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Abstract: Phenylpyrazolo[3,4-d]pyrimidine is considered a milestone scaffold known to possess
various biological activities such as antiparasitic, antifungal, antimicrobial, and antiproliferative
activities. In addition, the urgent need for selective and potent novel anticancer agents represents a
major route in the drug discovery process. Herein, new aryl analogs were synthesized and evaluated
for their anticancer effects on a panel of cancer cell lines: MCF-7, HCT116, and HePG-2. Some of these
compounds showed potent cytotoxicity, with variable degrees of potency and cell line selectivity in
antiproliferative assays with low resistance. As the analogs carry the pyrazolopyrimidine scaffold,
which looks structurally very similar to tyrosine and receptor kinase inhibitors, the potent compounds
were evaluated for their inhibitory effects on three essential cancer targets: EGFRWT, EGFRT790M,
VGFR2, and Top-II. The data obtained revealed that most of these compounds were potent, with
variable degrees of target selectivity and dual EGFR/VGFR2 inhibitors at the IC50 value range,
i.e., 0.3–24 µM. Among these, compound 5i was the most potent non-selective dual EGFR/VGFR2
inhibitor, with inhibitory concentrations of 0.3 and 7.60 µM, respectively. When 5i was tested in an
MCF-7 model, it effectively inhibited tumor growth, strongly induced cancer cell apoptosis, inhibited
cell migration, and suppressed cell cycle progression leading to DNA fragmentation. Molecular
docking studies were performed to explore the binding mode and mechanism of such compounds on
protein targets and mapped with reference ligands. The results of our studies indicate that the newly
discovered phenylpyrazolo[3,4-d]pyrimidine-based multitarget inhibitors have significant potential
for anticancer treatment.

Keywords: phenylpyrazolo[3,4-d]pyrimidine; tyrosine kinase; cell cycle analysis; EGFR; VGFR;
apoptosis; docking

1. Introduction

Cancer is a significant and prevalent health issue and is one of the leading causes of death
globally [1,2]. This disease is characterized by sustained proliferative potential, growth signals,
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and self-sufficiency, with apoptotic and antiproliferative cues resistance [3–5]. There have
been advancements in diagnosing cancer early and the development of new treatments;
however, there is still a lack of effective therapeutics for treating advanced cancers [6].
As conventional methods for treatment of cancer, radio and chemotherapy are no longer
effective due to several side effects, including the unbiased destruction of body cells at
comparable rates [7,8]. Thus, multiple attempts have been made to treat advanced cancer
cases utilizing targeted therapies [9,10].

For targeted anticancer therapies, the pyrazolo[3,4-d]pyrimidine scaffold has gained
great recognition due to its diverse and versatile pharmacological potential and structural
similarity to ATP cofactor [11–13]. This similarity urges the utilization of pyrazolo[3,4-
d]pyrimidine as a bioisosteric replacement of adenine (9H-purin-6-amine) as it would
keep the fundamental interactions at the kinase domain [14,15]. The extensive role of
kinases in many reported illnesses encourages extensive work to design and deliver potent
analogs of pyrazolo[3,4-d]pyrimidine [14,16–18]. Several derivatives have shown a distinct
growth-inhibitory activity via CDK1, CDK2, and 5-lipoxygenase enzymes’ inhibition [19,20].
Interesting drugs that bear this scaffold are Dinaciclib, ibrutinib, and roscovitine, with
potent CDK2 inhibition [14,16–18].

The advancement of targeted therapies that aim to hinder or obstruct crucial cellular
pathways in tumor growth and metastasis has led to a greater understanding of the
diversity within tumors and their ability to circumvent the blockade of signaling pathways.
Consequently, certain tumors may inherently display resistance or develop resistance
to therapies that target a particular pathway. To address this challenge, employing a
comprehensive strategy that involves the concise inhibition of multiple signaling pathways
may be fruitful. This strategy can help counteract tumor resistance by blocking potential
alternative paths for tumor escape [5,21–27].

Vascular endothelial growth factor (VEGF) and the epidermal growth factor receptor
(EGFR) are complementary pathways that play a fundamental role in tumor survival
and diffusion [28–30]. The VEGF signaling pathway is upregulated by the expression of
EGFR, which contributes to cancer resistance. VEGF and EGFR can exaggerate tumors
through the exertion of both indirect and direct effects on tumor cells [28]. Targeting both
pathways via mono- or multi-target therapeutics demonstrates a potential clinical benefit in
many cancerous conditions. It is worth noting that therapeutics that impact VEGF-related
pathways may contribute to the therapeutic targeting of the EGFR pathway [21,31–34].
Dual inhibitors of VEGF/EGFR could potentially improve antitumor efficacy and overcome
resistance.

1H-Pyrazolo[3,4-d]pyrimidine scaffold has been reported to be an essential phar-
macophore in many anticancer agents [16,35,36], including EGFR-TKIs. Herein, given
examples include compounds 1–8 (Figure 1), which were tested as anticancer agents with
a pyrimidine-based library of the anti-EGFR-TK mechanism and have been approved
by the FDA; these include first-generation examples such as erlotinib 1 and gefitinib 2;
second-generation examples such as afatinib 3 and canertinib 4; third-generation EGFR-
TKIs such as rociletinib 5, and avitinib 6; and clinical-phase compounds such as sapitinib 7
and dacomitinib 8.

The promising biological effects of 1H-pyrazolo[3,4-d]pyrimidine, in which the core
scaffold was decorated with a pendant N-linker bonded to the aryl moiety at the 4 position,
are able to consistently conserve activity against targets.

Other complexed examples of pyrazolo[3,4-d]pyrimidine-based EGFR-TK inhibitors
(9–13) were discovered, with different potency profiles based on the ATP pharmacophore
model. These compounds showed very interesting anticancer activity against specific
cancer cell lines [37–40] (Figure 2).
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2. Results and Discussion
2.1. Structure-Based Scaffold and Compound Design

Reports revealed that EGFR-TK is a polypeptide chain and that the ATP-binding groove
of EGFR-TK is a 1186-amino-acids polypeptide chain. The ATP-binding region is composed
of three areas: extracellular, intracellular, and hydrophobic regions (Figure 3a) [41,42]. SAR
analysis of EGFR-TKIs revealed that they have four common pharmacophoric features.
First, the core structure consists of a flat nitrogenous heterocycle. This ring occupies the
adenine binding pocket and forms hydrogen bonding with Met793, Thr790, and Thr854.
The next feature is represented by a terminal hydrophobic head (a plain or substituted
phenyl group) that interacts with hydrophobic region I. Most of the reported inhibitors also
bear a middle secondary amine group, occupying the linker region between the adenine
binding region and the hydrophobic region. The final feature, represented by a hydrophobic
tail, connects to the flat hetero aromatic ring system which occupies hydrophobic region II.
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Based on the previous findings, we aimed to synthesize new 1H-pyrazolo[3,4-d]pyrimidine
derivatives with potential anticancer activity. The target of this work was the synthesis of
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new derivatives carrying the same essential pharmacophoric features of the reported EGFR-
TKIs as compound 1 and compound 7 (Figure 3b). We used a bioisosteric replacement
strategy to fill up the binding pocket in EGFR-TKIs at four different positions (Figure 3b).
In the first position, we used 1H-pyrazolo[3,4-d]pyrimidine as a flat heterocyclic system as a
bioisostere of the quinazoline core on compounds 1 and 7. The suggested 1H-pyrazolo[3,4-
d]pyrimidine core can fill the bulky space of the adenine-binding region (Figure 3a) [43,44].
The nitrogen atoms at the core would engage several hydrogen bonds, which would be
translated into excellent EGFR-TK potency [44,45].

The second position and third regions consisted of two terminal hydrophobic regions
represented by phenyl group position 1 and alkyl or aryl side chains connected to a
nitrogenous spacer. The last part was the nitrogenous linker (spacer) region with various
lengths and heteroatom contents (amine, hydrazide, or thiosemicarbazide). The suggested
modifications we envisioned led to study the SAR of this scaffold as an anticancer agent
through the inhibition of EGFR-TK.

