSLP) in human dermal microvas-
cular ECs, inducing profibrotic and endothelial cell activating factors such as IL-13 [11].
Endothelial cells interact with the coagulation system through upregulation of multiple
markers of coagulation, such as VEGF, leading to a prothrombotic state [106].

8. Clinical Manifestations of Endothelial Dysfunction

The Raynaud phenomenon, as mentioned earlier, is one of the earliest and most
frequent manifestations of SSc affecting up to 95% of patients [107] It results from the
altered vascular tone secondary to the imbalance between vasodilator mediators: Nitric
oxide, prostaglandin I2 (PGI2), and vasoconstrictor endothelin 1. Progressive damage
to the vasculature with alteration of the vessel wall by proliferative changes leads to
obliterative vasculopathy and tissue damage. Frequent episodes of vasospasm, tissue
hypoxia, superoxide radicals, and altered microvasculature contribute to developing digital
ulcers in up to 30% of SSc patients each year [107,108]. Another form of severe vascular
manifestations in SSc includes scleroderma renal crisis (SRC) seen in up to 10% of all SSc
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patients [109]. It is characterized by an extreme rise in blood pressure accompanied by renal
dysfunction, microangiopathic hemolytic anemia, and thrombocytopenia. Though the exact
pathophysiology is poorly understood, it is believed that poor renal blood flow secondary to
endothelial damage, intimal hyperplasia, and narrowing of renal arterioles play a role [109].
IL-6 has been implicated in the pathogenesis of SRC [110]. Simon et al. demonstrated
that in subjects with SRC, autoantibodies against Protease-activated receptor-1 (PAR-1)
induced endothelial cells to produce IL-6 with increased ERK 1/2, AKT, and p70S6K
signaling, as well as increased activity of the c-FOS/AP-1 transcriptional factor [110]. The
authors suggested that the blockade of the c-FOS/AP-1 pathway and endothelial PAR-1
receptor would mitigate endothelial IL-6 production. Penn et al. showed an increased
level of Endothelin-1 and endothelin A and B receptor expression in renal biopsy of SRC
patients, suggesting that endothelin blockade may be a therapeutic approach in SRC [111].
Another serious vascular complication in SSc is pulmonary arterial hypertension (PAH)
seen in up to 15% of patients [112]. Endothelial dysfunction contributes to SSc-associated
PAH, leading to the expansion and aggregation of collagen type-1 positive cells and α-
SMA cells in pulmonary vasculature [82]. The authors have shown that EndoMT, though
infrequent, contributes to vascular remodeling and inflammatory infiltration in pulmonary
vasculature of SSc PAH patients. In SSc PAH patients, there is an increase in endothelin-1
production by endothelial cells and a reduction in the production of vasodilators such as
nitric oxide and PGI2 [112]. In normal healthy subjects, endothelin-1 binds to the ETA
receptor which is expressed in endothelial cells causing vasoconstriction and results in
vasodilation by binding to the ETB receptor in smooth muscle cells. In SSc PAH patients,
there is upregulation of ETB receptors in muscles and downregulation in endothelial
cells [112]. Endothelin 1, produced by endothelial cells, binds to the ETB receptor and
leads to unregulated cell proliferation, resulting in vascular occlusion and an increase in
pulmonary vascular resistance [112]. Endothelial cells, present in the plexiform lesions of
pulmonary vasculature of patients with idiopathic pulmonary hypertension, express IL-32,
which is likely involved in the proliferation and activation of these abnormal endothelial
cells [113]. IL-32 levels have been found to be significantly higher among SSc PAH subjects
compared to SSc subjects without PAH and can be a marker of the presence of PAH [114].

9. Evaluation of Endothelial Dysfunction
9.1. Morphological Assessment

Nailfold capillaroscopy is a safe well-established method for assessing capillary micro-
circulation in SSc. It has been a widely used technique to investigate and monitor patients
with Raynaud phenomenon. Subjects can be diagnosed as having SSc based on specific
patterns of capillary architecture known as “scleroderma patterns”, which can be further
divided into three patterns (early, active, and late) based on the stage of disease [115]. The
early pattern is recognized as having giant capillaries with normal capillary distribution,
followed by the active pattern: giant capillaries, hemorrhage and disorganized distribution
and loss of capillaries, and finally the late pattern is identified as loss of capillaries and
capillaries with abnormal shapes [115]. These vascular patterns are reflective of the severity
and progression of the disease, from mild to severe/progressive disease [116].

