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Abstract: Non-alcoholic fatty liver disease (NAFLD) is a clinicopathologic syndrome caused by fat
deposition in hepatocytes. Patients with nonalcoholic steatohepatitis (NASH), an advanced form
of NAFLD with severe fibrosis, are at high risk for liver-related complications, including hepato-
cellular carcinoma (HCC). However, the mechanism of progression from simple fat deposition to
NASH is complex, and previous reports have linked NAFLD to gut microbiota, bile acids, immunity,
adipokines, oxidative stress, and genetic or epigenetic factors. NASH-related liver injury involves
multiple cell types, and intercellular signaling is thought to be mediated by extracellular vesicles.
MicroRNAs (miRNAs) are short, noncoding RNAs that play important roles as post-transcriptional
regulators of gene expression and have been implicated in the pathogenesis of various diseases.
Recently, many reports have implicated microRNAs in the pathogenesis of NALFD/NASH, sug-
gesting that exosomal miRNAs are potential non-invasive and sensitive biomarkers and that the
microRNAs involved in the mechanism of the progression of NASH may be potential therapeutic
target molecules. We are interested in which miRNAs are involved in the pathogenesis of NASH
and which are potential target molecules for therapy. We summarize targeted miRNAs associated
with the etiology and progression of NASH and discuss each miRNA in terms of its pathophysiology,
potential therapeutic applications, and efficacy as a NASH biomarker.
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1. Introduction

Non-alcoholic fatty liver disease (NAFLD), a clinicopathologic syndrome caused by the
deposition of excess fat in the livers of individuals with the exception of alcoholic fatty liver
disease, is a rapidly growing public health concern worldwide [1,2]. The dramatic lifestyle
changes that have occurred in recent decades have led to an increase in the incidence of
NAFLD, as well as an increase in the proportion of patients detected with end-stage liver
disease due to the inadequate early detection of patients with only advanced NAFLD [3].
Currently, it is estimated that 25% of the world population is affected, but the distribution
of NAFLD patients is not uniform [4]. NAFLD is diagnosed by histopathological changes
and progresses from simple fatty liver to NASH, then to cirrhosis, and finally to HCC [5].
NAFLD is serious health concern due to its high incidence, and its global prevalence
is presently 30% [6], with an annual all-cause mortality rate of 25.56 per 1000 person-
years and a liver-specific mortality rate of 11.77 per 1000 person-years [7]. The etiology
of NAFLD is very complex, but previous reports have shown that NAFLD is associated
with gut microbiota, adipokines, oxidative stress, bile acids, adipokines, immune system,
and genetic and epigenetic factors. Recently, miRNAs, representative molecules that
epigenetically regulate gene expression, have been reported to play an important role in
the pathogenesis and progression of NAFLD, and the elucidation of their mechanisms has
attracted much attention.

Int. J. Mol. Sci. 2023, 24, 14482. https://doi.org/10.3390/ijms241914482 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms241914482
https://doi.org/10.3390/ijms241914482
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-0760-3045
https://orcid.org/0000-0002-9531-7240
https://orcid.org/0000-0001-9975-386X
https://doi.org/10.3390/ijms241914482
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms241914482?type=check_update&version=2


Int. J. Mol. Sci. 2023, 24, 14482 2 of 15

NASH is present in approximately 10–25% of NAFLD and is positioned as an ad-
vanced form of NAFLD. The histopathologic features of NASH include fatty deposits and
ballooning hepatocytes, inflammatory cell infiltrates in the lobular and portal regions, and
perisinusoidal fibrosis in zone 3 [8–10]. A clinical prospective study reported by the NASH
Clinical Research Network (CRN) found that cases with advanced fibrosis due to NASH
progression were associated with a significantly increased incidence of hepatocellular
carcinoma and complications, including liver-related death [11].