2.2. Chemistry

The route adopted for the synthesis of compounds 5a–l and 6–9 is depicted in Schemes 1 and 2.
Synthesis was initiated via chlorination of 6-methyl-1-phenyl-1,5-dihydro-4H-pyrazolo-[3,4-
d]pyrimidin-4-one (1) using phosphorous oxy-chloride in the presence of trimethylamine
(TMA) to give the chlorinated derivative, 4-chloro-6-methyl-1-phenyl-1H-pyrazolo[3,4-
d]pyrimidine (2). Hydrazinolysis of the 4-chloro derivative (2) under reflux gave the
hydrazide derivative, 4-hydrazinyl-6-methyl-1-phenyl-1H-pyrazolo[3,4-d]pyrimidine (3).
Condensation of compound 3 with appropriate aromatic aldehydes (4a–h) or acetophe-
nones (4i–l) in ethanol and glacial acetic acid (as a catalyst) afforded the open chain Schiff
base products, 4-(2-arylidenehydrazinyl)-6-methyl-1-phenyl-1H-pyrazolo[3,4-d] pyrimi-
dine (5a–l).
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Next, we used 4-hydrazinyl-6-methyl-1-phenyl-1H-pyrazolo[3,4-d]pyrimidine (3) as a
versatile intermediate to synthesize a variety of pyrazolo-triazolopyrimidine derivatives.
Thus, refluxing of 3 with triethyl orthoformate, trifluoroacetic acid, and trichloroacetic acid,
respectively, gave the following tricycle compounds; 5-methyl-7-phenyl-7H-pyrazolo[4,3-
e][1,2,4]triazolo[4,3-c]pyrimidine (6a), 3-trifluoromethyl (6b) and 3-trichloromethyl (6c)
derivatives, respectively, were formed. While condensation of 3 with acetyl acetone af-
forded the open-chain Schiff base product, 4-((6-Methyl-1-phenyl-1H-pyrazolo[3,4-
d]pyrimidin-4-yl)imino)pentan-2-one (6d). Reaction of 3 with dihydrofuran-2,5-dione,
furan-2,5-dione, and indoline-2,3-dione, respectively, afforded 1-((6-methyl-1-phenyl-1H-
pyrazolo[3,4-d]pyrimidin-4-yl)amino)pyrrolidine-2,5-dione (7), 1-((6-methyl-1-phenyl-1H-
pyrazolo[3,4-d]pyrimidin-4-yl)amino)-1H-pyrrole-2,5-dione (8), and 3-(2-(6-methyl-1-phenyl-
1H-pyrazolo[3,4-d]pyrimidin-4-yl)hydrazono)indolin-2-one (9), respectively, as shown in
the Scheme 2.
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Finally, interaction of the hydrazinyl derivative (3) with several isothiocyanates,
namely, ethyl isothiocyanate, propyl isothiocyanate, butyl isocyanate, vinyl isothiocyanate,
and phenyl isothiocyanate, in butanol (20 mL) under reflux afforded the N-alkyl/aryl-2-
(6-methyl-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-yl)hydrazinecarbothioamides (9a–e),
respectively, as shown in the Scheme 2.

2.3. Anticancer Assay

The antiproliferative activity of the synthesized library was examined against three hu-
man cancer cell lines; breast (MCF-7), colon (HCT-116), and liver (HepG2) utilizing an MTT
assay with the human diploid fibroblasts (WI-38) normal cell line as a comparison [46–48].
The data are summarized in Table 1. According to our design, the tested compounds
are classified into four categories based on the length and the chemotype of the spacer
(Figure 3). In the first category, we used monosubstituted hydrazone linker. Among the
tested derivatives in this category, compound 5b with p-hydroxyphenyl showed the most
promising activity against the three cell lines when compared with the reference drug.
Additionally, the O-methylated congeners, compounds 5d and e, maintained promising
activity against HCT-116 cells with IC50 9.87 and 8.15 µM, respectively. The second cate-
gory is represented by monosubstituted hydrazone linker. In this category, compound 5a,
carrying the unsubstituted phenyl group, demonstrated noticeable activities against the
three cell lines.
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Table 1. Results of in vitro anticancer activity of the newly synthesized pyrazolopyrimidine com-
pounds, IC50 (µM).

Compounds Ar HePG-2 MCF-7 HCT-116 WI-38

DOX 4.50 ± 0.2 4.17 ± 0.2 5.23 ± 0.3 10.63 ± 0.47
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Possessing various chemical characteristics on scaffold dramatically ameliorated cyto-
toxic activity. In the third category, we tethered the linker to the pyrimidine ring to provide
the triazolo[4,3-c]pyrimidine core. Using this strategy, we aimed to reduce rotation at this
part to reduce the entropic penalty of the binding of the compound to EGFR-TK. The three
derivatives showed moderate cytotoxic activities. Next, we used four heterocyclic substi-
tutions to build the fourth category of our compounds (6d–7). None of these molecules
exhibited any meaningful activity against the three cell lines. In the last category, we used
a thiosemicarbazide linker connected to various aliphatic and aromatic side chains (9a–e)
with prominent activity for analogs 9a and 9e. Collectively, this series displayed the best
activity against the three tested cell lines in comparison with the other categories (Table 1).
In addition, compound 9a, with ethyl side chain, overrides the activity of Doxorubicin
against the HCT-116 cell line. In addition, normotoxicity was assessed for the most active
analogs—5b, 5i, and 9e—on the WI38 cell line, and they exhibited a very low effect, with
IC50 greater than 35 µM, which indicated a good safety profile.

Next, we investigated the cytotoxic activity of selected derivatives against the same
cell lines using the extended treatment strategy. Using this strategy, we aimed to examine
the resistance ability of the tested cell lines to our compounds after incubation for a long
time. We realized that in comparison with doxorubicin, some tested compounds exhibited a
time-dependent cytotoxic activity; for example, compound 5i. On the other hand, we noted
a transient partial loss of cytotoxic activity 48 h post-treatment, followed by improved
activity in the last time point. Table 2 and Figure 4 summarize the relative cytotoxic activity
of the selected derivatives.
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Table 2. In vitro cytotoxic activity of selected compounds 48 and 72 h post-incubation.

Cell Line Time 5b 5i 9e Dox

HePG-2

24 h 9.12 ± 0.7 6.38 ± 0.1 7.80 ± 0.4 4.50 ± 0.2

48 h 7.60 ± 0.7 3.34 ± 0.2 8.28 ± 0.8 3.24 ± 0.2

72 h 5.16 ± 0.4 2.42 ± 0.2 5.93 ± 0.5 1.07 ± 0.1

MCF-7

24 h 10.48 ± 0.7 3.81 ± 0.3 8.99 ± 0.5 4.17 ± 0.2

48 h 9.82 ± 0.9 3.34 ± 0.2 8.16 ± 0.8 2.82 ± 0.1

72 h 5.16 ± 0.4 1.24 ± 0.3 7.45 ± 0.7 0.69 ± 0.1

HCT116

24 h 5.65 ± 0.3 4.38 ± 0.2 6.87 ± 0.5 5.23 ± 0.3

48 h 9.82 ± 0.9 4.01 ± 0.3 6.77 ± 0.4 4.07 ± 0.3

72 h 4.09 ± 0.3 2.76 ± 0.3 5.55 ± 0.4 2.79 ± 0.2
Data are presented as average IC50 ± SD (µM) values for at least three experiments.

2.4. In Vitro Cancer Related Targets Inhibition Analysis

Multi-targeting is a useful anticancer strategy with superior therapeutic attributes. A
variety of tumors, such as aggressive breast cancers, offer the overexpression of different
cellular enzyme targets which are responsible for large tumor size, poor differentiation,
and poor clinical outcomes [49–52]. Triazole hybrids were discovered to be multi-target
EGFRWT-, EGFRT790M-, VEGFR-2-, and Topo II based-inhibitors, and they were evaluated
for anticancer activity [53,54]. Moreover, examples of Pyrazolo[3,4-d]pyrimidine-based
multitarget anticancer inhibitors were reported [55]. As seen in the data for the cytotoxicity
of the newly synthesized analogs, only active candidate compounds 5b, 5i, and 9e were
tested against a panel of cancer-related targets, namely, EGFR, VEGFR-2, and Topo-II,
compared to reference drugs. The results are summarized in (Table 3). We found that
compound 5b strongly and selectively inhibited EGFR activity in the lower range, with 20-
fold target selectivity indices over VGFR-2 and 108-fold over Topo-II. Moreover, compound
5i showed low selective and potent inhibition of EGFRWT and EGFRT790M over VGFR-2
and Topo-II, with 20/66 selectivity indices. Compound 9e was moderately active against
VGFR-2 and Topo-II targets, with selectivity indices of 21/31 over EGFRWT. Overall, the
scaffold pyrazolo[3,4-d]pyrimidine analogs showed different degrees of multitarget potent
inhibitory activity, which might contribute to the discovery of anticancer agents.

