Exploring the Drug-Loading and Release Ability of FucoPol Hydrogel Membranes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Loading of APIs
2.2. Characterization of the Loaded HM1
2.2.1. Fourier Transform Infrared (FT-IR) Spectroscopy
2.2.2. Mechanical Properties
2.2.3. Rheological Properties
2.3. In Vitro Release Studies
3. Materials and Methods
3.1. Materials
3.2. Preparation of HM1 Membranes
3.3. Loading of the HM1 Membranes with APIs
3.4. Characterization of the Loaded Hydrogel Membranes
3.4.1. Fourier Transform Infrared (FT-IR) Spectroscopy
3.4.2. Mechanical Properties
3.4.3. Rheological Properties
3.5. In Vitro Release Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yazdi, M.K.; Vatanpour, V.; Taghizadeh, A.; Taghizadeh, M.; Ganjali, M.R.; Munir, M.T.; Habibzadeh, S.; Saeb, M.R.; Ghaedi, M. Hydrogel Membranes: A Review. Mater. Sci. Eng. C 2020, 114, 111023. [Google Scholar] [CrossRef] [PubMed]
- Shariatinia, Z.; Barzegari, A. Polysaccharide Hydrogel Films/Membranes for Transdermal Delivery of Therapeutics. In Polysaccharide Carriers for Drug Delivery; Elsevier: Amsterdam, The Netherlands, 2019; pp. 639–684. ISBN 978-0-08-102553-6. [Google Scholar]
- Kamoun, E.A.; Kenawy, E.-R.S.; Chen, X. A Review on Polymeric Hydrogel Membranes for Wound Dressing Applications: PVA-Based Hydrogel Dressings. J. Adv. Res. 2017, 8, 217–233. [Google Scholar] [CrossRef] [PubMed]
- Nicoletta, F.P.; De Filpo, G.; Formoso, P. Hydrogel Membranes. In Encyclopedia of Membranes; Drioli, E., Giorno, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–4. ISBN 978-3-642-40872-4. [Google Scholar]
- Trombino, S.; Sole, R.; Curcio, F.; Cassano, R. Polymeric Based Hydrogel Membranes for Biomedical Applications. Membranes 2023, 13, 576. [Google Scholar] [CrossRef] [PubMed]
- Sriamornsak, P.; Nunthanid, J.; Cheewatanakornkool, K.; Manchun, S. Effect of Drug Loading Method on Drug Content and Drug Release from Calcium Pectinate Gel Beads. AAPS PharmSciTech 2010, 11, 1315–1319. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, C.; Li, C.; Qin, Y.; Wang, Z.; Yang, F.; Li, Z.; Wang, J. A Functional Chitosan-Based Hydrogel as a Wound Dressing and Drug Delivery System in the Treatment of Wound Healing. RSC Adv. 2018, 8, 7533–7549. [Google Scholar] [CrossRef] [PubMed]
- Do, N.H.N.; Pham, T.H.; Le, P.K.; Ha, A.C. Thermo-Responsive Chitosan/β-Glycerophosphate Hydrogels Directly Post-Loading Anti-Inflammatory Diclofenac Sodium. J. Sol-Gel Sci. Technol. 2023, 105, 451–460. [Google Scholar] [CrossRef]
- Bhattarai, N.; Gunn, J.; Zhang, M. Chitosan-Based Hydrogels for Controlled, Localized Drug Delivery. Adv. Drug Deliv. Rev. 2010, 62, 83–99. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.S.; Tan, H.L.; Deekonda, K.; Wong, Y.Y.; Muniyandy, S.; Hashim, K.; Pushpamalar, J. Fabrication of Radiation Cross-Linked Diclofenac Sodium Loaded Carboxymethyl Sago Pulp/Chitosan Hydrogel for Enteric and Sustained Drug Delivery. Carbohydr. Polym. Technol. Appl. 2021, 2, 100084. [Google Scholar] [CrossRef]
- Awachat, A.; Shukla, D.; Bhola, N.D. Efficacy of Diclofenac Transdermal Patch in Therapeutic Extractions: A Literature Review. Cureus 2022, 14, e30411. [Google Scholar] [CrossRef]
- Suhail, M.; Wu, P.-C.; Minhas, M.U. Using Carbomer-Based Hydrogels for Control the Release Rate of Diclofenac Sodium: Preparation and In Vitro Evaluation. Pharmaceuticals 2020, 13, 399. [Google Scholar] [CrossRef]