MiRNAs are endogenous, small RNA molecules that comprise from 21 to 25 bases and
have been found in the evolutionary record since sponges developed [12,13]. The number
of miRNAs has increased with complexity, and approximately 2500 miRNAs are estimated
to exist within the human genome (miRbase, http://www.mirbase.org/, accessed on 1
August, 2023). The phenomena in which miRNAs are shown to be involved include not
only development and differentiation but also diseases. A single miRNA may regulate
hundreds of genes, and a single gene can be modulated by several miRNAs.

miRNAs, which play a central role in epigenetic regulation, bind to and degrade the
3′-UTR of target mRNAs, thereby regulating gene expression, which plays an important role
in the onset and progression of NAFLD [14–17]. miRNAs are known to play important roles in
various biological phenomena such as apoptosis, cell division, and cell differentiation [18–22].
Recent reports indicate that the dysregulation of miRNA targets involved in inflammation,
lipid metabolism, and fibrotic oxidative stress may contribute to the onset and progression
of NAFLD [23–26]. Interestingly, miRNAs have been shown to be involved not only in the
regulation of intracellular gene expression but also in the regulation of intercellular expression
as miRNAs are exocytosed by extracellular vesicles (EVs) and affect other cells as well [27–30].

This review focuses on the role of miRNAs in the pathogenesis and progression of
NASH and aims to highlight the potential usefulness of miRNAs in the diagnosis and
treatment of NASH.

2. MiRNAs and Lipid Metabolism

Several studies have demonstrated the involvement of miRNAs in various pathological
conditions and the formation of diseases via post-transcriptional regulation [31]. miRNA–
disease relationships have been most studied in the fields of cancer and infectious diseases
for which nucleic acid medicine therapies have already been attempted. On the other hand,
the presence of miRNAs in blood has also shown their usefulness as biomarkers.

The transcription factor sterol regulatory element-binding protein (SREBP) is a member
of the basic-helix-loop-helix-leucine zipper (bHLH-Zip) family [32]. Both are membrane-
bound precursor proteins and are transported to the Golgi apparatus by the SREBP cleavage-
activating protein (SCAP). The N-terminal side is then transferred to the nucleus via the
actions of protease (site-1 protease; S1P) and site-2 protease (S2P), where it acts as a
transcription factor [33]. The transport of SREBP to the Golgi apparatus is regulated by
the binding and dissociation of SCAP and the insulin-induced genes. The SREBP-initiated
cleavage activation process is regulated by the amount of intracellular cholesterol, with its
activation inhibited in the presence of excessive amounts of cholesterol and accelerated in
the absence of cholesterol. SREBP-1c regulates the transcription of genes that are involved
in fatty acid and triglyceride synthesis, while SREBP-2 regulates the transcription of genes
that are involved in cholesterol synthesis and uptake.

From a phylogenetic perspective, although SREBP homologues are present within
eukaryotic cells, only one type of SREBP has been found in fungi, nematodes, and inver-
tebrates. It is interesting that SREBPs are present even though these organisms cannot
synthesize sterols and are cholesterol-demanding. In fact, some Drosophila genes corre-
spond to mammalian SREBPs, SCAP, S1P, and S2P, and the N-terminus is transferred to the
nucleus in a manner similar to that observed in mammalian cells. However, the Drosophilia
SREBPs (dSREBPs) that are transferred to the nucleus positively regulate the genes that are
involved in fatty acid biosynthesis [34], and S1P cleavage is inhibited by the presence of
palmitic acid rather than sterols. Therefore, the function of SREBP can be assumed to differ
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from species to species. In insects, SREBP is thought to regulate fatty acid synthesis in
response to an excess of or deficiency in palmitic acid or palmitic-acid-derived fatty acids
and to maintain cell membrane homeostasis.

From an objective perspective, organisms may have evolved systems in which energy
can be stored in the form of lipids, with the associated high degree of energy conversion
per unit a survival strategy against starvation. SREBP-1 and SREBP-2 appear to have
evolved only after vertebrates separated from invertebrates [35]. It is interesting to consider
that SREBP-1 and SREBP-2 arose because vertebrates needed to independently control
the synthesis and metabolism of fatty acids and cholesterol, respectively, and that gene
duplication occurred thereafter.