Table 3. In vitro EGFR-2-, VEGFR-2-, and Topo-II-inhibitory effects of new candidate compounds 5b,
5i, and 9e compared to reference drugs.

Compound
IC50 (µM)

EGFRWT EGFRT790M VGFR2 Topo-II

5b 0.78 ± 0.02 1.93 ± 0.08 15.7 ± 0.32 108.3 ± 2.20

5i 0.37 ± 0.18 0.56 ± 0.04 7.60 ± 0.15 24.7 ± 0.51

9e 0.77 ± 0.018 - 16.24 ± 0.36 24.6 ± 0.54

Etoposide - - - 33.6 ± 1.16

Sorafenib - - 0.073 ± 0.002 -

Erlotinib 0.13 ± 0.003 0.035 ± 0.001 - -
Data are presented as average IC50 ± SD (µM) values for at least three experiments. (-) not tested.
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2.5. Cell Cycle Analysis

Based on its antiproliferative activity, compound 5i was designated for further studies
to explore its effect on the induction of apoptosis in the A549 cell line [56]. We used this
assay to elucidate the relationship between the proliferation inhibition and the cell cycle
arrest, s well as to determine the biological phase in which the molecule interferes with
cell growth. The cells were treated with 1 µM of 5i, and we used DMSO as a negative
control. As presented in Figure 5, the data showed obvious interference with the native
cell cycle distribution. Exposure of MCF-7 cells to our compound caused a decrease in
the proportion of cells in the G0/G1 phase (from 57.39% to 49.63% when compared with
the control). Moreover, it showed a slight increase in cell percentage in the S phase (from
33.97% to 43.12%), accompanied by a slight increase in the percentage of cells at the G2/M
phase of the cell cycle (from 8.64% in the control to 7.25%) and a significant increase in
the pre-G1 phase of the cell cycle (from 1.79% in the control to 36.06%). Collectively, these
results indicated that compound 5i can lead to apoptosis through arresting the G1/S phase
of cell cycle.
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Statistical analysis of the apoptosis percentage of MCF-7 cells after incubation with compounds 5i in
conc. (3.81 µM) for 24 h. The data are reported as the mean ± SD of three independent experiments
in triplicate.

2.6. Annexin V-FITC Apoptosis Assay

We used annexin V-binding studies via flow cytometer to confirm the apoptosis
induction by our compound. The apoptotic nature of 5i against MCF-7 cells was tested via
flow cytometry detection after double-staining with Annexin V-FITC and propidium iodide
(PI) [57]. The results demonstrated that the treatment of A549 cells with our compound for
48 h increased the early apoptosis ratio (lower right quadrant of the cytogram) from 0.44%
to 12.62% and increased the late apoptosis ratio (higher right quadrant of the cytogram)
from 0.17% to 19.11%, indicating that 5i can induce MCF-7 cells apoptosis. In addition,
treatment of MCF-7 cells with our compound for 24 h resulted in 36.06% of apoptotic cells
(early + late) versus 1.79% of apoptotic cells in the untreated control (Figure 6). These
results demonstrated that 5i might inhibit cell growth through cell apoptosis induction.
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2.7. EGFR/VGFR2 Target Docking Simulations

The integration of experimental and computational methods is an attractive strategy
by which to design and optimize successful drug candidates [32,34,51,52]. Based on the
biological activity of 5i, we carried out molecular docking studies as a crucial step to
understand the mode of interaction of our selected molecule. First, a docking study was
performed against EGFR (PDB ID: 1M17) (Figure 7a). Our compound was compared with
erlotinib (compound 1, Figure 1), the known EGFR inhibitor. Previous studies [34,58] have
indicated that erlotinib causes EGFR inhibition by binding to the site occupied by ATP
during phosphotransfer. The N1 of the quinazoline accepts the hydrogen bond from the
Met769 amide nitrogen. It has been reported that 1-diphenyl-4,5-dihydro-1H-pyrazolo[3,4-
d]pyrimidin-6-amine scaffold has successfully tolerated the EGFR pocket [59]. Our data
indicated that compound 5i conserved the same interaction with Met769 as the reference
molecule. The N1 of the pyrazole ring formed a hydrogen bond with Met 769, with a
distance of 0.8 Å. Furthermore, the pyrazolo[3,4-d]pyrimidine moiety was incorporated
into pi–pi interaction with Gly772 and Cys773, respectively. The peripheral phenyl group
of 5i was buried inside hydrophobic region I. Additionally, a computational docking study
was performed against VEGFR-2 (PDB ID: 3EWH) in comparison with a pyridyl-pyrimidine
benzimidazole inhibitor (Figure 7b). The binding pattern of our molecule includes the
pi–pi interaction of the core phenyl group with Leu1035 and the pyrimidine moiety with
Lys868. Moreover, the hydrazide linker showed hydrogen bonding with Glu885, with a
distance of 2.86 Å. This interaction imitates the same binding of the reference molecule
with Glu885. A comparison of our molecule with both reference molecules through 2D
molecular alignment revealed that 5i occupies the same space in both receptors. In addition,
a mapping experiment on an active 5i analog referencing selective EGFR and VGFR-2
compounds led to the discovery of conserved molecular motifs that contributed strongly to
the binding mechanism and hence to biological activity (Figure 8).

2.8. Prediction of Drug-Likeness and ADME Properties

We used the OSIRIS Property Explorer to predict any potential side effects of our
molecules, such as mutagenic, tumorigenic, irritant, and reproductive effects. Moreover, we
tested a group of drug-relevant properties, including cLogP, LogS (solubility), MW, drug-
likeness, and overall drug-score. The in silico physicochemical and toxicological analyses
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were carried out with the OSIRIS Property Explorer program with respect to the two potent
active analogs, 5b and 5i, compared to the two reported anticancer drugs. Properties with
a high risk of undesirable effects, such as mutagenicity, tumorigenicity, irritant effects, and
effects on reproductive physiology, as well as drug-relevant properties, including cLogP,
LogS (solubility), MW, drug-likeness, and overall drug-score, are scored and color-coded,
as shown in Table 4. The data of toxicity risks (shown in colors as red (high risk) and green
(zero risk)) indicate a behavior consistent with the compound. Interestingly, the potential
drug-likeness values of compounds 5i and 5b (4.26 and 3.97) were significantly higher than
the two reference drugs, which showed negative values of −4.2 and −6.73. However, the in
silico prediction of the OSIRIS Property Explorer showed that the introduction of 4-OH on
the aryl ring can retain the lack of tumorigenic and mutagenic toxicity risk and enhance the
druggability of compound 5i compared to the low-active one. In addition, we can see that
both 5i and 5b compounds present a very excellent safety profile against all side effects.
Generally, the drug-score values of compounds 5b and 5i (0.66 and 0.58) were better than
those of sorafenib and erlotinib (0.20 and 0.38). It was noted via %ABS that analog 5i was
85% better than the others. The reasons for this good analysis are the absence of reactive
functional groups within the chemical structure, the chemical stability, and the simplicity
in the formula.
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Figure 7. Docking modes of active compound 5i. Shown are the predicted complexes of (a) an
erlotinib drug with EGFR and (b) a pyridyl-pyrimidine benzimidazole derivative with VGFR.
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Table 4. Toxicity risks and physicochemical properties of compounds 5b and 5i in comparison with
reported drugs, as predicted by the OSIRIS Property Explorer.

ID
Molecular Properties Druggability Toxicity Risks

%ABS
TPSA Mwt Solubility ClogP Drug-likeness Drug-Score M T I R

5b 88.22 344 −4.09 4.29 3.97 0.66 Safe 78.56

5i 67.99 342 −4.74 4.57 4.26 0.58 Safe 85.54

Sorafenib 92.35 464 −6.69 4.14 −4.2 0.2 Safe 77.13

Erlotinib 74.73 393 −3.53 3.07 −6.73 0.38 Safe 83.21

- https://www.organic-chemistry.org/prog/peo (accessed on 25 September 2023). The calculation of %ABS was
conducted using this equation ABS = 109 − (0.345 × TPSA). Safe term indicates very low toxicity risks.

