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Abstract: Zingiberales includes eight families and more than 2600 species, with many species having
important economic and ecological value. However, the backbone phylogenetic relationships of
Zingiberales still remain controversial, as demonstrated in previous studies, and molecular dating
based on chloroplast genomes has not been comprehensively studied for the whole order. Herein,
22 complete chloroplast genomes from 21 species in Zingiberales were sequenced, assembled, and an-
alyzed. These 22 genomes displayed typical quadripartite structures, which ranged from 161,303 bp
to 163,979 bp in length and contained 111-112 different genes. The genome structures, gene con-
tents, simple sequence repeats, long repeats, and codon usage were highly conserved, with slight
differences among these genomes. Further comparative analysis of the 111 complete chloroplast
genomes of Zingiberales, including 22 newly sequenced ones and the remaining ones from the na-
tional center for biotechnology information (NCBI) database, identified three highly divergent regions
comprising ccsA, psaC, and psaC-ndhE. Maximum likelihood and Bayesian inference phylogenetic
analyses based on chloroplast genome sequences found identical topological structures and identified
a strongly supported backbone of phylogenetic relationships. Cannaceae was sister to Marantaceae,
forming a clade that was collectively sister to the clade of (Costaceae, Zingiberaceae) with strong
support (bootstrap (BS) = 100%, and posterior probability (PP) = 0.99-1.0); Heliconiaceae was sister
to the clade of (Lowiaceae, Strelitziaceae), then collectively sister to Musaceae with strong support
(BS =94-100%, and PP = 0.93-1.0); the clade of ((Cannaceae, Marantaceae), (Costaceae, Zingiber-
aceae)) was sister to the clade of (Musaceae, (Heliconiaceae, (Lowiaceae, Strelitziaceae))) with robust
support (BS = 100%, and PP = 1.0). The results of divergence time estimation of Zingiberales indi-
cated that the crown node of Zingiberales occurred approximately 85.0 Mya (95% highest posterior
density (HPD) = 81.6-89.3 million years ago (Mya)), with major family-level lineages becoming from
46.8 to 80.5 Mya. These findings proved that chloroplast genomes could contribute to the study
of phylogenetic relationships and molecular dating in Zingiberales, as well as provide potential
molecular markers for further taxonomic and phylogenetic studies of Zingiberales.

Keywords: Zingiberales; chloroplast genome; comparative genomics; phylogenetic relationships;
divergence time

1. Introduction

Zingiberales consists of eight families, approximately 110 genera, and more than
2600 species [1-6]. The eight families in the order are Musaceae, Strelitziaceae, Lowiaceae,
Heliconiaceae, Zingiberaceae, Costaceae, Cannaceae, and Marantaceae. The first four
families are also called “banana families”, and the last four families are known as “ginger
families”. The abundance of the species between these families is imbalanced, with rela-
tively few species found within the Lowiaceae family. The order is morphologically highly
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diverse and widely distributed in the tropics [7,8]. Many species of the Zingiberales have im-
portant economic value as foods, medicines, spices, and ornamentals. Examples include the
edible bananas (Musa balbisiana Colla and Musa acuminata Colla), gingers (Zingiber officinale
Rosc.), traditional Southern medicines (Alpinia oxyphylla Miq. and Amomum villosum Lour.),
turmeric powder (Curcuma longa L.), and ginger lily (Hedychium coronarium J. Konig) [9-15].
Some other species with important ecological value exist as well, such as the Neotropical
splRal gingers (Costus L.) [16,17].

A strong and well-resolved phylogeny provides a critical underpinning, not only for
systematic studies, but also for investigations of its molecular evolution and comparative
genetics [18]. Over the past three decades, growing evidence based on both morphologi-
cal and/or molecular data has consistently identified well-resolved relationships among
four ginger families [1-17,19-22]. The relationships among the other four banana families
have been resolved in many different ways, but never strongly supported [1-8,14,20-22].
For example, the placement of Musaceae [1,2,4,8], and in some cases Heliconiaceae [3]
or Lowiaceae [23], has to date been controversial. According to one opinion, these three
families have previously been placed as sisters to all other families in the Zingiberales;
however, their placement has not been strongly and consistently supported in any previous
studies [1-4,8,23]. According to another opinion, based on other previous studies [5,6,20],
Musaceae was sister to the clade containing Heliconiaceae, which was in turn sister to Stre-
litziaceae and Lowiaceae with weak-to-strong support (bootstrap, BS = 69-100%, and poste-
rior probabilities, PP = 0.6-1.0). Meanwhile, the phylogenetic relationships among genera
and within the genera of Zingiberales (such as Cornukaempferia, Hedychium, and Kaempferia)
using different molecular markers, including few chloroplast DNA fragments and nuclear
internal transcribed spacer (ITS) sequences, are also poorly defined [21,24,25]. Recently, com-
plete chloroplast genomes have been successfully used to resolve phylogenetic relationships
in some genera of the Zingiberales, such as Zingiber [11], Amomum [10], Alpinia [13], and
Curcuma [14]. Unfortunately, there have been no reports on complete chloroplast genomes
of Cornukaempferia. The phylogenetic relationships among Cornukaempferia, Hedychium, and
Kaempferia species in Zingiberales using complete chloroplast genomes are still unknown
at present. Therefore, resolving the phylogenetic relationships in these three genera using
complete chloroplast genomes is an urgent requirement.