In terms of phylogeny, microRNA-33 (miR-33), which is found in Drosophila (dme-
miR-33), is located in a dSREBP intron. It is assumed that microRNA-33b (miR-33b) and
microRNA-33a (miR-33a) remained within their respective introns when SREBP-1 and
SREBP-2 were generated via gene duplication. Interestingly, only a small portion of miR-
33b remains in the intron of rodent SREBP-1, and miR-33b is absent.

In 2010, several research groups successively reported that mouse miR-33 (miR-33a),
which exists in intron 16 of the SREBP-2 gene, plays an important role in cholesterol
metabolism [36–38]. A bioinformatics approach to miR-33a target genes yielded a large
number of genes, among which three miR-33a binding sequences in the 3′-UTR of ATP-
binding cassette transporter 1 (ABCA1) were found to be conserved across species. ABCA1
is essential for the formation of high-density-lipoprotein cholesterol (HDL-C), and the
aberration of this protein causes Tangier disease. We found that ABCA1 protein expression
was upregulated and HDL-C was markedly elevated in miR-33a-deficient mice. To further
investigate the effect of miR-33a deficiency on atherosclerosis, we crossed miR-33a-deficient
mice with apolipoprotein E (ApoE)-deficient mice, which are used to model atherosclerosis,
and fed them a diet containing 0.15% cholesterol for 16 weeks from 6 weeks of age. An
examination of the atherosclerotic foci at 22 weeks showed that the cholesterol-diet-loaded
miR-33/Apoe double-knockout mice (miR-33-/-Apoe-/-) suffered from plaques of sig-
nificant sizes, lipid accumulation, Cluster of differentiation (CD) 68-positive cell counts,
CD3-positive cell counts with decreased VCAM-1 expression, and inducible nitric oxide
synthase (iNOS)-positive areas [39].

The miR-33a-deficient mice become obese after 26 weeks of age on a normal diet [40].
A microarray analysis using the liver tissues of 16-week-old mice that were not yet obese
showed elevated levels of expression of fatty-acid-metabolism-associated genes. An ex-
amination of the database identified the sterol regulatory element-binding transcription
factor 1 (Srebf1) as a target gene for miR-33a in the cultured cell line. SREBP-1 was also
upregulated at the protein level in primary cultured hepatocytes from miR-33a knockout
mice. To determine whether the obesity and fatty liver in the miR-33a-deficient mice
were caused by elevated SREBP-1 in vivo, miR-33a-deficient mice were bred with Srebf1
heterozygous mice, with results indicating that the level of SREBP-1 in the miR-33a−/−
Srebf1+/−mice was equivalent to that in the miR-33a+/+ Srebf1+/+ mice, while the obe-
sity (adipocyte enlargement and inflammation) and fatty liver observed in the miR-33a+/−
Srebf1+/+ mice were ameliorated in the miR-33a−/−Srebf1+/− Srebf1+/+ mice. These
results demonstrate that the loss of miR-33a leads to an increase in SREBP-1, resulting in
increased fatty acid synthesis and the accumulation of fatty acids in adipose tissue and the
liver. These results indicate the existence of a novel miR-33a-mediated regulatory mech-
anism between SREBP-1 and SREBP-2. In other words, two functions can be associated
with miR-33a when cholesterol is low: (1) the suppression of ABCA1 and ABCG1 to inhibit
cholesterol efflux from the cell and (2) the suppression of SREBP-1 to allocate more acetyl
CoA, the raw material for cholesterol, to cholesterol synthesis.

The fact that there is only one form of miR-33 in mice (miR-33a) while there are two
in humans (miR-33a and miR-33b) means that it is difficult to ascertain the function of
human miR-33b using mouse models. Therefore, Horie et al. generated mice with both
types of miR-33 (humanized mice) by altering the associated introns via splicing [41], with
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the results showing upregulated miR-33b expression that was almost in parallel with the
host gene, Srebf1. An examination of the serum lipid profile of the generated mice (KI+/+)
showed a decrease in HDL-C in contrast to the miR-33a-deficient mice.