- Gull, N.; Khan, S.M.; Butt, O.M.; Islam, A.; Shah, A.; Jabeen, S.; Khan, S.U.; Khan, A.; Khan, R.U.; Butt, M.T.Z. Inflammation Targeted Chitosan-Based Hydrogel for Controlled Release of Diclofenac Sodium. Int. J. Biol. Macromol. 2020, 162, 175–187. [Google Scholar] [CrossRef] [PubMed]
- Muchová, M.; Münster, L.; Capáková, Z.; Mikulcová, V.; Kuřitka, I.; Vícha, J. Design of Dialdehyde Cellulose Crosslinked Poly(Vinyl Alcohol) Hydrogels for Transdermal Drug Delivery and Wound Dressings. Mater. Sci. Eng. C 2020, 116, 111242. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Lane, M.E. Topical and Transdermal Delivery of Caffeine. Int. J. Pharm. 2015, 490, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Völker, J.M.; Koch, N.; Becker, M.; Klenk, A. Caffeine and Its Pharmacological Benefits in the Management of Androgenetic Alopecia: A Review. Ski. Pharmacol. Physiol. 2020, 33, 153–169. [Google Scholar] [CrossRef] [PubMed]
- Shatalebi, M.; Ahmadraji, F. Evaluation of the Clinical Efficacy and Safety of an Eye Counter Pad Containing Caffeine and Vitamin K in Emulsified Emu Oil Base. Adv. Biomed. Res. 2015, 4, 10. [Google Scholar] [CrossRef] [PubMed]
- Araújo, D.; Martins, M.; Concórdio-Reis, P.; Roma-Rodrigues, C.; Morais, M.; Alves, V.D.; Fernandes, A.R.; Freitas, F. Novel Hydrogel Membranes Based on the Bacterial Polysaccharide FucoPol: Design, Characterization and Biological Properties. Pharmaceuticals 2023, 16, 991. [Google Scholar] [CrossRef]
- Kincl, M.; Meleh, M.; Veber, M.; Vrečer, F. Study of physicochemical parameters affecting the release of diclofenac sodium from lipophilic matrix tablets. Acta Chim. Slov. 2004, 51, 409–425. [Google Scholar]
- Araújo, D.; Rodrigues, T.; Roma-Rodrigues, C.; Alves, V.D.; Fernandes, A.R.; Freitas, F. Chitin-Glucan Complex Hydrogels: Physical-Chemical Characterization, Stability, In Vitro Drug Permeation, and Biological Assessment in Primary Cells. Polymers 2023, 15, 791. [Google Scholar] [CrossRef]
- Sethi, S.; Saruchi; Kaith, B.S.; Kaur, M.; Sharma, N.; Kumar, V. Cross-Linked Xanthan Gum–Starch Hydrogels as Promising Materials for Controlled Drug Delivery. Cellulose 2020, 27, 4565–4589. [Google Scholar] [CrossRef]
- Gherman, S.P.; Biliuță, G.; Bele, A.; Ipate, A.M.; Baron, R.I.; Ochiuz, L.; Șpac, A.F.; Zavastin, D.E. Biomaterials Based on Chitosan and Polyvinyl Alcohol as a Drug Delivery System with Wound-Healing Effects. Gels 2023, 9, 122. [Google Scholar] [CrossRef]
- Belščak-Cvitanović, A.; Komes, D.; Karlović, S.; Djaković, S.; Špoljarić, I.; Mršić, G.; Ježek, D. Improving the Controlled Delivery Formulations of Caffeine in Alginate Hydrogel Beads Combined with Pectin, Carrageenan, Chitosan and Psyllium. Food Chem. 2015, 167, 378–386. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, N.V.S.; Cardoso, E.M.; Andrade, M.V.O.; Donnici, C.L.; Sena, M.M. Analysis of Seized Cocaine Samples by Using Chemometric Methods and FTIR Spectroscopy. J. Braz. Chem. Soc. 2013, 24, 507–517. [Google Scholar] [CrossRef]
- Silva, N.H.C.S.; Mota, J.P.; Santos de Almeida, T.; Carvalho, J.P.F.; Silvestre, A.J.D.; Vilela, C.; Rosado, C.; Freire, C.S.R. Topical Drug Delivery Systems Based on Bacterial Nanocellulose: Accelerated Stability Testing. Int. J. Mol. Sci. 2020, 21, 1262. [Google Scholar] [CrossRef]
- Chee, B.S.; Goetten de Lima, G.; Devine, D.M.; Nugent, M.J.D. Investigation of the Effects of Orientation on Freeze/Thawed Polyvinyl Alcohol Hydrogel Properties. Mater. Today Commun. 2018, 17, 82–93. [Google Scholar] [CrossRef]
