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Abstract: Soft tissue sarcoma is an umbrella term for a group of rare cancers that are difficult to
treat. In addition to surgery, neoadjuvant chemotherapy has shown the potential to downstage
tumors and prevent micrometastases. However, finding effective therapeutic targets remains a
research challenge. Here, a previously developed computational approach called mechanistic models
of signaling pathways has been employed to unravel the impact of observed changes at the gene
expression level on the ultimate functional behavior of cells. In the context of such a mechanistic
model, RNA-Seq counts sourced from the Recount3 resource, from The Cancer Genome Atlas (TCGA)
Sarcoma project, and non-diseased sarcomagenic tissues from the Genotype-Tissue Expression (GTEx)
project were utilized to investigate signal transduction activity through signaling pathways. This
approach provides a precise view of the relationship between sarcoma patient survival and the
signaling landscape in tumors and their environment. Despite the distinct regulatory alterations
observed in each sarcoma subtype, this study identified 13 signaling circuits, or elementary sub-
pathways triggering specific cell functions, present across all subtypes, belonging to eight signaling
pathways, which served as predictors for patient survival. Additionally, nine signaling circuits from
five signaling pathways that highlighted the modifications tumor samples underwent in comparison
to normal tissues were found. These results describe the protective role of the immune system,
suggesting an anti-tumorigenic effect in the tumor microenvironment, in the process of tumor cell
detachment and migration, or the dysregulation of ion homeostasis. Also, the analysis of signaling
circuit intermediary proteins suggests multiple strategies for therapy.

Keywords: soft tissue sarcoma; mechanistic models; signaling pathways; therapeutic targets
RNA-seq; transcriptome; profiling

1. Introduction

Sarcomas are a group of rare heterogeneous malignancies that arise from cells of the
mesenchymal lineage, including connective tissue, muscle, fat, bone, and cartilage [1].
These very rare neoplasms have an overall annual incidence of 5.6 cases per 100,000 adults
in Europe, which represents only 1–2% of all cancers in adults [2]. According to the
latest WHO classification, the heterogeneity of sarcomas embraces over 70 histological
subtypes [3], making them diagnostically challenging. Since appropriate treatment and
prognostication rely on an accurate diagnosis, the classification of soft-tissue tumors is
increasingly shifting from the analysis of histological characteristics toward the identifica-
tion of specific molecular features and mechanisms underlying carcinogenesis and disease
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progression [3,4]. In a simplistic approach, sarcomas are classically divided into two main
groups: (1) Sarcomas with a single underlying genomic abnormality and (2) sarcomas with
complex genomic alterations [5,6]. Although this classification is oversimplifying, over
50% of soft-tissue sarcomas fall into the complex group, highlighting the importance of
deciphering the mechanisms of pathogenesis to improve clinical management [6].

At a molecular level, sarcomagenesis is driven by genetic and epigenetic alterations,
including mutations, copy number changes, and gene expression alterations, which result
in the activation of oncogenes or the loss-of-function of tumor suppressors, leading to
uncontrolled cell proliferation. Mutations in sarcomas can occur in a variety of genes,
including TP53, CDKN2A, CTNNB1, RB1, PTEN, and members of the RAS/RAF/MAPK
pathway [4]. Somatic mutations in TP53, a tumor suppressor gene, account for up to 50%
of sarcomas and are associated with a poor prognosis [7]. The loss-of-function somatic
as well as germline alteration of CDKN2A, which encodes proteins involved in cell cycle
regulation, is also associated with sarcomagenesis [8].

To understand the complex landscape of functional strategies that cells use to initiate
their malignization and further progress to different sarcoma subtypes, a strategy based
on mathematical modeling of the molecular cancer mechanisms has been used. Specifi-
cally, mathematical mechanistic modeling of cell signaling pathways provides a causal
link between variation occurring at the level of gene activity (transcriptional activity) or
integrity (mutational profile) and the observed phenotype diversity (at the level of cells,
tissues, or organisms) [9]. Actually, such models have successfully been applied to reveal
specific molecular mechanisms accounting for different diseases, such as cancer, diabetes,
or Fanconi anemia [9–11], and to suggest personalized therapeutic interventions [12]. More-
over, mechanistic models offer a precise framework for simulating the signal transduction
process, establishing a direct link between causal factors (gene expression levels) and result-
ing outcomes (signaling activity) [9,13], thereby conveying a sense of causality. Therefore,
mechanistic models can also be used to predict the consequences of interventions [14,15],
such as the effects of targeted drugs [16,17], combinatorial drug consequences [18,19], and
even therapy responses [20,21]. Some successful applications of these models were the
prediction of gefitinib and afatinib as new potential treatments for Fanconi anemia [10],
later validated [22], or the prediction of repurposable drugs like SARS-CoV-2 [17], whose
activity was proven by real-world data analysis for some of them [23,24].

This study elucidates the impact of general and specific processes in soft tissue sarcoma
samples gathered from the Cancer Genome Atlas (TCGA) project [25], which contribute to
patient prognosis and exhibit deviations from non-diseased sarcomagenic tissues. Lever-
aging the mechanistic modeling implemented in the HiPathia application [13,26], signal
transduction circuit activities were assessed. Transcription Factor Target Enrichment Analy-
sis [27] provides extra support for the findings. The results provide comprehensive insights
into sarcoma biology and potential therapeutic avenues.

2. Results
2.1. Samples

Selected data from GTEx tissues and the SARC project were downloaded. Samples
from GTEx on putative sarcomagenic tissues of mesenchymal origin were: 1293 adipose,
520 fibroblasts, 881 skeletal muscle, 553 esophagus muscularis, 384 stomach, 159 uterus, and
946 vessels. From TCGA, the 206 sarcoma samples include 7 subtypes: 50 dedifferentiated
liposarcomas (DDLPS), 80 leiomyosarcomas (divided into 53 soft tissue STLMS and 27 uter-
ine ULMS), 5 malignant peripheral nerve sheath tumors (MPNST), 17 myxofibrosarcomas
(MFS), 10 synovial sarcomas (SS), and 44 undifferentiated pleomorphic sarcoma (UPS).