3. Conclusions

In this work, we applied a well-established chemical approach to the design and
synthesis of phenylpyrazolopyrimidine-based analogs. In the protocol, we synthesized
four different series of hydrazide, methylhydrazide, closed ring systems, and thiourea
derivatives of high accessibility and good yields. The resulting compounds were evaluated
for cytotoxic activity using an MTT assay against three malignant cell lines. Moreover,
exemplary compounds were selected for mechanistic analysis using EGFR, VGFR-2, and
Top-II enzymatic assay and cell cycle and apoptotic analyses. Most of the synthesized
derivatives exhibited greater potency and selectivity performance than the reference in-
hibitor. Compounds 5b, 5i, and 9e were the most potent analogs, with IC50 values of
3–10 µM cytotoxicity. Moreover, a detailed mechanistic analysis on the cancer cell line
revealed that when compared to the positive control medication, most of the compounds
had stronger antiproliferative activity. In MCF-7 cancer cells, compound 5i also enhanced
apoptosis, produced cell cycle arrest at the G2/M phase, and caused DNA fragmentation.
Molecule 5i appears to offer a lot of potential as a novel multi pyrazolopyrimidine-based
lead compound for the identification of new anticancer medicines that target EGFR/VGFR-
2 enzymes, based on our findings. In future studies, we intend to keep optimizing this
molecule to create chemical entities with great anticancer activity and better selectivity to
be advanced to preclinical studies. We will also use this molecule as a starting point from
which to develop a combination therapy.

4. Experimental Section
4.1. Chemistry
4.1.1. General Procedures

All solvents and reagents used in this work were utilized as received from suppliers
unless otherwise noted. Melting points were determined on a StuartTM digital melting
point apparatus (Stone, UK) and are uncorrected. The IR spectra were recorded on a Jasco
FT/IR 460 plus spectrophotometer using KBr discs. The 1H-NMR (400 MHz) and 13C-NMR
(100 MHz) spectra were recorded on a Varian Mercury VXR-400 NMR 300 MHz using
DMSO-d6 as a solvent, and mass spectra were measured using a Hewlett Packard 5988
spectrometer. Elemental analysis was conducted at the Regional Centre for Mycology and
Biotechnology (RCMP), Al-Azhar University, Cairo, Egypt. Reaction progress and purity of
the synthesized molecules were monitored via thin-layer chromatography (TLC), utilizing
Merck precoated silica gel 60 F254 aluminum sheets. The reported yields refer to isolated
compounds after purification. All spectral data are present in Supplementary Materials.

6-Methyl-1-phenyl-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin-4-one (1)

Compound 1 was prepared according to the procedure in [60].

4-Chloro-6-methyl-1-phenyl-1H-pyrazolo[3,4-d]pyrimidine (2)

Compound 6 was prepared according to the procedure in [61].

https://www.organic-chemistry.org/prog/peo
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4-Hydrazinyl-6-methyl-1-phenyl-1H-pyrazolo[3,4-d]pyrimidine (3)

A mixture of 4-chloro-6-methyl-1-phenyl-1H-pyrazolo[3,4-d]pyrimidine (2) (0.01 mol)
and hydrazine hydrate (99%, 5 mL, 0. 1 mol) was refluxed for 8 h. After cooling, the
formed precipitate was filtered, washed with hot ethanol (95%, 3 mL), and crystallized
from isopropanol to yield compound 3: yellow solid; yield 73%; m.p. 236–238 ◦C; IR (KBr)
υ (cm−1): 3444–3352 (NH2), 3190 (NH), 1660 (C=N), 1560 (C=C); 1H NMR (DMSO-d6) δ
ppm: 8.26,(d, 2H, J = 7.90 Hz, phenyl-H2, H6), 8.17 (s, 1H-Ar-H C3-H-pyrazol), 7.56–7.60
(m, 3H, phenyl-H3, H4, H5), 7.54 (s, 1H, NH, exchanged with D2O), 4.73 (brs, 2H, NH2,
exchanged with D2O), 2.42 (s, 3H, pyrimidine-CH3); 13CNMR (DMSO-d6) δ (ppm): 164.5,
158.06, 156.04, 148.00, 134.03, 129.03, 127.13, 126.02, 119.90, 103.30, 26.20, 24.50.; MS (m/z):
240.27 (M+, 8.95%), 171 (100%); Anal. Calc. for C12H12N6 (242.27): C, 59.59; H, 5.03; N,
34.98%. Found: C, 60.11; H, 5.15; N, 34.99%.

General Procedure for the Synthesis of 4-(2-Arylidenehydrazinyl)-6-methyl-1-phenyl-1H-
pyrazolo[3,4-d]pyrimidine (5a–l)

A mixture of hydrazinyl derivative (3) (0.01 mol), appropriate aromatic aldehydes
(4a–h) (0.01 mol), appropriate aromatic acetophenones (4i–l) (0.01 mol), and a catalytic
amount of glacial acetic acid (0.5 mL) was heated under reflux in absolute ethanol (20 mL)
for 4 h. The precipitate that formed was filtered and crystallized from ethanol to give the
title compounds. The physical and spectral data of compounds 5a–l were as follows:

4-(2-Benzylidenehydrazinyl)-6-methyl-1-phenyl-1H-pyrazolo[3,4-d]pyrimidine (5a)

White solid; yield 70%; m.p. 160-162 ◦C; IR (KBr) υ (cm−1): 3377 (NH), 3058, 2782
(CH), 1600 (C=N), 1540 (C=C); 1H NMR (DMSO-d6) δ ppm: 8.61(s, 1H, NH, exchanged
with D2O), 8.33 (s, 1H, -CH=N), 8.23,(d, 2H, J = 7.91 Hz, phenyl-H2, H6), 8.21 (s, 1H-Ar-H
C3-H-pyrazol), 8.07 (d, 2H, J = 7.91 Hz, phenyl-CH-H2, H), 7.85–7.61 (m, 3H, phenyl-CH-
H3, H4, H5), 7.59–7.51 (m, 3H, phenyl-H3, H4, H5), 2.51 (s, 3H, pyrimidine-CH3). 13C NMR
(DMSO-d6) δ (ppm): 164.81, 155.96, 146.93, 139.24, 137.40, 134.46, 130.54, 129.64, 127.52,
126.79, 122.53, 121.48, 99.37, 40.60, 39.35, 25.83; MS m/z (%): 328 (M+, 10.26); Anal. Calcd
for C19H16N6 (328.37): C, 69.50; H, 4.91; N, 25.59%. Found: C, 69.23 H, 4.95; N, 25.48%.

4-((2-(6-Methyl-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-yl)hydrazineylidene)methyl)phenol
(5b)

White solid; yield 75%; m.p. 162–164 ◦C; IR (KBr) υ (cm−1): 3505 (br, OH), 3294
(NH), 3150 (CH aromatic), 1632 (C=N); 1H NMR (DMSO-d6) δ ppm: 10.79 (s, 1H, NH,
exchanged with D2O), 9.89 (s, 1H, OH, exchanged with D2O), 8.60 (s, 1H, -CH=N), 8.20, (d,
2H, J = 7.91 Hz, phenyl-H2, H6), 8.18 (s, 1H-Ar-H C3-H-pyrazol), 8.05 (d, 2H, J = 7.91 Hz,
phenyl-CH-H2, H), 7.89–7.68 (m, 2H, phenyl-H4, H5), 7.68–7.63 (m, 3H, phenyl-H3, H4,
H5), 2.51 (s, 3H, pyrimidine-CH3). 13C NMR (DMSO-d6) δ: (ppm): 163.25, 161.53, 160.28,
158.39, 154.05, 151.01, 146.64, 137.81, 136.83, 131.24, 129.86, 127.11, 125.09, 122.56, 116.29,
98.53, 39.23, 23.06; MS m/z (%): 344 (M+, 11.55); Anal. Calcd for C19H16N6O (344.37): C,
66.27; H, 4.68; N, 24.40%. Found: C, 65.98; H, 4.84; N, 24.61%; purity via HPLC = 98.23%.