9.2. Functional Assessment

Various other methods of assessing the functional aspect of microcirculation have been
adopted based on the principle of producing vasodilation in response to various stimuli,
e.g., physical, mechanical, and chemical etc. [117]. The vascular response is determined by
both the structural and functional condition of the vasculature. The various methods are
as follows: peripheral arterial tonometry, laser doppler flowmetry, laser speckle contrast
imaging, laser doppler imaging, laser speckle contrast analysis, and laser doppler imaging
to assess small digital vessels. Flow-mediated vasodilation of the brachial artery is used to
asses medium vessels [117]. Differential vascular response to NO donators (e.g., glycerol-
trinitrate) or direct non–NO donators, such as adenosine, can be used to differentiate
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endothelium dependent and endothelium independent response [118]. Alteration in the
vascular structure and smooth muscle cell leads to impaired endothelial-independent
function rather than changes in the endothelium [118].

10. Treatment Strategies for Endothelial Dysfunction
10.1. Calcium Channel Blockers (Dihydropyridines)

Dihydropyridines, e.g., amlodipine, nifedipine, and nicardipine bind to the L-type
voltage-gated calcium channels on cells, reduce influx of extracellular calcium, and induce
smooth muscle relaxation, resulting in vasodilation [119]. In vitro studies have shown
the protective effect of calcium channel blockers on the endothelial cells from oxidative
injury [120]. Calcium channel blockers decrease plasma markers of oxidative stress in
SSc patients [121]. Calcium channel blockers have been widely used and are effective in
uncomplicated Raynaud phenomenon.

10.2. Phosphodiaterase-5 (PDE-5) Inhibitors

PDE5 inhibitors such as sildenafil and tadalafil increase the intracellular cyclic guano-
sine monophosphate (c-GMP) level by inhibiting PDEs. C-GMP leads to vasodilation
through vascular smooth muscle relaxation, increases apoptosis, and decreases prolifera-
tion of pulmonary artery smooth muscle cells [122]. PDE-5 inhibitors have been found to
be beneficial in treatment of Raynaud phenomenon, digital ulcers, and pulmonary arterial
hypertension [123].

10.3. Soluble Guanylate Cyclase Activators and Stimulators

These agents increase c-GMP production through binding to soluble guanyl cyclase
(sGC). The sGC stimulators bind to reduced, heme-containing sGC independent of NO
and sensitizes the sGC through stabilization of sGC–NO binding to low levels of NO.
sGC activators bind to the oxidized heme-free and NO-unresponsive form of sGC [124].
These agents have an anti-inflammatory, antifibrotic, and antihypertensive effect [124]. In a
in vitro model, a sGC stimulator, MK-2947, increased the migratory and proliferative effect
of SSc-microvascular endothelial cells and inhibited the endoMT process [125]. Ricoguat, a
sGC is an approved therapeutic agent for SSc PAH and has been found to be beneficial in
Raynaud’s phenomenon [125].

10.4. Endothelin-1 Receptors Inhibitors

Treatment of SSc PAH patients with bosentan led to reduction in the higher serum level
of serum soluble PECAM-1, ICAM-1, VCAM-1, and P-selectin after 12 months of therapy,
suggesting attenuation of endothelial cell activation [126]. It also reduced higher levels
of CD3-LFA1 T cell, suggestive of restoring T-cell function. In an invitro EndoMT model,
microvascular endothelial cells (MVECs), when incubated with bosentan and macitentan,
had reduced expression of mesenchymal markers and restoration of CD31 expression and
the imbalance between VEGF-A and VEGF-A165b [127]. This suggests the endothelin-1
receptor inhibitors prevent EndoMT. These agents have been effective in treatment of SSc
associated PAH and preventing development of digital ulcers [123].