Downloaded gene read counts from these samples were preprocessed together with
TMM normalization and used for the estimation of activity values with HiPathia. Data
exploration by dimensionality reduction with t-SNE and clustering showed a strong corre-
lation of samples by the project (Figure S1). On sarcoma, most LMS samples, divided by
uterine or soft tissue LMS and SS samples, formed close clusters.
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2.2. Signal Transduction Circuit Activity Estimation

A common assumption in genome-scale modeling methodologies is considering RNA-
Seq counts as trustable proxies for protein abundance and, consequently, protein activity [9].
This enables the modeling methods to infer the signal transduction intensities along sig-
naling pathways from the gene expression measurements. For this purpose, HiPathia, an
application that implements mechanistic models to recode gene expression values into the
activity of signaling pathways, defined in the Kyoto Encyclopedia of Genes and Genomes
(KEGG) in the pathways repository [28], was used. For this analysis, a total of 78 physiolog-
ical signaling pathways were selected. Within these pathways, only 13 genes (0.5% of the
total number of genes) were found to have missing expression values. For these few specific
cases, the values are imputed based on the average expression of the dataset. HiPathia de-
fines individual signaling circuits within the pathways to individualize functional activities.
Each circuit is composed of nodes connected by activating or inhibiting relationships and
ends in a single effector node, which is responsible for the cellular functions triggered by
the circuit. A number of these functions can be ascribed to cancer hallmarks [29] with the
CHAT tool [30,31], as described in the Methods section. A total of 1098 signaling circuits
were identified by HiPathia within the 78 physiological KEGG pathways.

Exploration of sample clustering with either t-SNE or a heatmap did not reveal sig-
nificant differences compared to sample distances using expression values (see Figure 1),
indicating that this method preserves the biological information of samples.

2.3. Survival

The activation of signaling pathways is closely related to cell fate and may have a
causal influence on patient survival. Here, the association of the modeled circuit activity
values with sarcoma patients’ overall survival was explored in detail. To achieve this,
Cox proportional hazard models and Kaplan–Meier plots (Figure S2) were employed.
Thirteen signaling circuits significantly associated with sarcoma patient survival were
found (Table 1 and Table S1). These circuits are part of pathways that are well-known
drivers of tumorigenesis, such as NF-kB, RB1, or Akt, and other pathways related to the
immune system. Pathways involved in the immune system (FcεRI signaling and platelet
activation) are predicted to have a protective role in patient outcomes. The cell cycle
pathway with the tumor suppressor retinoblastoma as a signaling circuit effector (RB1,
see Table 1) has a coherent low hazard ratio. Conversely, the axon guidance pathways
associated with cell motility, where the focal adhesion kinase (PTK2) acts as an effector,
exhibit a high hazard ratio. However, signaling pathways may have multiple roles in
tumorigenesis, which will be further discussed.

2.4. Transcription Factor Activation

Given the low expression levels exhibited by transcription factors (TF), the observed
gene expression values in transcriptomic experiments may not represent their appropriate
activity in the cell. A workaround to indirectly estimate the activity of a TF is to assess the
activity of its target genes using any enrichment method. Here, the TFTEA [27] method
was used. A total of 130 TF targets along the circuits associated with survival were found,
65 of which were dysregulated. The results indicate that the most shared transcription
factors by sarcoma subtypes have target genes overrepresented in the overexpressed
part of the rank (Table 2 and Table S2). SPI1 (a.k.a. PU.1) is the TF whose targets are
present in most of the circuits. In particular, it has 41 targets within the signaling circuits
whose expression is dysregulated, including PIK3CG and AKT2, central components of
the PI3K/Akt signaling network present in various pathways, as well as components of
the MAPK signaling network such as IKBKB, MAPK10, or RAC2. IKZF1 (Ikaros protein)
targets participate in the protective circuits of the Fc epsilon signaling pathway, platelet
activation, and HIF-1 signaling pathway. Among Ikaros targets, Lyn kinase and PRKCB
(protein kinase C, beta subunit) were found to be upregulated. Lyn participates in the
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activation of PI3K/Akt networks within the indicated pathways, while it activates PKC by
downstream calcium signaling.
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Table 1. Circuits in soft tissue sarcoma have a significant association with the overall survival of
patients. Hazard ratios (HR) were obtained by analyzing 206 sarcoma patients with Cox proportional
hazards models.

Pathway Name (KEGG
ID)

Circuit Effector
Node HR (95% CI for HR) Concordance FDR 1 p.zph 2

Rap1 signaling pathway
(hsa04015) Calcium cation 2.7 × 1029

(4.1 × 1017–1.77 × 1041)
0.663 0.00116 0.426

Fc epsilon RI signaling
pathway (hsa04664)

FCER1G MS4A2
FCER1A

2.06 × 10−20

(2.74 × 10−29–1.54 × 10−11)
0.645 0.00474 0.603

Fc epsilon RI signaling
pathway (hsa04664) AKT3 1.60 × 10−3

(8.49 × 10−5–3.02 × 10−2)
0.667 0.00474 0.343

Fc epsilon RI signaling
pathway (hsa04664) MAPK8 5.02 × 10−3

(4.83 × 10−4–5.22 × 10−2)
0.664 0.00474 0.412

Fc epsilon RI signaling
pathway (hsa04664) MAPK14 5.21 × 10−3

(4.49 × 10−4–6.04 × 10−2)
0.649 0.00573 0.526

Insulin signaling pathway
(hsa04910) FBP1 6.21 × 10−7

(5.68 × 10−10–6.79 × 10−4)
0.644 0.0106 0.323

Fc epsilon RI signaling
pathway (hsa04664) PLA2G4B 5.83 × 10−225

(0.0–1.21 × 10−114)
0.627 0.0106 0.616

Platelet activation
(hsa04611) Thromboxane A2 2.00 × 10−3

(9.04 × 10−5–4.43 × 10−2)
0.655 0.0115 0.045

Cell cycle (hsa04110) RB1 2.26 × 10−4

(3.13 × 10−6–1.63 × 10−2)
0.635 0.0146 0.198

Axon guidance (hsa04360) PTK2 1.63 × 107

(2.91 × 103–9.11 × 1010)
0.611 0.0178 0.591

MAPK signaling pathway
(hsa04010) NFKB1 2.94 × 10−14

(6.33 × 10−22–1.36 × 10−6)
0.62 0.0481 0.375

HIF-1 signaling pathway
(hsa04066) ALDOA 3.66 × 10−8

(2.15 × 10−12–0.000622)
0.62 0.0481 0.440

Insulin signaling pathway
(hsa04910) PPARGC1A 6.98 × 10−155

(2.62 × 10−242–1.86 × 10−67)
0.632 0.0481 0.220

1 False discovery rate (FDR) was calculated with the method of Benjamini and Hochberg on the p-values of the
Cox function for all circuits. 2 Adjusted p-values of the proportional hazards assumption calculated with the
cox.zph function.