4-(2-(4-Chlorobenzylidene)hydrazinyl)-6-methyl-1-phenyl-1H-pyrazolo[3,4-d]pyrimidine (5c)

White solid; yield 79%; m.p. 233–235 ◦C; IR (KBr) υ (cm−1): 3450 (NH), 3002, 2917
(CH), 1580 (C=N); 1H NMR (DMSO-d6) δ ppm: 11.7 (s, 1H, NH, exchanged with D2O), 8.58
(s, 1H, -CH=N), 8.25 (d, 2H, J = 7.91 Hz, phenyl-H2, H6), 8.24 (s, 1H, Ar-H C3-H-pyrazol),
8.23 (d, 2H, J = 7.91 Hz, phenyl-CH-H2, H), 7.86-7.84 (m, 3H, phenyl-CH-H3, H4, H5),
7.59–7.54 (m, 2H, phenyl-H4, H5), 2.51 (s, 3H, pyrimidine-CH3). 13CNMR (DMSO-d6); δ
(ppm): 167.90, 166.02, 160.28, 158.39, 154.05, 151.01, 146.64, 137.81, 136.83, 130.06, 129.86,
127.11, 125.09, 122.56, 119.29, 98.53, 39.23, 24.04; MS (m/z): 364 (M++2, 10.3), 362 (M+, 32.0);
Anal. Calcd for C19H15ClN6 (362.82): C, 62.90; H, 4.17; N, 23.16%. Found: C, 62.71; H, 4.19;
N, 23.22%.

(4-(2-(4-Methoxybenzylidene)hydrazineyl)-6-methyl-1-phenyl-1H-pyrazolo[3,4-d]pyrimidine
(5d)
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Green solid; yield 90%; m.p. 227–229 ◦C; IR (KBr) υ (cm−1): 3418 (NH), 3054 (Ar-H),
2932 (aliph-CH), 1542 (C=N); 1H NMR (DMSO-d6) δ ppm: 8.94 (s, 1H, pyrimidine-NH),
8.74 (s, 1H, phenyl-CH=N, H1), 8.59 (d, 2H, J = 7.3 Hz, phenyl-H2, H6), 8.26 (s, 1H-pyrazol),
8.22 (d, 2H, J = 7.3 Hz, phenyl-C=N,H2, H6), 8.05–7.80 (m, 3H, phenyl-H3, H4, H5), 7.78
(d, 2H, J = 7.3 Hz, phenyl-H3, H5), 3.84 (s, 3H, phenyl-H5), 2.51 (s, 3H, pyrimidine- CH3);
13C NMR (DMSO-d6): 1641.41, 155.27, 154.57, 147.51, 139.04, 137.40, 131.04, 129.265, 129.90,
126.88, 122.56, 121.62, 99.49, 55.79, 25.50, 23.11; MS m/z (%): 358 (M+, 5.23); Anal. Calc. for
C20H18N6O (358.40): C, 67.02; H, 5.06; N, 23.45%. Found: C, 67.28; H, 5.08; N, 23.48%.

4-(2-(2-Methoxybenzylidene)hydrazineyl)-6-methyl-1-phenyl-1H-pyrazolo[3,4-d]pyrimidine
(5e)

Brownish solid; yield 86%; m.p. 220–222 ◦C; IR (KBr) υ (cm−1): 3412 (NH), 3076, 2955
(CH), 1550 (C=N); 1H NMR (DMSO-d6) δ ppm: 8.94 (s, 1H, pyrimidine-NH, H4), 8.74
(s, 1H, phenyl-CH=N, H1), 8.59 (d, 2H, J = 7.3 Hz, phenyl-H2, H6), 8.26 (s, 1H-pyrazol),
8.22(d, 2H, J = 7.3 Hz, phenyl-C=N, H2, H5), 8.05–7.80 (m, 3H, phenyl-H3, H4, H5), 7.78
(d, 2H, J = 7.3 Hz, phenyl-H3, H4), 3.84 (s, 3H, -OCH3), 2.51 (s, 3H, pyrimidine- CH3).
13C-NMR (DMSO-d6): 163.09, 158.17, 154.39, 148.66, 146.66, 146.94, 143.71, 138.95, 137.47,
132.29, 129.90, 122.47, 121.61, 99.32, 25.27, 18.96.; MS (m/z): 358 (M+, 21.58); Anal. Calcd.
for C20H18N6O (358.40): C, 67.02; H, 5.06; N, 23.45%. Found: C, 67.28; H, 5.08; N, 23.48%.

6-Methyl-4-(2-(4-nitrobenzylidene)hydrazineyl)-1-phenyl-1H-pyrazolo[3,4-d]pyrimidine (5f)

Orange solid; yield 88%; m.p. 250–252 ◦C; IR (KBr) υ (cm−1): 3305 (NH), 3057, 2975
(CH), 1510 (C=N); 1H NMR (DMSO-d6) δ ppm: 12.52 (s, 1H, pyrimidine-NH, H4), 8.64 (s,
1H,phenyl-CH=N, H1)), 8.39 (d, 2H, J = 7.3, phenyl-CH=N, H2, H6), 8.37 (d, 2H, J = 7.3 Hz,
phenyl-H2, H6), 8.23 (s, 1H-pyrazol), 8.18 (s, 2H, phenyl-H3, H5) 7.61–7.59 (m, 3H, phenyl-
H3, H4, H4), 2.50 (s, 3H, pyrimidine- CH3). 13C-NMR (DMSO-d6): 147.86, 139.25, 125.99,
129.55, 128.14, 126.65, 124.54, 121.30, 40.45, 40.24, 40.03, 39.83, 39.62, 39.41, 39.20.; MS (m/z):
373 (M+, 24.32); Anal. Calcd for C19H15N7O2 (373.37): C, 61.12; H, 4.05; N, 26.26%. Found:
C, 60.89; H, 4.06; N, 26.32%.

4-(2-(2,6-Dichlorobenzylidene)hydrazineyl)-6-methyl-1-phenyl-1H-pyrazolo[3,4-d]pyrimidine
(5g)

Red solid; yield 83%; m.p. 255–257 ◦C; IR (KBr) υ (cm−1): 3383 (NH), 3109, 2910
(CH), 1570 (C=N); 1H NMR (DMSO-d6) δ ppm: 8.55 (s, 1H, pyrimidine-NH), 8.39 (s, 1H,
-CH=N, H1), 8.24 (d, 2H, J = 7.3 Hz, phenyl-H2, H6), 8.18 (s, 1H, -pyrazol), 7.65-7.60 (m,
3H, phenyl-H3, H4, H5), 7.39 (d, 2H, J = 7.3 Hz, phenyl-H3, H5), 7.38 (m, 1H, phenyl-H4),
2.33 (s, 3H, pyrimidine- CH3). 13C-NMR (DMSO-d6): 165.9, 156.1, 154.8, 141.4, 139.1, 136.6,
134.1, 131.1, 131.6, 130.2, 129.9, 126.8, 99.4, 25.9; MS (m/z): 400 (M++4, 7.5), 398 (M++2, 50.6),
396 (M+, 76.45); Anal. Calcd for C19H14Cl2N6 (397.26): C, 57.44; H, 3.55; N, 21.15%. Found:
C, 57.42; H, 3.51; N, 21.21%.

6-Methyl-1-phenyl-4-(2-(-3-phenylallylidene)hydrazineyl)-1H-pyrazolo[3,4-d]pyrimidine (5h)

Orange solid; yield 95%; m.p. 241–243 ◦C; IR (KBr) υ (cm−1): 3317 (NH), 3112, 2886
(CH), 1550 (C=C), 1670 (C=N); 1H NMR (DMSO-d6) δ ppm: 10.46 (s, 1H, NH), 8.39 (d, 2H,
J = 7.4 Hz, phenyl-H2, H6), 8.18 (s, 1H-pyrazol), 7.94 (s, 1H, N=CH), 7.60–7.52 (m, 3H,
phenyl-H3, H4, H5), 7.54 (d, 2H, J = 7.4 Hz, phenyl-H2, H6), 7.45-7.33 (m, 3H, phenyl-H3,
H4, H5), 7.22 (d, 1H, J =7.5 Hz, CH=CH-ph), 6.89 (d, 1H, J = 12 Hz, N=CH-CH=CH), 2.35
(s, 3H, pyrimidine-CH3). 13C-NMR (DMSO-d6): 164.2, 155.3, 154.5, 149.3, 139.2, 139.1, 137.4,
136.4, 129.6, 127.6, 126.9, 125.1, 122.5, 99.5, 56.5, 25.5, 18.9.; MS (m/z): 354 (M+, 100); Anal.
Calcd for C21H18N6 (354.41): C, 71.17; H, 5.12; N, 23.71%. Found: C, 71.14; H, 5.18; N,
23.74%.