As demonstrated above, miR-33b and miR-33a regulate many of the molecules in-
volved in lipid metabolism, including ABCA1 and SREBP-1, and thus play important roles
in fatty acid and cholesterol regulation. The fact that miR-33b and -33a expression fluctuates
alongside SREBP-1 and -2 suggests the existence of complex and precise regulation. Further
studies on the functions of miR-33a/b will provide a better understanding of the regulatory
mechanisms affecting lipid metabolism in living organisms.

3. MiRNAs and Glucose Metabolism

It is widely known that the liver is the central organ of glycogenesis [42,43]. Diabetes
has been identified as an independent risk factor for developing HCC [44]. miRNAs
contribute to the onset and progression of type 2 diabetes [45]. miRNAs are involved in the
regulation of insulin expression and secretion [46–48] Excessive levels of expression of miR-
130a, miR-130b, and miR-152 reduce the intracellular ATP/ADP ratio and reduce insulin
synthesis and secretion [49]. Several miRNAs are potential markers of type 2 diabetes by
targeting factors such as vascular endothelial growth factor A (VEGFA), which is known to
underlie the risk of type 2 diabetes [50–52]. For example, the upregulation of has-miR-1225-
3p has been reported as a possible cause of insulin resistance in patients with type 2 diabetes.
has-miR-1225-3p is believed to target HMGA1, which is involved in the regulation of the
expression of several glucose-responsive genes [53]. miR-483-5p is highly expressed in
pancreatic beta cells [54]. miR-483-5p targets the suppressor of cytokine signalling3 (SOCS3),
increases insulin transcription in beta cells, and decreases glucagon transcription in alpha
cells. miR- mice with a β-cell-specific deletion of miR-483-5p show decreased insulin
secretion and impaired glucose tolerance when fed a high-fat diet [55,56]. Empagliflozin, a
sodium–glucose cotransporter 2 inhibitor (SGLT2i), significantly downregulated miR-34a-
5p targeting GREM2, inhibited the transforming growth factor-β signaling pathway, and
improved liver fibrosis in an NAFLD model [57].When altered in diabetes, miR-155 affects
insulin sensitivity in the liver, adipose tissue, and skeletal muscle. miR-155 is involved in
the impairment of DNA repair processes through the inhibition of TP53, thereby negatively
regulating apoptosis [58]. miR-144 also contributes to hyperglycemia-derived formation
of reactive oxygen species, exacerbates oxidative stress, promotes tissue damage, and is a
risk factor for cancer [59]. In addition, decreased levels of miR-24 increase E-cadherin and
β-catenin mRNAs, which are involved in epithelial-to-mesenchymal transitions and allow
cells to detach from cell aggregation and migrate [60]. Thus, miRNAs are closely related
to diabetes in various areas, including diabetes risk factors, pathogenic markers, diabetes
drugs, and diabetes-related carcinogenesis.

4. MiRNAs and Obesity

The rapid worldwide increase in obesity is associated with an increased prevalence of
NAFLD, making NAFLD the most common liver disease in the world [42,61]. Obesity is
caused by an imbalance between food intake and energy expenditure, with contributions
from genetic, psychological, physiological, social, and environmental factors [62]. Adipose
tissue plays an important role in maintaining lipid and glucose homeostasis. In obesity,
adipose tissue becomes dysfunctional, promoting an inflammatory, hyperlipidemic, and
insulin-resistant environment [56,63]. In addition, obesity has been identified as an inde-
pendent risk factor for developing HCC [64]. There is some evidence linking miRNAs
to weight control [65]. The deletion of mir-33 in mice severely affects feeding behavior,
with an abnormally high food intake leading to obesity and insulin resistance [66]. The
expression of miR-128-1 has been implicated in human obesity [67]. The deletion of miR-
128-1 in mice fed a calorie-rich diet suppressed weight gain and reduced fat accumulation.
miR-128-1 may be a valuable target for obesity management [68]. The expression of miR-
483-5p is significantly decreased in the subcutaneous adipose tissue of obese compared
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to non-obese individuals [69]. miR-483-5p targets ERK1 and positively regulates PPARγ
expression and promotes adipogenesis in mouse preadipocyte 3T3-L1 cells and human
adipose-derived MSCs [56,70]. miR-33 may prevent the onset of obesity [71]. Compared
to control mice, miR-33-deficient mice are more likely to become obese due to increased
food intake caused by an increased secretion of orexigenic hormones, such as ghrelin, or
leptin resistance [66]. Furthermore, miR-33-deficient mice had increased adipocyte size
and macrophage accumulation in white adipose tissue, accompanied by increased levels
of TNFα [66]. Thus, the study of miRNAs associated with obesity is progressing and may
provide a new approach to the treatment of obesity that has been poorly controlled by
existing therapies such as diet and exercise therapy.