Table 2. Set of transcription factors is generally activated in soft tissue sarcoma. Regulatory roles in
cancer from the TSGene, ONGene, and COSMIC databases are added.

Symbol Name TSG/ONG COSMIC n LOR 1 FDR 2

FOXD1 Forkhead Box D1 7 0.43 1.05 × 10−2

SPI1 Spi-1 Proto-Oncogene both 6 0.09 1.35 × 10−5

GATA3 GATA Binding Protein 3 both 6 0.09 6.23 × 10−4

IKZF1 IKAROS Family Zinc Finger 1 both TSG 6 0.27 3.01 × 10−3

MAF MAF BZIP Transcription Factor ONG ONG 6 0.26 9.55 × 10−3

RFX5 Regulatory Factor X5 6 0.55 7.21 × 10−3

TCF4 Transcription Factor 4 TSG 6 0.11 4.53 × 10−3

ZEB2 Zinc Finger E-Box Binding Homeobox 2 6 0.24 4.46 × 10−4

1 Average log odds ratio (LOR) indicates the average enrichment of transcription factor targets across the indicated
number of subtypes with a significant result. 2 Average false discovery rate (FDR) was calculated with the method
of Benjamini and Hochberg and averaged across the significant subtypes.

2.5. Differential Signaling

To assess the altered cellular functions of sarcoma, the signaling activities of each
sarcoma subtype were contrasted with those of their putative sarcomagenic normal tissues.
In addition to some common deregulated signaling circuits, each sarcoma subtype also ex-
hibited its own unique set of deregulated circuits. Functional annotation of the circuits that
are dysregulated by each sarcoma subtype primarily highlights DNA replication, apoptotic
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processes, responses to cytokines, and Fc-receptor signaling (Figures 2 and S3). Overall,
upregulation of immune-related circuits or anti-apoptotic circuits, such as those with ef-
fector Bcl-2, and downregulation of apoptotic or growth-inhibitory processes (Figure S4)
were found. Interestingly, there is a set of circuits that simultaneously displayed signif-
icant differential activation in all subtypes (Table 3 and Figure S3). These belong to the
following pathways: adipocytokine signaling pathway, aldosterone synthesis and secretion,
Fc gamma R-mediated phagocytosis, PI3K-Akt signaling pathway, and focal adhesion.
Multiple components of dysregulated circuits are also affecting survival-related circuits
since central components of signaling are shared and intertwined in a complex network.
The potential implications of these circuits on the onset and progression of sarcomagenesis
will be further discussed below.
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Figure 2. Enriched Gene Ontology terms on the effector genes of the 108 circuits that are differentially
activated in 5 or more sarcoma subtypes. Biological process ontology is shown.

Table 3. Differentially activated circuits in the seven sarcoma subtypes are subject to analysis with
respect to non-diseased sarcomagenic GTEx tissues.

Pathway Name (KEGG ID) Circuit Effector log2FC 1 FDR 2

Aldosterone synthesis and secretion (hsa04925) ITPR1 −0.101 1.87 × 10−3

Fc gamma R-mediated phagocytosis (hsa04666) WAS 0.081 2.86 × 10−3

Fc gamma R-mediated phagocytosis (hsa04666) ARPC5 0.089 4.24 × 10−3

Adipocytokine signaling pathway (hsa04920) SLC2A1 −0.245 4.45 × 10−3

Adipocytokine signaling pathway (hsa04920) Long-chain fatty acid −0.184 4.95 × 10−3

Aldosterone synthesis and secretion (hsa04925) KCNK3 0.089 8.12 × 10−3

Focal adhesion (hsa04510) BCL2 0.072 9.94 × 10−3

Adipocytokine signaling pathway (hsa04920) G6PC 0.174 1.22 × 10−2

1 Average log2 of the fold change obtained with the limma pipeline contrasting tumor and normal samples and
averaging across the seven sarcoma subtypes with significant results in the same regulatory direction. 2 Average
false discovery rate (FDR) was calculated with the method of Benjamini and Hochberg and averaging for the
seven subtypes.



Int. J. Mol. Sci. 2023, 24, 14732 7 of 20

2.6. Hallmarks of Cancer

Differentially activated signaling circuits were associated with hallmarks of cancer
using CHAT. With this classification, the abundance of such hallmarks on the dysregulated
circuits for each sarcoma subtype was assessed. The most frequently dysregulated processes
are related to cellular energetics, invasion/metastasis, and the avoidance of the immune
system. At the same time, less frequently, they are involved in enabling replicative immor-
tality, evasion of growth suppressors, and genomic instability and mutation (Figure 3). In
consonance with the observed hallmarks, various sarcoma subtypes commonly exhibit
dysregulation in processes related to the immune system, including Fc gamma R-mediated
phagocytosis. Additionally, they demonstrate dysregulation in metabolic pathways like the
adipocytokine signaling pathway and processes related to cell motility, such as the focal
adhesion pathway.
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Figure 3. Distribution of Hallmarks of Cancer on the sets of differentially activated circuits for
each sarcoma subtype. Along the axis of the radar plot, icons representing the cancer hallmarks, as
depicted in Hanahan and Weinberg [32], were included.