6-Methyl-1-phenyl-4-(2-(1-phenylethylidene)hydrazinyl)-1H-pyrazolo[3,4-d]pyrimidine (5i)

White solid; yield 90%; m.p. 245–247 ◦C; IR (KBr) υ (cm−1): 3140 (NH), 3058, 2900
(CH), 1610 (C=N); 1H NMR (DMSO-d6) δ ppm: 11.52 (s, 1H, -NH), 8.52 (d, 2H, J = 7.3 Hz,
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phenyl-H2, H6), 8.15 (s, 1H-pyrazol), 8.14 (d, 2H, J = 7.3 Hz, phenyl-C=N,H2, H6), 7.92–7.90
(m, 3H, phenyl-H3, H4, H5), 7.55–7.51 (m, 3H, phenyl-C=N, H3, H4, H5), 2.60 (s, 3H,
CH3-C=N-), 2.50 (s, 3H, pyrimidine- CH3); 13C-NMR (DMSO, d6): 160.06, 155.46, 153.52,01,
138.53, 137.95, 136.72, 133.65, 130.35, 129.69, 128.58, 126.95, 121.89, 113.38, 99.41, 12.27, 15.19;
MS (m/z): 342 (M+, 13.09); Anal. Calcd for C20H18N6 (342.40): C, 70.16; H, 5.30; N, 24.54.
Found: C, 69.83; H, 5.32; N, 24.58%, purity by HPLC = 98.20%.

4-(1-(2-(6-Methyl-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-yl)hydrazineylidene)ethyl)aniline
(5j)

White solid; yield 86%; m.p. 221–223 ◦C; IR (KBr) υ (cm−1): 3336, 3249 (NH2), 3197
(NH), 3073, 2931 (CH), 1615 (C=N); 1H NMR (DMSO-d6) δ ppm: 10.13 (s, 1H, -NH, H4),
8.67 (d, 2H, J = 7.3 Hz, phenyl-H2, H6), 8.17 (s, 1H-pyrazol), 8.15 (d, 2H, J = 7.3 Hz, phenyl-
C=N,H2, H6), 7.86-7.84 (m, 3H, -H3, H4, H5), 7.73–7.70 (m, 2H, phenyl-C=N, H3, H5),
3.36 (brs, 2H, -NH2), 2.95 (s, 3H, CH3-C=N-), 2.51 (s, 3H, pyrimidine- CH3); 13C-NMR
(DMSO, d6): 167.9, 166.2, 164.13, 150.7, 149.87, 148.00, 140.22, 138.74, 133.49, 129.81, 127.76,
122.35,102.83, 20.81, 17.00 14.73; MS (m/z): 357 (M+, 13.09); Anal. Calcd for C20H19N7
(357.41): C, 67.21; H, 5.36; N, 27.43%. Found: C, 67.45; H, 5.38; N, 27.48%.

4-(2-(1-(4-Methoxyphenyl)ethylidene)hydrazinyl)-6-methyl-1-phenyl-1H-pyrazolo[3,4-
d]pyrimidine (5k)

Yellowish solid; yield 85%; m.p. 235–237 ◦C; IR (KBr) υ (cm−1): 3190 (NH), 3085, 2965
(CH), 1580 (C=N); 1H NMR (DMSO-d6) δ ppm: 10.12 (s, 1H, pyrimidine-NH, H4), 8.59 (d,
2H, J = 7.3 Hz, phenyl-H2, H6), 8.26 (s, 1H-pyrazol), 8.22 (d, 2H, J = 7.3 Hz, phenyl-C=N,H2,
H6), 8.05–7.80 (m, 3H, phenyl-H3, H4, H5), 7.78 (d, 2H, J = 7.3 Hz, phenylC=N-, H3, H5),
3.84 (s, 3H, -OCH3), 2.95 (s, 3H, CH3-C=N-), 2.51 (s, 3H, pyrimidine-CH3). 13C-NMR
(DMSO, d6): 167.9, 166.2, 155.59, 153.99, 151.89, 149.63, 141.78, 138.50, 135.09, 133.67, 129.72,
128.83, 125.20, 121.03, 105.67, 24.78, 17.47; MS (m/z): 372 (M+, 22.7); Anal. Calcd for
C21H20N6O (372.42): C, 67.73; H, 5.41; N, 22.57%. Found: C, 67.79; H, 5.43; N, 22.62%.

4-(2-(1-(2-Bromo-4-chlorophenyl)ethylidene)hydrazineyl)-6-methyl-1-phenyl-1H-pyrazolo[3,4-
d] pyrimidine (5l)

Orange crystals; yield 75%; m.p. 257–259 ◦C; IR (KBr) υ (cm−1): 3123 (NH), 3080, 2924
(CH), 1535 (C=N); 1H NMR (DMSO-d6) δ ppm: 10.12 (s, 1H, pyrimidine-NH, H4), 8.59 (d,
2H, J = 7.3 Hz, phenyl-H2, H6), 8.26 (s, 1H-pyrazol), 8.22 (d, 2H, J = 7.3 Hz, -C=N,H2, H6),
7.80–8.05 (m, 2H, phenyl-H4, H5), 7.78 (d, 2H, J = 7.3 Hz, phenyl-C=N-, H3, H5), 2.95 (s,
3H, CH3-C=N-), 2.51 (s, 3H, -CH3); 13C-NMR (DMSO, d6): 158.14, 153.98, 151.88, 148.93,
137.50, 134.09, 132.67, 129.72, 127.81, 127.04, 124.67, 124.07, 122.44, 121.03, 115.77, 106.66,
17.78; MS (m/z): 418 (M+, 37.01); Anal. Calcd for C20H16BrClN6 (455.74): C, 52.71; H, 3.54;
N, 18.44%. Found: C, 52.97; H, 3.58; N, 18.52%.

General Procedure for the Synthesis of Pyrazolopyrimidine Derivatives (6a–d)

A mixture of hydrazinyl derivative (3) (0.01 mol) and carboxylic acid derivatives,
namely, triethyl orthoformate, trifluoroacetic acid, and trichloroacetic acid or acetyl ace-
tone/glacial acetic acid (0.01 mol/20 mL), was refluxed for 3–5 h. The reaction mixture
was allowed to cool, leading to separation of the product, and then the crude product was
filtered, dried, and crystallized from 1,4-dioxane to give 6a–c. The physical and spectral
data of compounds 6a–d were as follows:

5-Methyl-7-phenyl-7H-pyrazolo[4,3-e][1,2,4]triazolo[4,3-c]pyrimidine (6a)

White solid; yield 74%; m.p. 250–252 ◦C; IR (KBr) υ (cm−1): 3040, 2967 (CH), 1595
(C=C), 1648 (C=N); 1H -NMR (DMSO-d6) δ ppm: 8.80 (s, 1H, Triazol-H2), 8.74 (d, 2H,
J = 7.90 Hz, phenyl-H2, H6), 8.19 (s,1H, -pyrazol), 7.65–7.61 (m, 3H, phenyl-H3, H4, H5),
2.51 (s, 3H, pyrimedine-CH3); 13C-NMR (DMSO-d6) δ ppm: 159.20, 144.81, 139.09, 138.74,
134.03, 131.93, 128.13, 123.7, 120.75, 117.71, 42.77; MS (m/z): 250.27 (C13H10N6, 78.57%,
M+); Anal. Calc. for: (C13H10N6),C, 62.39; H, 4.03; N, 33.05%; Found: C, 62.15; H, 4.05; N,
33.69%.
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5-Methyl-7-phenyl-3-(trifluoromethyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[4,3-c]pyrimidine (6b)

White crystals; yield 69%; m.p. 267–269 ◦C; IR (KBr) υ (cm−1): 3027, 2933 (CH), 1596
(C=C), 1662 (C=N); 1H-NMR (DMSO-d6) δ ppm: 8.61 (d, 2H, J = 7.90 Hz, phenyl-H2, H6),
8.13 (s,1H,H-pyrazol), 7.41–7.61 (m, 3H, phenyl-H3, H4, H5), 2.54 (s, 3H, pyrimedine-CH3);
13C-NMR (DMSO-d6) δ ppm: 159.31, 144.81, 139.09, 138.74, 134.03, 131.93, 128.13, 123.96,
120.75, 120.39, 117.71, 42.77; MS (m/z): 318.26 (78.57%, M+); Anal. Calc. for: (C14H9F3N6):
C, 52.83; H, 2.85; N, 26.41%. Found: C, 53.03; H, 2.87; N, 26.32%.