10.5. Prostacyclins

Vascular endothelial cells synthesize prostacyclins, which possess a vasodilatory effect
and inhibit platelet aggregation and vascular smooth muscle proliferation [128]. Various
prostacyclin analogs (epoprostenol, trepostinil, iloprost) and the prostacyclin receptor
inhibitor, selixipag, promote vasodilation through induction of the prostacyclin pathway.
Prostacyclin analogs have been shown to have beneficial effects in the treatment of Raynaud
phenomenon, digital ulcers, and PAH in SSc subjects [123]. Tsou et al. showed IV iloprost
has a long-lasting effect for weeks after infusion of iloprost, which has a short half-life
otherwise [129]. Following the infusion of iloprost, there were increased endothelial cell
junctional VE-cadherin clustering, VE-cadherin level, tubulogenesis and inhibition of
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monolayers permeability, and EndoMT. The investigators suggested these endothelial
effects may account for the long-lasting effect of IV iloprost following discontinuation
of infusion.

10.6. Cyclophosphamide

Cyclophosphamide has been widely used to treat SSc-associated interstitial lung dis-
ease. It also has beneficial effect on peripheral microvasculature [130]. The investigators
showed treatment with cyclophosphamide showed better proliferation of dermal microvas-
cular endothelial cells (MVECs) and less apoptosis. This might be related to a reduction in
pretreatment levels of antiangiogenic factors such as pentraxin-3, MMP-12, angiostatin, and
endostatin. Cyclophosphamide increases the number of circulating endothelial progenitor
cell numbers and reduces serum VEGF levels, E-selectin and thrombomodulin, suggestive
of improvement of endothelial cell damage [131–133].

10.7. Statins

Statins have been studied in the treatment of SSc. In a small study of 14 patients
with SSc using atorvastatin 10 mg/day for 12 weeks, the number of bone marrow–derived
circulating endothelial precursors (CEPs) increased, and improvement of Raynaud symp-
toms occurred [134]. In another study of SSc patients using simvastatin 20 mg/day over
12 weeks, there was no increase in endothelial progenitor cells but there was a reduction in
the number of circulating endothelial cells [135]. There was also a reduction in levels of
endothelin-1, soluble E-selectin, intercellular adhesion molecule-1, vascular cell adhesion
molecule-1, and interleukin-6, suggesting that statin inhibits endothelial cell activation.

10.8. Nitrate Therapy

Nitrates are metabolized into NO and they increase c-GMP concentration in vascular
smooth muscle, leading to vasodilation [136]. Nitroglycerine tapes, MQX-503 (a novel nitro-
glycerine compound), and topical glyceryl trinitrate have been tried to improve NO levels
in the peripheral circulation of patients with SSc suffering from Raynaud phenomenon and
digital ulcers but met with variable levels of success [137–139].

10.9. Stem Cell Therapy

Stromal vascular fraction (SVF), isolated from the adipose tissue, contains mesenchy-
mal stem cells, endothelial precursor cells, and T regulatory cells, etc. [140]. The mesenchy-
mal stem cells, otherwise known as adipose-derived stem cells, can be further isolated from
SVF. Local injection of these stem cells leads to the secretion of VEGF and fibroblast growth
factor, which promote local angiogenesis [141], inhibit apoptosis, and promote endothelial
cell proliferation [142]. A recent meta-analysis of the effectiveness of the adipose-derived
stem cell injections showed improvement in digital ulcers, Raynaud symptoms, and an
increase in the number of nail fold capillaries [143]. Autologous hematopoietic stem cell
transplantation has a limited impact on vasculature. It only partially restored microvascular
architecture [144] but had no effect on dermal vessel density [145]. Mesenchymal stromal
cells (MSCs), isolated from adipose tissue or bone marrow, possess immunosuppressive,
proangiogenic, and antifibrotic potential [146]. Allogenic and autologous IV infusion of
MSCs have led to improvement in digital ulcers and peripheral circulation but the efficacy
is limited to case reports and case series at the present time.

11. Conclusions

We have reviewed the critical role of endothelial cells in the pathogenesis of SSc. En-
dothelial cell injury is the initial event in scleroderma. Besides endothelial injury, defective
angiogenesis and vasculogenesis involving the endothelial cells play key roles. Further-
more, endothelial to mesenchymal cell transformation leads to tissue fibrosis. Therapeutic
advances targeting the various aspects of endothelial dysfunction would be useful.
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