5. MiRNAs and NASH Development
5.1. MiRNAs as NASH Biomarkers

Several miRNAs were recently found to be involved in liver fibrosis in NASH [72].
It has also been reported that miRNAs circulating in plasma, serum, and tissues are also
involved in improving liver fibrosis [73,74] and can differentiate the degree of fibrosis with
high sensitivity and specificity comparable to or better than other surrogate markers such
as APRI and the Fib-4 index [75,76]. Among others, serum miR-29a has been shown to be
significantly lower in patients with cirrhosis with advanced fibrosis compared to healthy
individuals and patients with less fibrosis [77] (Figure 1, Table 1). In addition, serum
levels of miR-138 and miR-143 fluctuate at different stages of fibrosis and may be useful in
predicting the degree of fibrosis [78]. Furthermore, the serum expression levels of miR-34a
and miR-122 have been found to correlate with the progression of fibrosis, especially in
NAFLD patients (Figure 1, Table 1). These miRNAs are expected to be very useful and
informative biomarkers, allowing for early therapeutic intervention and the identification
of high-risk patients without the need for an invasive liver biopsy [79].
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Figure 1. MiRNAs and NASH. Transcribed from genomic DNA, pri-miRNA is cleaved by Drosha and
DGCR8 to form pre-miRNA. It is then bound to Exportin-5 and Ran-GTP and released into the nucleus.
After these complexes of hairpin pre-miRNAs are cleaved by Dicer and TRBP, the double-stranded
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miRNAs are unwound. Representative miRNAs that are enhanced and attenuated during NASH
progression are listed below. miRNA: microRNA; pri-miRNA: primary microRNA; DGCR8:. DiGe-
orge syndrome critical region 8; TRBP: transactivation response element RNA-binding 70 protein;
RISC: RNA-induced silencing complex; Ago2: Argonaute 2.

Table 1. MiRNAs as NAFLD biomarkers.

MiRNA Expression Level References

miR-100 Down [80]
miR-103 Up [81]
miR-122 Down [82]

miR-122-5p Up [83]
miR-126 Up [84]

miR-129-5p Up [85]
miR-1296 Down [86]

miR-135a-3p Down [83]
miR-149 Down [68]
miR-155 Down [87]
miR-17 Up [88]

miR-182 Up [89]
miR-192-5p Up [90]
miR-193a-5p Up [91]

miR-195 Down [92]
miR-20a-5p Down [93]

miR-20b Up [88]
miR-21 Down [94]

miR-21-5p Down [95]
miR-27a Down [84]
miR-29a Up [96]
miR-301a Up [89]
miR-30b Up [97]
miR-33a Up [98]
miR-34a Up [99,100]

miR-372-3p Down [101]
miR-373 Up [89]
miR-375 Up [102]
miR-379 Up [103]
miR-451 Up [104]

miR-486-5p Up [105]
miR-99a Down [106]