3. Materials and Methods
3.1. Data Download and Pre-processing

Raw gene counts for tumor and normal tissue samples were obtained from the re-
count3 R package [33]. Recount3 provides RNA-Seq dataset counts where raw reads from
multiple sources, including cancer and non-diseased tissues generated by the TCGA and
the Genotype-Tissue Expression Project (GTEx), respectively, were uniformly processed
with a pipeline using STAR [34] and Megadepth [35] to align and quantify the reads to the
UCSC hg38 assembly. Tumor samples were obtained from the SARC project, belonging
to the TCGA consortium, while normal samples were downloaded from multiple tissue
projects of the GTEx consortium [36] and further selected for specific tissue site details
(Table 4).
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Table 4. Description of the contrasted sarcoma and normal tissues from the TCGA SARC and
GTEx projects.

Sarcoma Sarcoma Descriptions GTEx GTEx Project Tissue Descriptions

DDLPS Dedifferentiated Liposarcoma Adipose Adipose Tissue Adipose—Subcutaneous
ULMS Uterine Leiomyosarcoma Uterus Uterus Uterus
STLMS Soft Tissue Leiomyosarcoma Muscularis Esophagus Esophagus—Muscularis
STLMS Soft Tissue Leiomyosarcoma Stomach Stomach Stomach
STLMS Soft Tissue Leiomyosarcoma Vessels Blood Vessel Artery—Coronary; Artery—Tibial

MPNST Malignant Peripheral Nerve
Sheath Tumors (MPNST) Fibroblasts Skin Cells—Cultured fibroblasts

MFS Myxofibrosarcoma Fibroblasts Skin Cells—Cultured fibroblasts
MFS Myxofibrosarcoma Adipose Adipose Tissue Adipose—Subcutaneous
MFS Myxofibrosarcoma Vessels Blood Vessel Artery—Coronary; Artery—Tibial
MFS Myxofibrosarcoma Muscle Muscle Muscle—Skeletal
MFS Myxofibrosarcoma Muscularis Esophagus Esophagus—Muscularis

UPS Undifferentiated Pleomorphic
Sarcoma Fibroblasts Skin Cells—Cultured fibroblasts

UPS Undifferentiated Pleomorphic
Sarcoma Muscularis Esophagus Esophagus—Muscularis

SS Synovial Sarcoma Fibroblasts Skin Cells—Cultured fibroblasts

Low-quality and non-primary tumor samples from the sarcoma project were filtered
out. The subtype classification was modified according to previous expert pathology
reviews [37]. We kept genomic features mapped to an Entrez ID on the org.Hs.eg.db
Bioconductor package v3.12.0 [38].

The downloaded raw counts for all samples were normalized using the Trimmed Mean
of M-values (TMM) method [39], as implemented in the edgeR package [40] version 3.32.1,
which computes scaling factors assuming that most genes are not differentially expressed.
Normalized counts in the log scale were obtained with the voom function provided in
the limma package version 3.46.0 [41], which also models the mean–variance relation-
ship of normalized values with precision weights suitable for the analysis of differential
gene expression.

3.2. Mechanistic Modeling of Human Signal Transduction

The mechanistic model replicates the dynamics of the signaling circuits defined within
pathways. These circuits are depicted as directed graphs, establishing connections from
receptor to effector proteins through a series of activations and inhibitions mediated by
intermediate proteins. Ultimately, effector proteins at the end of these circuits initiate
distinct cellular functions. Malfunctions of these circuits can trigger cancer hallmarks in
neoplastic cells. The mechanistic model emulates signal transduction along these circuits
by considering protein activity levels. In this context, gene expression values serve as
proxies for the presence of their corresponding active proteins [42–45]. Consequently, for a
circuit to become active and effectively transmit the signal triggering a specific function, it
necessitates the concurrent presence of the entire chain of proteins connecting the receptor
to the effector while ensuring the absence of inhibitory proteins that might impede signal
propagation along the circuit. Irrespective of the circuit’s topology, the signal propagates
through the nodes within it based on the subsequent recursive rule for each node:

Sn = υn ·
(

1− ∏
sa∈A

(1− sa)

)
·∏

si∈I
(1− si) (1)

where the signal intensity (Sn) for the current node (n) is determined by its normalized
gene expression value (vn). This determination is influenced by the sets of activation signals
(sa) from the set of activation edges (A) and inhibitory signals (si) from the set of inhibition
edges (I), as detailed in [13]. This modeling strategy ensures that causality is considered
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in a comprehensive context, where gene expression levels dictate the ultimate functional
outcomes. These outcomes are initiated by effector proteins, following the activation and
inhibition rules governed by the relationships among the proteins within the signal circuit.
Consequently, alterations in node activity will manifest or go unnoticed, depending on the
specific circuit’s topology.

3.3. Calculation of Pathway Activity

Prior to pathway activity computation, normalized values were rescaled to the range
0–1 using the function normalize_data from the package HiPathia 2.6.0 [46]. HiPathia (HIgh
throughput PATHway Interpretation and Analysis) is designed to transform gene count
data into the activity of signaling pathways divided into single-effector circuits that drive
specific cell functions [13,26]. Human physiological pathways were provided to the hipathia
function. The function normalize_paths was used to account for the length of the circuits in
the activity calculation.

Visualization of normalized counts and activity values was performed using the
t-distributed stochastic neighbor embedding method (t-SNE) for visualization of the struc-
ture of high-dimensional data [47] using the function provided in the package Rtsne [48]
version 0.15, as well as on heatmaps using the pheatmap package [49] version 1.0.12 with
the complete clustering method and, as distance measures, euclidean for features and
correlation for samples.

3.4. Survival Analysis

Survival analysis was performed on sarcoma samples using the survival R package [50]
version 3.2–10. From this package, Cox proportional hazards regression models [51] were
computed to estimate differences in patient survival in association with circuit activity or
gene expression values. To create the censored survival object, maximum values of “days to
death” or “days to last follow-up,” with vital status as a censoring variable, were gathered
from the clinical metadata of TCGA samples in Recount3. A model for each circuit was
computed with the coxph function. The p-value of each model was adjusted for multiple
tests with the Benjamini and Hochberg method (FDR, false discovery rate) [52]. In addition
to Cox regression, the proportional assumption was tested with the cox.zph function of the
survival package. Kaplan–Meier survival curves were constructed with the Survminer
package version 0.4.9 [53] from selected patients with high and low circuit activity. High
and low circuit activity level was defined based on scaling activity levels into z-scores and
setting a cutoff of +/−0.5, corresponding to the 25% upper and lower percentile of the
observed values, respectively.