5-Methyl-7-phenyl-3-(trichloromethyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[4,3-c]pyrimidine (6c)

Yellow solid; yield 74%; m.p. 250–252 ◦C; IR (KBr) υ (cm−1): 3015, 2908 (CH), 1597
(C=C), 1685 (C=N); 1H-NMR (DMSO-d6) δ ppm: 8.67 (d, 2H, J = 7.90 Hz, phenyl-H2,
H6), 8.16 (s,1H, -pyrazol), 7.65-7.61 (m, 3H, phenyl-H3, H4, H5), 2.51 (s, 3H, pyrimedine-
CH3); 13C-NMR (DMSO-d6) δ ppm: 159.31, 144.81, 139.09, 138.74, 134.03, 131.93, 128.13,
123.96, 123.7, 120.75, 120.39, 117.71, 42.77; MS (m/z): 367.62 (78.57%, M+); Anal. Calc. for:
(C14H9Cl3N6): C, 45.74; H, 2.47; N, 22.86%; Found: C, 45.89; H, 2.46; N, 22.95%.

4-((6-Methyl-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-yl)imino)pentan-2-one (6d)

White solid; yield 69%; m.p. 240–242 ◦C; IR (KBr, ν, cm-1): 3065 (CH- aromatic),
2982 (CH-aliphatic), 1655 (C=N), 1560 (C=C). 1H-NMR (DMSO-d6): δ ppm: 8.98 (d, 2H,
J = 7.90 Hz, phenyl-H2, H6), 8.49 (s,1H, -pyrazol), 7.58-7.54 (m, 3H, phenyl-H3, H4, H5),
6.10 (m, 3H), 4.15 (s, 2H, NH-CH2-), 2.51 (s, 3H, pyrimedine-CH3), 2.43 (s, 3H-pyrazol-
(CH3)), 13C-NMR (DMSO,): 156.59, 154.90, 152.82,150.66,140.96,138.50, 135.57,133.09, 129.79,
128.13, 127.41, 126.11, 124.07, 109.78, 13.24. MS (m/z): 307.15 (18.4%,M+); Anal. Calcd. for
C17H17N5O (307.15): C, 67.09; H, 5.30; N, 27.61%. Found: C, 67.12; H, 5.28; N, 26.63%.

General Procedure for the Synthesis of Pyrrole-2,5-Dione Derivatives (7,8)

To a solution of hydrazinyl derivative (3, 0.01 mol) in glacial acetic acid (20 mL),
dihydrofuran-2,5-dione, furan-2,5-dione, and indoline-2,3-dione (0.01 mol) were added.
The reaction was refluxed at optimum temperature for 16 h. After completion of the
reaction mixture (as indicated by TLC), the mixture was concentrated in vacuo and allowed
to cool down. The formed solid was filtered and crystallized from ethanol to produce target
compounds 7–9. The physical and spectral data of compounds 7–9 were as follows:

1-((6-Methyl-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-yl)amino)pyrrolidine-2,5-dione (7)

Blue solid; yield 72%; m.p. 280–282 ◦C; IR (KBr) υ (cm−1): 3450 (NH), 3073, 2965 (CH),
1662 (2 C=O); 1H-NMR (DMSO-d6): δ ppm: 9.80 (s, 1H, NH, exchanged with D2O), 8.26 (d,
2H, J = 7.90 Hz, phenyl-H2, H6), 8.18 (s, 1H, -pyrazol), 7.58–7.54 (m, 3H, phenyl-H3, H4,
H5), 2.64 (t, 4H, J = 7.90 Hz, pyrolodin-H3, H4), 2.51 (s, 3H, pyrimedine-CH3); 13C NMR
(DMSO,): 171.00, 168.4, 164.5, 148.00, 139.7, 134.4, 129.3, 126.2, 119.9, 103.03, 30.00, 24.5;
MS (m/z): 322.33 (39.48%,M+); Anal. Calcd. For C16H14N6O2 (322.33): C, 59.62; H, 4.38; N,
26.07%. Found: C, 59.89; H, 4.40; N, 26.12%.

1-((6-Methyl-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-yl)amino)-1H-pyrrole-2,5-dione (8)

White solid; yield 76%; m.p. 289–290 ◦C; IR (KBr) υ (cm−1): 3449 (NH), 3073, 2945
(CH), 1662 (2 C=O); 1H NMR (DMSO-d6): δ ppm: 9.80 (s, 1H, NH, exchanged with D2O),
8.26 (d, 2H, J = 7.90 Hz, phenyl-H2, H6), 8.18 (s, 1H, -pyrazol), 7.82 (d, 2H, J = 7.92 Hz,
pyrole-H3, H4), 7.56–7.58 (m, 3H, phenyl-H3, H4, H5), 2.50 (s, 3H, pyrimedine-CH3). 13C-
NMR (DMSO): 171.00, 168.4, 164.5, 148.00, 139.7, 134.4, 129.3, 126.2, 119.9, 103.03, 30.00,
24.5. MS (m/z): 320.31 (31.96%,M+); Anal. Calcd. for C16H12N6O2 (320.35): C, 60.00; H,
3.78; N, 26.24%. Found: C, 60.14; H, 3.76; N, 26.28%.

General Procedure for the Synthesis of N-alkyl/aryl-2-(6-methyl-1-phenyl-1H-pyrazolo[3,4-
d]pyrimidin-4-yl)hydrazinecarbothioamides (9a–e)

To a solution of hydrazinyl derivative (3) (0.01 mol) in butanol (20 mL), appropriate
isothiocyanates (0.01 mol), namely, ethyl isothiocyanate, propyl isothiocyanate, butyl
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isocyanate, vinyl isothiocyanate, and phenyl isothiocyanate (0.01 mol), were added drop
wise at 0 ◦C. The mixture was stirred for 7–10 h at room temperature. Then, the solvent was
evaporated under vacuo. The crude product was crystallized from ethanol to afford the
corresponding compounds 9a–e, respectively. The physical and spectral data of compounds
9a–e were as follows:

N-Ethyl-2-(6-methyl-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-yl)hydrazinecarbothioamide
(9a)

Yellowish-white solid; yield 72%; m.p. 278–280 ◦C; IR (KBr) υ (cm−1): 3292 (NH),
3079, 2972 (CH), 1520 (C=C), 1655 (N=C); 1H-NMR (DMSO-d6): δ ppm: 10.09 (s, 1H, NH-
NH-C=S), 9.15 (s, 1H, NH-NH-C=S), 8.26 (d, 2H, J = 7.90 Hz, phenyl-H2, H6), 8.19 (s, 1H,
-pyrazol), 7.59–7.58 (m, 3H, phenyl-H3, H4, H5), 7.30 (s, 1H, C=S-NH-CH2), 4.16 (q, 2H,
J = 7.2 Hz, -CH2CH3), 2.38 (s, 3H, pyrimidine-CH3), 1.20 (t, 3H, J = 7.2, -CH2CH3); 13C
NMR (DMSO,): 182.52, 168.4, 164.5, 148.00, 139.16, 134.50, 129.66, 126.78, 121.37,103.3, 40.45,
26.25, 14.84. MS (m/z): 327.41 (13.99%, M+), 89.33 (100%); Anal. Calcd. for C15H17N7S
(327.41): C, 55.03; H, 5.23; N, 29.59%. Found: C, 55.24; H, 5.21; N, 29.83%.