5.2. MiRNAs as NASH Modulators

In recent years, relationships between various chronic liver diseases and miRNAs have
been reported. The representative miRNAs miR-21, miR-221/222, and miR-181b, which
are associated with liver diseases, have been found to promote liver fibrosis via the TGF-β
and NF-κB pathways [107], and miR-221 has been shown to be involved in the cyclin-
dependent kinase inhibitor (CDKN) 1C and CDKN1B, cytokine signaling, E-cadherin,
PTEN (phosphatase and tensin homologs) [108], and Bcl-2 modifying factor, which regulate
various targets involved in NASH progression. In addition, miR-214 is deeply involved
in liver fibrosis by targeting and regulating the expression of fused homolog protein
suppressor, and the knockdown of miR-214 alleviates liver fibrosis in carbon tetrachloride
(CCL4)-treated mice [109]. Furthermore, the knockdown of miR-23b has been found to
promote bile duct differentiation in an activation-dependent manner in stellate cells and
suppress TGF-β-induced liver fibrosis [110] (Table 2).
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Table 2. Fibrosis-associated miRNAs.

MiRNA Predicted Target Involvement in
Disease Progression References

miR-21 STAT3 signaling pathway,
TGF-β/Smad3/Smad7 signaling pathway promote [111]

miR-29a CD36 inhibit [112]
miR-122 AGPAT1, DGAT1 inhibit [113]
miR-34a PPARα signaling pathway promote [99,100]

miR-129-5p PEG3 inhibit [114]
miR-188-5p PTEN/PI3K/AKT pathway promote [115]

miR-223 Cxcl10, Nlrp3, Taz inhibit [55]
miR-27 insulin signaling pathway promote [116]

miR-372-3p AEBP1 inhibit [101]
miR-373-3p AEBP1 inhibit [101]

Recent reports have also suggested that miR-30a inhibits autophagy, lipid accumula-
tion, and liver fibrosis in mouse hematopoietic stem cells [117], while miR-29b, miR-101,
miR-122, and miR-214-3p avert liver fibrosis by suppressing collagen synthesis and the
TGF-β pathway [107]. Liver fibrosis was ameliorated in vivo via the administration of
miR-29a via the inhibition of the TGF-β-induced suppression of hematopoietic stem cell
activation [118]. It has also been found that miR-29a ameliorates fibrosis by creating a
pathway that inhibits bromodomain-4 protein (BRD4) and fatty acid translocase protein
CD36 [119,120] (Table 2). On the other hand, miR-34 expression regulates the decapenta-
plegic homolog 3 (Smad3) pathway and is associated with the onset and progression of
TGF-β1-induced liver fibrosis [121]. Hepatic neutrophils suppress hepatitis and fibrosis by
inducing inflammatory macrophages to form a repair phenotype via miR-223 [122]. miR-
455-3p suppresses heat shock factor 1 expression and inhibits the activation of HSC [123].
miR-125b [124], miR-378 [125], and miR-152 [126] suppress liver fibrosis by modulating the
expression of the GLI family zinc finger 3 (Gli3) (Table 2).

Therefore, multiple miRNAs are associated with the development of fibrosis in the
liver tissue, and the discovery of target miRNAs that are related to these pathological
conditions is expected to establish new miRNA-based therapies.

5.3. Exosomal miRNAs and NASH

HSCs inhibit cell activation by releasing exosomal miRNAs and suppressing the
expression of connective tissue growth factor CTGF (aka CCN2) in recipient cells. In partic-
ular, miR-214 expression is upregulated via the increased expression of the transcription
factor Twist1, and the delivery of miR-214 between HSCs via exosomes has been shown to
inhibit recipient cell activation by suppressing the expression of CCN2. Since Twist and
miR-214 are downregulated in exosomes secreted from activated HSCs, the Twist-miR-214-
CCN2 pathway may be one of the mechanisms regulating the activation of HSCs [127].
Similarly, miR-199a-5p is highly expressed in exosomes secreted by quiescent HSCs, and its
delivery by HSCs inhibits the activity of CCN2 [128].

The deposition of excess fat in the liver, including fatty liver, causes lipotoxicity, which
releases exosomal miR-128-3p from hepatocytes and reaches within HSCs, inhibiting the
function of peroxisome proliferator-activated receptor (PPAR)-γ and activating HSCs [129].
The miR-17-92 cluster is also highly expressed in the serum exosomes of patients with
alcoholic liver disease and promotes liver fibrosis [130] (Table 1).