Additional survival analysis of circuit-integrating genes was achieved on the web
application Kaplan–Meier plotter [54], where gastric cancer was selected as the closest
option sarcoma. Upper to lower terciles were compared to obtain terciles values on hazard
ratios, confidence intervals, and probability values. Additionally, the UALCAN [55] web
application was also employed for survival analysis, specifically selecting the sarcoma
project. Survival plots were generated comparing high/low expression samples, from
which high/low hazard ratios are visualized with a probability value.

3.5. Differential Expression/Activity Analysis

For differential comparisons between sarcoma subtypes and normal tissues of both
normalized expression and activity values, limma [41] was used. Limma pipeline consists
of linear model fitting followed by standard error moderation with an empirical Bayes
method. The model matrix included the tissue categories (sarcoma subtypes and normal
tissues) and the tissue source site (centers where samples were collected) for correction
as a batch effect. From these results, the set of differentially expressed genes (DEGs) and
differentially activated circuits were obtained.
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3.6. Transcription Factor Enrichment Analysis

The results of differential expression analysis were used for indirect estimation of
transcription factor activity by enrichment analysis of their corresponding target genes
using the Transcription Factor Target Enrichment Analysis (TFTEA) [27] tool. TFTEA
carries out an enrichment analysis of targets for each transcription factor over a list of
ranked DEGs using univariate gene set analysis with a logistic regression model. The set of
transcription factor–target interactions used in this analysis was obtained from the papers
describing TFTEA [27] and Dorothea, a database that collects transcription factors’ targets
(regulons) [56]. From the Dorothea database, transcription factor–target interactions with
support from at least two sources (confidence levels A, B, and C, as defined in [56]) were
selected. Functional annotations of genes were gathered from the COSMIC Cancer Gene
Census v96 [57] and the databases ONGENE [58] and TSGENE [59].

3.7. Functional Analysis

Gene ontology (GO) enrichment analysis was performed with the package enrichR
version 3.0 [60]. Gene effectors of differentially activated circuits for each sarcoma sub-
type were used to estimate the enrichment of terms on the biological process ontology
version 2021. Enrichment of differentially activated circuits in hallmarks of cancer [29] was
achieved using a previous annotation of signaling circuit effectors to hallmarks performed
with the Cancer Hallmarks Analytics Tool (CHAT) [30,31]. A CHAT value cutoff of 0.15,
corresponding to a 95% percentile according to previous studies [31], was used to select
hallmarks associated with each circuit.

4. Discussion

The activity of signaling pathways on sarcoma samples has been analyzed to, on
the one hand, find how the degree of signaling pathway activity affects overall patient
survival and, on the other hand, discover the alterations in sarcoma samples in contrast
to sarcomagenic non-diseased tissues. In the present work, 13 circuits from 8 pathways
associated with sarcoma patient survival, nine differentially activated circuits belonging to
five pathways, and a set of eight enriched transcription factors have been reported.

Implementations of mechanistic models, such as HiPathia, provide a sophisticated and
detailed interface for closely studying the functional state of cells using RNA-Seq data with
high sensitivity [9,13]. In this study, mechanistic modeling of signaling activity was applied
to publicly available data from TCGA and GTEx. This approach enabled the extraction
of circuit activities based on KEGG signaling pathways. Analyzing signaling pathways
through the HiPathia application provided a more accurate description of functions in
sarcoma samples, such as growth, replication, transcriptional activity, and motility, which
are relevant to tumor cell biology. The results align with current knowledge of cancer,
highlighting the predictive power of mechanistic models in HiPathia to simulate real
processes under specific cancer conditions. This capacity offers a valuable framework for
evaluating therapeutic options.

4.1. Roles in the Tumor Microenvironment

Overall, a protective role of an enhanced immune system was observed, supported
by low hazard ratios in immune-related pathways such as the Fc epsilon RI signaling
pathway with four significant circuits (Table 1). One of them involves the aggregation of
the high-affinity IgE receptor Fc epsilon RI upon binding to the IgE antibody. Interestingly,
expression of the three different subunits of the Fc epsilon RI has been associated with a
good prognosis in various cancers, such as breast, lung, adenocarcinoma, osteosarcoma,
and sarcoma (see Table S4) [61–63]. Moreover, the significantly activated transcription
factor SPI1 could be used as a predictor together with FCER1G of the immune infiltration,
suggesting a protective role for this TF [63]. The other three circuits significantly related
to survival were different effector branches (with effector node proteins AKT—AKT1–3,
JNK—MAPK8–10, and p38—MAPK11–14) from a common upstream receptor. Remarkably,
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these proteins activate transcription factors within mast cells and are ultimately involved
in the production and release of cytokines and arachidonic acid [64–66], which is known
to affect the tumor microenvironment (TME) and to promote vascularization and platelet
aggregation, among other effects. Using these circuits, most sarcoma subtypes upregulate
the intermediate proteins Lyn kinase, GAB2, or Vav proteins, which have dual roles in
cancer progression [67–69]. Actually, Lyn is a target of the Ikaros protein IKZF1, which
was shown to increase the immune infiltrate in solid tumors and enhance anti-tumor
immunotherapy [70]. Another circuit uses a different signaling cascade to activate the
cytosolic phospholipase A2 (cPLA2), involved in the production of arachidonic acid, to
mediate the release of eicosanoids, active molecules that modulate inflammation. PLA2 is
further activated on the “platelet activation pathway” through a PI3K/Akt cascade involv-
ing p38/ERK MAP kinases to produce arachidonic acid, which is sequentially modified by
cyclooxygenase 1 (COX-1) and thromboxane A synthase 1 (TXS) to produce 11-dehydro-
thromboxane B2, a vasoconstrictor involved in platelet aggregation. In sarcoma, platelet
activation inhibits metastases and promotes tumor-suppressor genes [71]. The inducible
isoform COX-2 responds to TNF and p38/NF-κB activation and has been found to be
protective against breast cancer [72]. In sarcoma, not only decreased hazard ratios for COX
isoforms were observed, but also for the activation of the COX-2 activator NF-κB through
the “MAPK signaling pathway” .