- Araújo, D.; Rodrigues, T.; Alves, V.D.; Freitas, F. Chitin-Glucan Complex Hydrogels: Optimization of Gel Formation and Demonstration of Drug Loading and Release Ability. Polymers 2022, 14, 785. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Liang, Y.; Chen, J.; Duan, X.; Guo, B. Mussel-Inspired Adhesive Antioxidant Antibacterial Hemostatic Composite Hydrogel Wound Dressing via Photo-Polymerization for Infected Skin Wound Healing. Bioact. Mater. 2022, 8, 341–354. [Google Scholar] [CrossRef] [PubMed]
- Wong, R.S.H.; Dodou, K. Effect of Drug Loading Method and Drug Physicochemical Properties on the Material and Drug Release Properties of Poly (Ethylene Oxide) Hydrogels for Transdermal Delivery. Polymers 2017, 9, 286. [Google Scholar] [CrossRef]
- Basu, A.; Lindh, J.; Ålander, E.; Strømme, M.; Ferraz, N. On the Use of Ion-Crosslinked Nanocellulose Hydrogels for Wound Healing Solutions: Physicochemical Properties and Application-Oriented Biocompatibility Studies. Carbohydr. Polym. 2017, 174, 299–308. [Google Scholar] [CrossRef]
- Hu, Y.; Jeong, D.; Kim, Y.; Kim, S.; Jung, S. Preparation of Succinoglycan Hydrogel Coordinated With Fe3+ Ions for Controlled Drug Delivery. Polymers 2020, 12, 977. [Google Scholar] [CrossRef]
- Shukla, S.; Favata, J.; Srivastava, V.; Shahbazmohamadi, S.; Tripathi, A.; Shukla, A. Effect of Polymer and Ion Concentration on Mechanical and Drug Release Behavior of Gellan Hydrogels Using Factorial Design. J. Polym. Sci. 2020, 58, 1365–1379. [Google Scholar] [CrossRef]
- Huang, J.; Xu, Y.; Qi, S.; Zhou, J.; Shi, W.; Zhao, T.; Liu, M. Ultrahigh Energy-Dissipation Elastomers by Precisely Tailoring the Relaxation of Confined Polymer Fluids. Nat. Commun. 2021, 12, 3610. [Google Scholar] [CrossRef] [PubMed]
- Soares, G.A.; de Castro, A.D.; Cury, B.S.F.; Evangelista, R.C. Blends of Cross-Linked High Amylose Starch/Pectin Loaded with Diclofenac. Carbohydr. Polym. 2013, 91, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Russo, J.; Fiegel, J.; Brogden, N.K. Effect of Salt Form on Gelation and Drug Delivery Properties of Diclofenac-Loaded Poloxamer Gels for Delivery to Impaired Skin. Pharm. Res. 2022, 39, 2515–2527. [Google Scholar] [CrossRef] [PubMed]
- Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chem. Rev. 2016, 116, 2602–2663. [Google Scholar] [CrossRef] [PubMed]
- Schnell, C.N.; Galván, M.V.; Zanuttini, M.A.; Mocchiutti, P. Hydrogels from Xylan/Chitosan Complexes for the Controlled Release of Diclofenac Sodium. Cellulose 2020, 27, 1465–1481. [Google Scholar] [CrossRef]
- Lin, X.; Yang, H.; Su, L.; Yang, Z.; Tang, X. Effect of Size on the in Vitro/in Vivo Drug Release and Degradation of Exenatide-Loaded PLGA Microspheres. J. Drug Deliv. Sci. Technol. 2018, 45, 346–356. [Google Scholar] [CrossRef]
- Zand-Rajabi, H.; Madadlou, A. Caffeine-Loaded Whey Protein Hydrogels Reinforced with Gellan and Enriched with Calcium Chloride. Int. Dairy J. 2016, 56, 38–44. [Google Scholar] [CrossRef]
- Mahdavinia, G.R.; Etemadi, H. In Situ Synthesis of Magnetic CaraPVA IPN Nanocomposite Hydrogels and Controlled Drug Release. Mater. Sci. Eng. C 2014, 45, 250–260. [Google Scholar] [CrossRef]
- Hu, Y.; Wu, X.Y.; Xu, J.R.; Guo, J. Study on the Preparation and Drug Release Property of Soybean Selenoprotein/Carboxymethyl Chitosan Composite Hydrogel. J. Polym. Eng. 2018, 38, 963–970. [Google Scholar] [CrossRef]