The exosomes secreted by fibroblasts are rich in multiple miRNAs (miR-21, miR-124a,
miR-125b, miR-126, miR-130a, and miR-132) which increase the expression of collagen α1
and α smooth muscle actin (αSMA) and promote ECM accumulation in the tissue, leading
to fibrosis. Some of the miRNAs present in the exosomes that promote wound healing also
contribute to tissue fibrosis [131] (Table 2).

The exosomes that are secreted by mesenchymal stem cells derived from adipose tissue
typically express high levels of miR-122, which is known to have an inhibitory effect on
liver fibrosis in in vivo systems; the administration of miR-122 to mice with CCL4-induced
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liver injury via hematopoietic stem cells was found to inhibit liver fibrosis by suppressing
the activation of these exosomes [132].

In mice without liver fibrosis, miR-34c, miR-151-3p, miR-483-5p, miR-532-5p, and miR-
687 have been found to be upregulated in EVs from extracted serum when compared to mice
with advanced liver fibrosis. Administering fibrosis-free EVs to mice with CCL4-induced
liver injury has been shown to suppress hepatocellular damage and liver fibrosis, reducing
the number of inflammatory cytokines and transaminases in the blood. Furthermore, serum
EVs from healthy subjects show enhanced levels of miR-34c, miR-151-3p, miR-483-5p, and
miR-532-5p expression when compared to serum EVs from F3/4 liver fibrosis patients,
and the administration of healthy EVs to human-derived hematopoietic stem cells has
been found to suppress the activation of HSCs, with the associated miRNAs inhibiting the
activation of HSCs and suppressing liver fibrosis [133].

As described above, increasing numbers of exosomal miRNAs have been reported to
be involved in liver fibrosis, and the clinical application of these molecules is predicted. It
will therefore be important to standardize the accuracy of exosome detection and extraction
methods in the future.

6. MiRNAs and NASH-Derived Liver Cirrhosis

NAFLD is a recent and rapidly increasing cause of chronic liver disease, and it is a
particularly alarming disease, especially in developed countries [134]. In patients with
NAFLD, the degree of progression of liver injury varies from NAFL to NASH. Recent
reports indicate that progression to HCC is possible even in the initial stages of liver
fibrosis [135–138]. NASH leads to hepatocyte inflammation, ballooning, and apoptosis,
which are related to the presence of inflammatory cytokines, mitochondrial dysfunction as
a result of overnutrition, and oxidative stress, among others [139,140]. In addition, many
factors, including genetic or epigenetic factors, contribute to the etiology and progression
of NAFLD [141,142]. However, the detailed mechanisms surrounding NAFLD/NASH
remain unclear, and no breakthrough treatments have yet been discovered.

However, there are several reports detailing the relationship between pathophys-
iology and miRNAs in NASH and NAFLD [143]. Serum miRNA-34a may inhibit the
PPARα signaling pathway in lipid metabolism and lead to the accumulation of lipids in
hepatocytes [100]. While neutrophil-specific miR-223 is overexpressed in hepatocytes and
suppresses the progression of NASH in fatty mice, several of miR-223’s target genes (such as
CXCL10, NLRP3, and TAZ) promote the progression of NAFLD by inducing inflammation
and fibrosis in the liver. When taken up by hepatocytes, the miR-223 that is derived from
EV 223 suppresses hepatitis and fibrosis gene expression [55] and decreases miR-372-3p or
miR-373-3p, suppressing the adipocyte enhancer-binding protein 1 (AEBP1) [101] (Table 2).