2-(6-Methyl-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-yl)-N-propylhydrazinecarbothioamide
(9b)

White solid; yield 74%; m.p. 280–282 ◦C; IR (KBr) υ (cm−1): 3260 (NH), 3067, 2904
(CH), 1527 (C=C), 1658 (N=C); 1H-NMR (DMSO-d6): δ ppm; 9.98 (s, 1H, NH-NH-C=S),
9.84 (s, 1H, NH-NH-C=S), 8.21 (d, 2H, J = 7.90 Hz, phenyl-H2, H6), 8.19 (s,1H, -pyrazol),
7.58-7.54 (m, 3H, phenyl-H3, H4, H5), 7.37 (s, 1H, C=S-NH-CH2), 3.33 (t, 2H, J = 7.2 Hz,
NH-CH2-), 2.58 (m, 2H, J = 7.2 Hz, NH-CH2-CH3), 2.38 (s, 3H, pyrimidine-CH3), 1.04 (t,
3H, J = 6.9, -CH2CH3); 13C-NMR (DMSO,): 184.20, 168.40, 164.50, 148.00, 139.70, 134.30,
129.30, 126.20, 119.9, 103.30, 46.40, 24.50, 23.30, 11.80; MS (m/z): 341.44 (15.14%, M+); Anal.
Calcd. For C16H19N7S (341.44): C, 56.28; H, 5.61; N, 28.72%. Found: C, 56.50; H, 5.63; N,
28.75%.

N-Butyl-2-(6-methyl-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-yl)hydrazinecarbothioamide
(9c)

Grayish crystals; yield 75%; m.p. 270–272 ◦C; IR (KBr) υ (cm−1): 3320 (NH), 3080, 2970
(CH), 1527 (C=C), 1658 (N=C); 1H-NMR (DMSO-d6): δ ppm: 10.09 (s, 1H, NH-NH-C=S),
9.25 (s, 1H, NH-NH-C=S), 8.36 (d, 2H, J = 7.90 Hz, phenyl-H2, H6), 8.28 (s, 1H, -pyrazol),
7.60-7.58 (m, 3H, phenyl-H3, H4, H5), 7.32 (s, 1H, C=S-NH-CH2), 4.13 (t, 2H, J = 7.2 Hz,
NH-CH2CH2), 2.51 (s, 3H, pyrimidine-CH3), 1.30 (m, 2H, NH-CH2CH2),1.17 (q, 2H, CH2-
CH2-CH2CH3), 0.89 (t, 3H, J = 7.2 Hz, -CH2CH2-CH2CH3); 13C-NMR (DMSO,)): 184.20,
168.40, 164.50, 148.00, 139.70, 134.30, 129.30, 126.20, 119.9, 103.30, 46.40, 32.40, 24.50, 20.30,
20,40; MS (m/z): 341.44 (15.14%, M+), Anal. Calcd. for C17H21N7S (355.46): C, 57.44; H,
5.96; N, 27.58%. Found: C, 57.70; H, 5.98; N, 27.60%.

2-(6-Methyl-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-yl)-N-vinylhydrazine-1-carbothioamide
(9d)

White solid; yield 70%; m.p. 268–270 ◦C; IR (KBr) υ (cm−1): 3356 (NH), 3081, 2908
(CH), 1570 (C=C), 1620 (C=N); 1H-NMR (DMSO-d6): δ ppm: 10.20 (s, 1H, NH-NH-C=S-
NH), 8.30 (d, 2H, J = 7.90 Hz, phenyl-H2, H6), 8.17 (s, 1H, -pyrazol), 8.10 (d, 1H, J = 7.90 Hz,
NH-NH-C=S), 7.82 (t, 1H, J = 7.90 Hz, S=C-NH-CH2-), 7.58–7.56 (m, 3H, phenyl-H3, H4,
H5), 6.80 (m, 1H, J = 7.30, NH-CH2-CH=CH2), 6.10 (t, 1H, J = 7.2, C=S-NH-CH2=CH),
5.85 (d, 1H, J = 7.2 Hz, C=S-NHCH2-CH=CH), 2.48 (s, 3H, pyrimidine-CH3). 13C-NMR
(DMSO): 184.22, 168.42, 164.52, 148.00, 141.00, 139.76, 134.32, 129.30, 126.22, 119, 93.3, 46.40,
24.50, 20.30.

2-(6-Methyl-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-yl)-N-phenylhydrazinecarbothioamide
(9e)

Brown solid; yield 66%; m.p. 281–282 ◦C; IR (KBr) υ (cm−1): 3265 (NH), 3026 (aromatic-
CH), 2924 (aliphatic-CH), 1510 (C=C), 1530 (C=N); 1H-NMR (DMSO-d6): δ ppm: 10.13 (s,
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1H, S=C-NH), 9.81 (s, 1H, -NH-S=C-NH), 9.13 (s, 1H, NH-NH-S=C), 8.98 (d, 2H, J = 7.90 Hz,
phenyl-H2, H6), 8.49 (s, 1H, -pyrazol), 7.70 (d, 2H, J = 7.90 Hz,-NH-phenyl-H2, H6),
7.58–7.54 (m, 3H, phenyl-H3, H4, H5), 7.49-7.36 (m, 3H, NH-phenyl-H3, H4, H5), 2.51 (s,
3H, pyrimedine-CH3). 13C-NMR (DMSO): 161.22, 156.03, 139.95, 139.30, 134.98, 129.61,
129.68, 129.12, 126.67, 122.67, 121.40, 98.97,40.55, 40.35, 39.93, 39.51, 26.33. MS (m/z): 375.45
(M+, 13.70%), Anal. Calcd.for C19H17N7S (375.45): C, 60.78; H, 4.56; N, 26.11%; Found: C,
61.05; H, 4.73;N, 26.16%, purity by HPLC = 98.84%.

4.2. Biological Evaluation
4.2.1. Cytotoxicity Evaluation Using Viability Assay

The cytotoxic activity was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl
tetrazolium bromide (MTT) colorimetric assay, as reported previously [62,63]. Doxorubicin
was used as a reference standard, and DMSO was used as a negative control. Briefly, the
designated cell lines were cultured at a concentration of 5 × 104 cell/well in 96-well plates.
The cells were incubated for 24 h under optimum conditions. Following this, the designated
molecules were introduced (in serial dilutions from 0 to 50 µg/mL), and the cells were
incubated for an additional 24 h. Following this, the media were withdrawn, and 100 µL of
fresh medium was added. Then, 10 µL of the 12 mM MTT stock solution was administered
to each well. The plates were then incubated for 4 h. Then, the cells were exposed to
different compounds at the desired concentrations (0.01, 0.1, 1, 10, and 100 µM) or to 1%
dimethyl sulfoxide (DMSO) for 48 and 72 h. An 85-µL aliquot of the media was removed
from the wells, and 50 µL of DMSO was added to each well and mixed thoroughly with
the pipette and incubated at 37 ◦C for 10 min. Then, the optical density was measured at
590 nm with the microplate reader (Sunrise, TECAN, Inc., Morrisville, NC, USA).

4.2.2. In Vitro Enzyme Inhibitory Assays (against EGFRwt, EGFRT790M, VEGFR-2, and Topo II)

Enzyme inhibitory assays for the designated compounds 5b, 5i, and 9e were carried
out in triplicate, as described earlier [64]. The assays were conducted in Vacsera (Giza,
Egypt). Curve fitting was performed using GraphPad Prism. Data are represented as
means ± SD from three independent experiments.

4.2.3. Quantification of Apoptosis by Flow Cytometry

Annexin V-FITC apoptosis assay was conducted utilizing the Annexin V-FITC/PI
double staining detection kit (BD Pharmingen, San Diego, CA, USA), as described else-
where [65,66].

4.2.4. Cell Cycle Analysis

Cell cycle arrest and distribution was evaluated using the Propidium Iodide Flow
Cytometry Kit followed by flow cytometry analysis, as described previously [67].

4.3. Molecular Docking

The crystal structures of EGFR (PDB ID: 1M17) and VGFR-2 (PDB ID: 3EWH) were
extracted from Protein Data Bank (http://www.pdb.org (accessed on 25 September 2023)).
The AutoDock 3.0 [68] and the MOE software 2008 [69] were used to perform all calculations
on compound 5i. The protocol in detailed [34] was adopted.
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