- Zarzycki, R.; Modrzejewska, Z.; Nawrotek, K. Drug Release from Hydrogel Matrices. Ecol. Chem. Eng. 2010, 17, 117–136. [Google Scholar]
- Hashmi, S.; Nadeem, S.; García-Peñas, A.; Ahmed, R.; Zahoor, A.; Vatankhah-Varnoosfaderani, M.; Stadler, F.J. Study the Effects of Supramolecular Interaction on Diffusion Kinetics in Hybrid Hydrogels of Zwitterionic Polymers and CNTs. Macromol. Chem. Phys. 2022, 223, 2100348. [Google Scholar] [CrossRef]
- Quintanilla De Stéfano, J.C.; Abundis-Correa, V.; Herrera-Flores, S.D.; Alvarez, A.J. PH-Sensitive Starch-Based Hydrogels: Synthesis and Effect of Molecular Components on Drug Release Behavior. Polymers 2020, 12, 1974. [Google Scholar] [CrossRef]
- Qiao, Z.; Tran, L.; Parks, J.; Zhao, Y.; Hai, N.; Zhong, Y.; Ji, H. Highly Stretchable Gelatin-polyacrylamide Hydrogel for Potential Transdermal Drug Release. Nano Sel. 2021, 2, 107–115. [Google Scholar] [CrossRef]
- Concórdio-Reis, P.; Pereira, J.R.; Torres, C.A.V.; Sevrin, C.; Grandfils, C.; Freitas, F. Effect of Mono- and Dipotassium Phosphate Concentration on Extracellular Polysaccharide Production by the Bacterium Enterobacter A47. Process Biochem. 2018, 75, 16–21. [Google Scholar] [CrossRef]
- Lourenço, I. Utilization of FucoPol for Commercial Inocula Immobilization for Bioremediation Applications. Master’s Thesis, Chemical and Biochemical Engineering, NOVA University of Lisbon, Lisbon, Portugal, 2021. [Google Scholar]
API | Caffeine | Diclofenac Sodium | ||
---|---|---|---|---|
Loading Method | Diffusion | Mixing | Diffusion | Mixing |
Loading solution (wt.%) | 1.0 | - | 0.1 | - |
API concentration (wt.%) | - | 0.025 | - | 0.025 |
DL (mg API/g dry gel) | 101.9 ± 19.1 | 78.6 ± 2.5 | 53.9 ± 11.8 | 82.3 ± 5.1 |
EE (%) | 0.6 ± 0.1 | 25.8 ± 3.5 | 1.6 ± 0.2 | 25.4 ± 3.6 |
Sample ID | Mechanical Properties | Rheological Properties | |||
---|---|---|---|---|---|
Hardness (kPa) | Compressive Modulus (kPa) | Toughness (kJ/m3) | G′ (Pa) | G″ (Pa) | |
HM1 | 32.4 ± 5.8 | 56.3 ± 7.8 | 1.4 ± 0.1 | 285.8 ± 36.1 | 36.7 ± 5.5 |
HM1_DCAF | 130.0 ± 5.3 | 34.1 ± 5.2 | 41.2 ± 0.6 | 1014.9 ± 109.7 | 113.2 ± 13.7 |
HM1_MCAF | 60.4 ± 7.2 | 66.5 ± 8.5 | 16.3 ± 0.5 | 609.7 ± 78.3 | 80.3 ± 2.7 |
HM1_DDS | 7.3 ± 1.2 | 4.6 ± 1.3 | 1.7 ± 0.4 | 19.8 ± 3.8 | 2.2 ± 0.1 |
HM1_MDS | 81.8 ± 3.4 | 67.7 ± 2.5 | 19.7 ± 0.6 | 421.0 ± 107.3 | 40.6 ± 10.2 |
Sample ID | Loading Method | n | R2 |
---|---|---|---|
HM1_DCAF | Diffusion | 0.392 | 0.994 |
HM1_DDS | Diffusion | 0.322 | 0.995 |
HM1_MCAF | Mixing | 0.246 | 0.978 |
HM1_MDS | Mixing | 0.233 | 0.971 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Araújo, D.; Martins, M.; Freitas, F. Exploring the Drug-Loading and Release Ability of FucoPol Hydrogel Membranes. Int. J. Mol. Sci. 2023, 24, 14591. https://doi.org/10.3390/ijms241914591
Araújo D, Martins M, Freitas F. Exploring the Drug-Loading and Release Ability of FucoPol Hydrogel Membranes. International Journal of Molecular Sciences. 2023; 24(19):14591. https://doi.org/10.3390/ijms241914591
Chicago/Turabian StyleAraújo, Diana, Matilde Martins, and Filomena Freitas. 2023. "Exploring the Drug-Loading and Release Ability of FucoPol Hydrogel Membranes" International Journal of Molecular Sciences 24, no. 19: 14591. https://doi.org/10.3390/ijms241914591
APA StyleAraújo, D., Martins, M., & Freitas, F. (2023). Exploring the Drug-Loading and Release Ability of FucoPol Hydrogel Membranes. International Journal of Molecular Sciences, 24(19), 14591. https://doi.org/10.3390/ijms241914591