In addition to studying phylogenetic relationships in Zingiberales, researchers have
also explored the divergence time of Zingiberales, but most studies have been based on
gene fragments. Kress and Specht (2006) [7] constructed the phylogenetic divergence
time of Zingiberales based on three genes (atpB, rbcL, and 18S) from 36 taxa (including
24 species and 12 outgroups) and five calibration points, indicating that Zingiberales
emerged approximately 124 million years ago (Mya), with major family-level lineages
becoming established approximately 80-110 Mya. Specht (2006) [22] used chloroplast
trnL-F and trnK sequence data for 37 taxa and one outgroup, and estimated the divergence
time of Costaceae. The results showed that the initial diversification within Costaceae
occurred approximately 65 Mya [22]. Givnish et al. (2018) [6] used draft chloroplast
genomes generated for 52 species and estimated the divergence time of Zingiberales using
five genes (atpB, psaA, psbD, rbcL, and rps4). The results indicated that the stem and crown
nodes of Zingiberales took place 114 Mya and 83 Mya, respectively [6]. More recently,
Fu et al. (2022) [9] used five genes (ccsA, matK, ndhF, rpoC1, and rpoC2) from 61 chloroplast
genomes of Zingiberales and one outgroup to estimate the divergence time, showing
that the stem and crown nodes of Zingiberales occurred at 98.57 Mya and 87.59 Mya,
respectively [9]. Additionally, Ashokan et al. (2022) [26] used three chloroplast markers
(trnK/matK, trnL, and rps16) plus one nuclear (ITS), three fossil calibration constraints, and
one secondary calibration to estimate the divergence time of Hedychium. The result revealed
that Hedychium occurred 10.6 Mya [26]. Most of these studies based on gene fragments
generated relatively weakly supported relationships; therefore, more evidence is crucial to
further exploring the divergence time and to reconstruct the phylogenetic relationships of
Zingiberales.
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In this study, we sequenced 22 complete chloroplast genomes of 21 species, includ-
ing 5 genera (Cornukaempferia, Hedychium, Kaempferia, Calathea and Stromanthe) from two
families Zingiberaceae and Marantaceae, and explored the chloroplast genomes structural
features and sequences differentiation among these species. Furthermore, we combined
them with published chloroplast genomes from the NCBI database, representing eight
families of Zingiberales and four outgroups, for reconstructing phylogenetic relationships
and estimating the divergence time of Zingiberales. The main aims of this study were
to: (1) analyze the structures and features of the newly sequenced complete chloroplast
genomes, (2) identify highly variable regions in complete chloroplast genomes as poten-
tial DNA markers for future species identification in Zingiberales, (3) infer the molecular
evolution of complete chloroplast genomes in Zingiberales, (4) reconstruct the phyloge-
netic relationships of Zingiberales by chloroplast genomes, especially determining the
phylogenetic positions of Cornukaempferia, Hedychium, and Kaempferia, and (5) estimate the
divergence time of Zingiberales by chloroplast genomes.

2. Results
2.1. Characteristics of 22 Complete Chloroplast Genomes in Zingiberales

The 22 newly sequenced samples of Zingiberales generated approximately 222.60
Gb of paired-end clean data, ranging from 5.84 to 13.26 Gb clean data for each sample
after removing adapters and low-quality data (Table S1). All 22 sequenced chloroplast
genomes displayed a typical quadripartite structure containing one large single-copy
(LSC), one small single-copy (SSC) and two inverted repeat regions (IRa and IRb) by
OGDRAW [27] and CGView tool [28] (Figure 1 and Table 1). The 22 complete chloroplast
genomes generated here were deposited in GenBank with accession numbers OP805573 to
OP805594 (Table 1). Their size ranged from 161,303 bp (Stromanthe sanguinea) to 163,979 bp
(Hedychium menghaiense) (Tables 1 and S2). They showed four junction regions, including a
separate LSC region of 87,056-91,910 bp, an SSC region of 15,640-20,848 bp, and a pair of IRs
(IRa and IRb) of 27,074-29,788 bp each (Figure 1, Tables 1 and S2). The GC content of these
22 complete chloroplast genomes was very similar (36.08-36.67%) (Table 1). Specifically,
the GC content in the IR regions (41.14-42.16%) was higher than that in the LSC regions
(33.84-34.44%) and SSC regions (29.49-30.35%) (Table 1). The GC content of protein-coding
genes of these 22 complete chloroplast genomes ranged from 36.91% to 37.60% (Table 1).