An increased activation of the immune-related “Fc gamma R-mediated phagocytosis”
pathway towards the activation of the Arp2/3 complex (Actin-related protein 2/3 complex)
was also observed, as well as the previous node with WAS/WASL genes (encoding WASP
and N-WASP nucleation-promoting factors). The heptameric Arp2/3 complex nucleates
actin fibers into branched filaments that, in macrophages, participate in FcγR-mediated
phagocytosis, integrin-dependent responses, and motility [73,74]. Full activation of the
Arp2/3 complex requires nucleation-promoting factors from the WASP and WAVE protein
families, which act as tumor suppressors or enhancers of malignant cells due to their
multiple roles [75]. In sarcoma, we found upregulation of WASPs and FcγRs, suggesting
anti-tumor functions. Within the circuit, the isoform PLCγ2, linked to the activation of
WASPs, is positively correlated with good patient prognosis, and, in sarcoma, it promotes
the infiltration of anti-tumor M1 macrophages, T cells, and monocytes into the TME [76].

A higher hazard ratio was found on a short circuit of the “Rap1 signaling pathway:
calcium cation.” The circuit consists of TCR (T-cell receptor), the adaptor protein linker of
activated T cells (LAT), and phospholipase Cγ1 (PLCG1). It is involved in the activation of
T cells, resulting in the mobilization of calcium cations. In disease situations, overactive
unstimulated TCRs induce changes in T cells to become unresponsive as a mechanism of
immune evasion [77]. Furthermore, PLCγ1 is present in multiple signaling and disease
pathways where it plays pro-tumorigenic roles, including a role in sarcomagenesis by a
constitutively activated mutated PLCγ1 that promotes angiogenesis through activation of
the VEGF pathway [78].

4.2. Roles in Metabolism

Sarcoma samples appear to have the energy metabolism wired towards gluconeogene-
sis, which, linked with the previous section on the TME, is relevant to maintaining anti-
tumor immune conditions. Cellular energetics is also modulated by the NF-κB pathway,
where the alternative NF-κB (RelB/p52 dimers) is activated by the IKK alpha dimer [79]
to promote gluconeogenesis and oxidative metabolism instead of glycolysis, consistent
with the downregulation of the IKK subtypes beta and gamma by some sarcoma sub-
types. Increased activity of the gluconeogenic enzyme G6PC and decreased activity of the
glycolysis-related glucose transporter GLUT1 mediated by the “adipocytokine signaling
pathway” were observed. Adipocytokines affect the immune system, and it was found
that DDLPS reduces its ability to produce adiponectin, which plays a role in suppressing
macrophage function.
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Protective roles are predicted for glucose metabolism mediators on the insulin and
HIF-1 signaling pathways through the PI3K/Akt network. Activation of the “insulin
signaling pathway” results in the inhibition of FOXO1 by phosphorylation. FOXO1 is a
well-known TF that, in association with the coactivator PGC-1α (PPARGC1A), activates the
gluconeogenic enzyme fructose 1,6-bisphosphatase (FBP), a putative inhibitor of sarcoma
growth [80]. In contrast, HIF-1α regulates the transcription of genes encoding glycolytic en-
zymes, including the aldolase isozymes (ALDOA, ALDOB, and ALDOC). Previous research
revealed a positive association of ALDOB expression with the survival of patients with
gastric cancer [81] and ALDOC as a target for positive regulation by the retinoblastoma
(RB) tumor suppressor protein [82]. Furthermore, ALDOA correlates positively with the
immune infiltration of macrophages, neutrophils, and T cells [83].

4.3. Roles in Cell Motility

The preparation of tumor cells for migration includes cell-cell detachment accompa-
nied by a change in cell morphology. In the first step, integrins and the focal adhesion
kinase (FAK or protein tyrosine kinase 2, PTK2) receive signaling from cell attachment to
neighbor cells. When detachment occurs, it triggers a specific type of apoptosis, called
anoikis [84]. For pre-metastatic cells to overcome this barrier, multiple proteins have been
associated with anoikis suppression, including the BCL-2 protein overactivated by the
“focal adhesion” pathway. In the second step, a negative association with survival is ob-
tained in the “axon guidance pathway: PTK2” (Table 1), a circuit related to ephrin-B reverse
signaling where the activation of the ephrin-B ligands (EFNB) by the EPH receptors triggers
a signaling cascade that increases FAK catalytic activity. This cascade causes the cells to
modify their morphology into a round shape by remodeling the actin cytoskeleton and
leading to cell repulsion [85]. In TCGA sarcoma data, higher expression of ephrin B1 and
B2 ligands associated with enhancement of metastatic potential was found [86].

4.4. Roles in Cell Survival and Proliferation

Tumor cells usually acquire mechanisms to prevent cell death and enhance prolifera-
tion. Thus, it is no surprise that the “cell cycle pathway: RB1” (retinoblastoma protein as
effector) signaling circuit (Table 1) was found to be associated with a low hazard ratio since
the protein Rb, classified as a tumor suppressor, is activated by dephosphorylation to arrest
the cell cycle [87]. Mutations or copy-number alterations on this pathway have been related
to the development of sarcoma [37,87]. This is a short circuit consisting of three proteins.
One of them, ARF, is a negative regulator of MDM2, which, in turn, negatively regulates Rb.
The first gene is CDKN2A (a.k.a. INK4A/ARF locus), which encodes the proteins p16 and
ARF that control the Rb and p53 pathways, respectively, with p16 being an inhibitor of the
kinases that phosphorylate Rb and leading to growth arrest [88]. The second gene encodes
murine double minute 2 (MDM2), a negative regulator of p53/Rb proteins inhibited by
ARF [87,89]. MDM2 is reported as an oncogene and driver alteration of liposarcoma [6],
being coherently amplified in DDLPS expression data.