In addition, miR-21 leads to NASH through the STAT3 signaling pathway and liver
fibrosis via the activation of HSCs and the deposition of collagen through the TGF-
β/Smad3/Smad7 signaling pathway [111]. The overexpression of liver miR-27 stimulates
the activation of liver insulin receptor, whereas the suppression of this molecule reduces
insulin sensitivity, indicating that miR-27 may play a role in the early onset of hepatic
insulin resistance [68] (Table 2). The overexpression of miR-29a ameliorated NASH and
NAFLD by suppressing CD36 in a mouse model [112], On the other hand, other studies
have shown that reducing miR-122 levels increases hepatic fat deposition and the total
triglyceride content while decreasing β-oxidation and energy consumption, leading to
weight gain in mice [113] (Table 2). miR-34a is an essential transcription factor that controls
fatty acid oxidation by downregulating the PPARα signaling pathway and promoting
mitochondria-mediated fatty acid translocation and oxidation. On the contrary, a block-
ade of the PPARα signaling pathway may result in lipid accumulation in the liver [99];
miR-129-5p downregulates the paternally expressed gene 3 (PEG3)-induced activation of
hematopoietic stem cells [114], and miR-188-5p inhibition inhibits the activation of HSCs
via the PTEN/PI3K/Akt pathway, alleviating liver fibrosis [115] (Table 2).
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The increase in NAFLD/NASH is one of the global problems that must be solved
in the future, and miRNAs may play a revolutionary role in the development of early
diagnosis and treatment.

7. MiRNAs and NASH-Derived HCC

Obesity induces systemic chronic inflammation via inflammatory mediators such as
the adipokines secreted from adipose tissue, which increase the risk of various types of
carcinogenesis. In particular, the liver is the organ most at risk for carcinogenesis due to
obesity, with a reported 4.5-fold increase in the risk of carcinogenesis [144]. In a mouse
model of hepatocarcinogenesis using chemical carcinogens, obesity was shown to promote
the progression of hepatocarcinogenesis via the elevation of the inflammatory cytokines
IL-6 and TNF [145,146]. When MUP-uPA mice in which ER stress was induced, were
fed a high-fat diet, a balloon-like enlargement of hepatocytes, peribronchial fibrosis, and
insulin resistance were observed. The MUP-uPA mice showed NASH-like symptoms such
as ballooning hepatocytes, perihepatic fibrosis, insulin resistance, and elevated levels of
inflammatory cytokines including TNF, and they spontaneously developed HCC. Fur-
thermore, the deletion of TNF receptors in MUP-uPA mice suppressed liver lipidification,
inflammation, and hepatocarcinogenesis. These findings indicate that ER stress is one of
the major factors in the development of NASH and that TNF signaling is strongly involved
in the development and progression of NASH and NASH hepatocarcinoma. In addition,
molecular changes in miRNA expression profiles in NAFLD tissues [147], especially miR-
21-5p, miR-34a-5p, and miR-130a-5p, were revealed [148]. Their elevated expression in
peritumor and tumor tissue samples was associated with the progression to HCC from
NASH. These four miRNAs were found to play important roles in the progression from
NAFLD to HCC by regulating the expression of key signaling pathways such as the WNT
pathway and by affecting the expression of β-catenin and p53. The study of miRNAs in
liver tissue will help us understand the mechanisms that contribute to the development
of hepatocellular carcinoma in the context of NASH and may be useful in the prevention,
early detection, and development of new treatments for this disease.

8. Conclusions

With the rapid increase in NAFLD/NASH, NASH-derived HCC has become a major
health problem. Although various clinical trials are underway, there is currently no specific
treatment for NASH, and the mechanisms related to the pathogenesis and progression of
NASH are still awaiting elucidation. In the field of metabolic liver diseases, miRNAs have
recently attracted attention not only for their importance in regulating the translation of
molecules in hepatocytes but also for their critical role in signaling between cells in the
liver. These circulating miRNAs have been shown to alter other target cell functions in
cells, activate various pathways, and participate in the pathogenesis and progression of
NASH. Mouse-model experiments and limited clinical observational evidence suggest that
various types of miRNAs are associated with hepatic dyslipidemia, hepatocyte ballooning,
inflammation, and fibrosis. In the near future, advances in bioinformatics and animal and
clinical studies will identify the miRNAs involved in the pathogenesis and progression
of NASH and provide more information on novel therapeutic approaches and the use of
miRNAs in noninvasive diagnostic, biomarker, and biomarker approaches for NASH. It is
believed that this will be the first step in the development of a new treatment approach
for NASH.
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