On the other hand, the anti-apoptotic protein Bcl-2 appears to be overactivated by
the “PI3K-Akt signaling pathway.” As seen before, this pathway is key in carcinogenesis,
making PI3K a druggable target for anticancer therapy due to its role in the stimulation of
cell growth and proliferation. Bcl-2 is a relevant driver of synovial sarcoma (SS) [90], being
overexpressed in SS in TCGA data. The survival of tumor cells also depends on maintaining
pro-proliferative ion homeostasis. A decreased angiotensin II signaling transmission leads
to the under-activation of inositol 1,4,5-trisphosphate receptor calcium channels (IP3R
by IPTR genes) and over-activation of TWIK-related acid-sensitive potassium channels
(TASK by KCNK genes) mediated by the pathway “Aldosterone Synthesis and Secretion”.
Excessive calcium release from IP3Rs disrupts mitochondrial membrane integrity and leads
to apoptosis, a process suppressed by the anti-apoptotic Bcl-2 protein [91]. Meanwhile,
TASK potassium channels are essential for cell survival with outward rectifying currents
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to maintain polarization of the cell [92,93]; overexpression of these channels has been
associated with enhanced tumor cell proliferation and inhibition of apoptosis [93].

4.5. Specific Circuits in Sarcoma Subtypes

Besides common pathways that are generally dysregulated in sarcoma, there are also
pathways specifically dysregulated in each sarcoma subtype (Table 5). Here, we explore
the consequences of dysregulation of these circuits and the therapeutic actions that are
taking place.

Table 5. Uniquely dysregulated pathways by each specific sarcoma subtype.

Subtype Pathway Name Circuit Effector Dysregulation

DDLPS Hedgehog signaling pathway SMO up
DDLPS Insulin signaling pathway PCK1 down
DDLPS Regulation of lipolysis in adipocytes PRKACA up

MFS Gap junction GJA1 TJP1 down
MFS Insulin secretion ABCC8 down
MFS Natural killer cell-mediated cytotoxicity KLRC4-KLRK1 up
MFS NOD-like receptor signaling pathway CASP8 up
MFS Phospholipase D signaling pathway D-myo-Inositol 1,4,5-trisphosphate up
MFS Regulation of actin cytoskeleton ACTB ARPC5 up
MFS Regulation of actin cytoskeleton ACTN4 down
MFS Regulation of actin cytoskeleton VCL down

MPNST Fc epsilon RI signaling pathway AKT3 up
MPNST Fc epsilon RI signaling pathway PLA2G4B up
MPNST Melanogenesis CAMK2A up
MPNST Melanogenesis PRKACA up
MPNST Oxytocin signaling pathway RYR1 up
MPNST Prolactin signaling pathway CCND1 up

SS ErbB signaling pathway CBLC down
SS ErbB signaling pathway MYC down
SS Glucagon signaling pathway CPT1C up
SS Glucagon signaling pathway GYS1 down
SS Glucagon signaling pathway PKM down
SS Jak-STAT signaling pathway CDKN1A down
SS Retrograde endocannabinoid signaling GRIA1 down
SS Retrograde endocannabinoid signaling PRKCA down

STLMS Adipocytokine signaling pathway IRS1 up
STLMS PI3K-Akt signaling pathway MYC down
ULMS VEGF signaling pathway BAD up
ULMS VEGF signaling pathway CASP9 up
ULMS VEGF signaling pathway PTGS2 down
UPS Chemokine signaling pathway STAT1 up
UPS Complement and coagulation cascades C3 up
UPS GnRH signaling pathway JUN down
UPS GnRH signaling pathway PLD1 down
UPS Platelet activation ORAI1 up

The specifically dysregulated circuits observed in DDLPS are closely related to metabolic
alterations. Thus, the activation of the hedgehog signaling pathway, previously reported in
sarcoma patients, would promote a dedifferentiated morphology of adipocytes, decreased
lipid accumulation, and insulin resistance [94,95]. Increased insulin modulates the other
two circuits seen in DDLPS, activating the “Regulation of lipolysis in adipocytes: PRKACA”
circuit and suppressing the “Insulin signaling pathway: PCK1” circuit, respectively. Ther-
apy targeting the hedgehog pathway has reduced efficacy, but co-targeting of interacting
pathways, such as PI3K-AKT, may improve the therapeutic effect [94]. PI3K-AKT inter-
venes in signaling by insulin, protecting against glucose starvation and anoikis through
the induction of the protein kinase A [96] and reduction in the triglyceride/fatty acid cycle
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fueling glyceroneogenesis in adipose tissue by reducing the activation of phosphoenolpyru-
vate carboxykinase 1 [97]. These changes suggest the metabolic rewiring of tumor cells
towards survival in an undifferentiated and detached state while utilizing carbohydrate
intermediates for biosynthesis instead of energy storage.

Specific responses observed in MFS are varied, including metabolic-, motility-,
apoptosis-, and immune-related circuits. Increased uptake of glucose by tumor cells would
raise the ATP/ADP ratio, leading to the inhibition of ATP-sensitive potassium channels
and triggering a cascade to secrete insulin. In glioma cells, lower expression of ABCC8
(encoding SUR1, a subunit of these channels) is associated with a poor prognosis [98].
Inhibition of these channels causes membrane depolarization, which is compensated by
extracellular calcium intake. Among the multiple functions of calcium signaling is actin
polymerization at the leading edge of migrating cells, further supported by the activation
of the regulation of the actin cytoskeleton, which leads to actin branching on lamellipodia
(Arp2/3) and inhibition of focal adhesion assembly (VCL, ACTN). Moreover, reducing tight
junctions further supports tumor cell dissociation, high motility, and the invasive potential
of MFS cells. On the other hand, we see the activation of the “natural killer cell-mediated
cytotoxicity: KLRC4-KLRK1” circuit, involving the activating NK receptor NKG2D, which
is a good prognostic marker on the TME and may be subject to cell immunotherapy [99].

In MPNST, significant differential activation in circuits related to the protective effect
triggered by the TME on the FceRI signaling pathway, previously described, as well as a
putative melanotic feature and neuron response to the hormones prolactin and oxytocin,
was found. Different receptors activate Phospholipase C, triggering, in one case, melamin
synthesis, previously observed in malignant melanotic nerve sheath tumors [100], and, in
the oxytocin pathway, the release of calcium stored in intracellular pools into the cytoplasm
via RYR1, leading to the secretion of oxytocin. In both cases, the prolactin and oxytocin
pathways activate the MAPK signaling pathway to enhance cell proliferation through
cyclin D1. These hormones induce tumor cell viability, and targeting their receptors may
pose a treatment [101,102].

In SS, the down-activation of circuits with anticancer properties was mostly found.
SS is related to MPNST, having a neural origin [103]. As such, dysregulation of the endo-
cannabinoid system is observed, which impacts multiple cancer-related pathways with anti-
tumor effects concurrently with the down-activation of SS [104]. In terms of metabolism,
the glucagon signaling pathway down-activates glycogenolysis and glycolysis by GYS and
PKM, respectively, which are circuits that exhibit differential behaviors depending on the
cancer type. At the same time, it activates fatty acid oxidation by CPT1, which is involved
in the metabolic adaptation of tumor cells to produce energy and metabolic intermediates
to promote cancer progression [105]. In concordance, the Jak-STAT signaling pathway
inactivates p21, which is involved with cell-cycle inhibition.

In STLMS, reduced signaling from tumor necrosis factor (TNF) in the adipocytokine
signaling pathway leads to elevated activation of IRS, involved in insulin sensitivity, whose
expression has been related to malignant sarcoma progression. This protein was also found
to be constitutively activated in leiomyosarcoma [106]. Unexpectedly, a down-activation of
the oncoprotein MYC mediated by the PI3K-Akt signaling pathway was observed. Given
the limited number of cases available in the dataset, this circuit may be altered by current
patient treatments.

Dysregulated signaling in the VEGF signaling pathway in ULMS, putatively produced
from the reduced expression of the VEGFA ligand, leads to increased anti-apoptotic BAD
and CASP9 and decreased COX-2 activation. The production of VEGF promotes a mecha-
nism to evade the immune system by inhibiting the migration of T cells after modification
of gene expression with a reduction in adherent factors in endothelial cells [77].

UPS overactivates circuits involved in cell proliferation, such as the JAK/STAT signal-
ing pathway in response to chemokine, with the production of complement anaphylatoxins.
These anaphylatoxins play a role in regulating inflammation, enhancing cell stemness, and
activating the CRAC (Ca2+ release-activated Ca2+) channel ORAI1, a potential contributor
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to cancer progression. On the other hand, under-activation of the antiproliferative GnRH
signaling pathway via JNK/c-jun signaling was observed. Therapeutic anticancer treat-
ments over these pathways include complement-dependent cytotoxicity with antibodies
and the utilization of GnRH agonists to counteract the signaling of growth-factor receptors
or antagonists to induce apoptosis [107].

4.6. Alternative Validations

Since the analysis presented here comprises the transmission of signaling activity
throughout proteins involved in the pathways, those proteins that may have a relevant
impact on patient survival were further analyzed with other alternative tools (KMplot
and UALCAN) for additional support. Although the results provided by KMplot and
UALCAN are obtained from different cancers, Table S4 shows a high level of concordance
between both results, providing extra validation of the results produced by the model.

4.7. Clinical Strategies

Chemotherapy and targeted therapy are both potent methods to treat cancer. However,
due to their different forms of action, the side effects vary. While chemotherapeutics affect
cells in the body with rapid proliferation, they affect not only tumor cells but also cells in the
bone marrow and hair. On the other hand, targeted therapy agents, usually small molecules
or antibodies directed towards specific proteins, have reduced side effects that commonly
include diarrhea and skin reactions. The study of signaling pathways allows for the
detection of putative targets on the pathways, either on specific nodes or in adjacent nodes,
that may contribute to the programmed therapeutic perturbation. Many circuits share
alterations in the PI3K/Akt/mTOR and Ras/MAPK networks. Both signaling networks
may be activated by multiple RTKs, for which numerous tyrosine kinase inhibitors (TKIs)
are sarcoma-approved drugs like pazopanib, sunitinib, sorafenib, or erlotinib [108].

Besides signaling pathway modulation, immunotherapy is a promising field for the
treatment of soft tissue sarcoma patients. As previously discussed, our results indicate that
an enhanced TME is usually a sign of a good patient prognosis. A challenge is to promote
an anti-tumor TME and reduce resistance to therapy. The adoptive cell therapy of T-cells
consists of manipulating the TCR to recognize tumor-specific antigens and promote an
anti-tumor response in the patient [109]. Another strategy is to use molecules to prevent
polarization from the anti-tumor M1 phenotype to the immunosuppressive M2 phenotype
of tumor-associated macrophages. In this work, various circuits within Fc gamma R-
mediated phagocytosis, the adipocytokine signaling pathway, and the HIF-1 signaling
pathway (see Table 5) related to macrophage polarization that may be considered for
therapy were discussed. Furthermore, monoclonal antibodies could be designed to block
checkpoint receptors like CTLA-4 or PD-1, which are more abundant in non-translocation-
associated sarcomas (such as six of the TCGA subtypes analyzed here, excluding SS).

5. Conclusions

Sarcoma tumors are difficult to treat, leading to poor overall survival for patients. In
the present work, the activation of pathways that have a significant association with patient
survival and those that are dysregulated in tumor samples compared to normal tissues was
assessed. Traditional neoadjuvant therapies usually target known oncogenic circuits, while
newer therapies are focused on improving the immune anticancer response. In that respect,
the protective role of signaling and metabolic pathways that promote the infiltration of
anti-tumorigenic immune cells into the sarcoma TME has been discussed. On the other
hand, different tumorigenic functions, such as cytoskeleton remodeling and the promotion
of tumor and pre-metastatic cell survival, were found to negatively affect patient outcomes.
Interestingly, the same elements may be indicative of a good or bad prognosis depending
on the specific pathway and cell type they participate in. A systematic review has been
conducted, taking into consideration the high variability of cellular processes existent in
different types of sarcoma. A relevant outcome was the identification of common circuits
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that potentially influence patient survival and tumor progression in soft tissue sarcoma.
The findings presented here provide hints for new therapeutic interventions in sarcoma.
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