In this study, each sequenced chloroplast genome contained 131-134 predicted func-
tional genes, which consisted of 87-88 protein-coding genes, 36-38 tRNA genes, and
8 rRNA genes (Tables 1 and 52). Among these genes, a total of 111-112 different genes were
detected in these 22 chloroplast genomes, including 79 protein-coding genes, 28-29 tRNA
genes and 4 rRNA genes (Tables 1 and S2). Although most of the protein-coding genes
tRNAs and rRNAs among these 22 chloroplast genomes were similar, slight differences
existed, for examples, rpl22 had two copies only in the chloroplast genome of Calathea makoy-
ana. In addition, trnH-GUG had only one copy in the chloroplast genome of Hedychium
brevicaule in which trnR-UCU was missing (Tables 2 and S2).

In total, 18 genes contained introns in each sequenced chloroplast genome (Table 2).
Sixteen genes (rpoC1, rpl2, rpll6, rps12, rps16, petB, petD, atpF, ndhA, ndhB, trnA-UGC,
trnG-UCC, trnl-GAU, trnK-UUU, trnL-UAA, and trnV-UAC) contained one intron, while
clpP and ycf3 each contained two introns (Tables 2 and S2). Among the 18 intron-containing
genes in these 22 chloroplast genomes, four genes (ndhB, rpl2, trnA-UGC and trnl-GAU)
occurred in both IRs, 12 genes (atpF, clpP, petB, petD, rpl16, rpoC1, rps16, trnG-UCC, trnL-
UAA, trnK-UUU, trnV-UAC and ycf3) were distributed in the LSC, one gene (ndhA) was in
the SSC, and one gene’s (rps12) first exon was located in the LSC with the other two exons
in both IRs (Figure 1 and Table S2).
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Figure 1. Complete chloroplast genome map of H. bijiangense (GenBank OP805589; the outermost
three rings) and CGView comparison of 22 complete chloroplast genomes in Zingiberales (the inter
rings with different colors). Genes belonging to different functional groups are shown in differ-
ent colors in the outermost first ring. Genes shown on the outside of the outermost first ring are
transcribed counter-clockwise and on the inside clockwise. Gray arrowheads indicate the direction
of the genes. The tRNA genes are indicated by a one-letter code of amino acids with anticodons.
The outermost second ring with darker gray corresponds to GC content, whereas the outermost
third ring with lighter gray corresponds to AT content of H. bijiangense chloroplast genome. The
innermost first black ring indicates the chloroplast genome size of H. bijiangense. The innermost
second and third rings indicate GC content and GC skew deviations in the chloroplast genome of
H. bijiangense, respectively: GC skew + indicates G > C, and GC skew — indicates G < C. From the
innermost fourth color ring to the outwards 25th ring in turn: H. bijiangense OP805589, H. brevicaule
OP805581, H. chrysoleucum OP805577, H. coccineum ‘Red” OP805574, H. flavescens Guangxi OP805591,
H. flavescens Yunnan OP805575, H. flavum OP805588, H. kwangsiense OP805586, H. menghaiense
OP805587, H. puerense OP805578, H. sp.1 LDM232 OP805583, H. sp.2 LDM222 OP805582, H. tienlinense
OP805590, H. villosum var. albifihamentum OP805580, H. villosum Guangxi OP805584, H. villosum var.
tenuiflorum OP805576, H. viridibracteatum OP805579, H. yunnanense OP805585, C. makoyana OP805573,
C. aurantiflora OP805593, K. parviflora OP805592, S. sanguinea OP805594; chloroplast genome similar
and highly divergent locations are represented by continuous and interrupted track lines, respectively.
LSC, large single-copy region; SSC, small single-copy region; and IR, inverted repeat.



Int. J. Mol. Sci. 2023, 24, 15031 5 of 25
Table 1. Basic characteristics of the newly sequenced 22 complete chloroplast genomes of Zingiberales in this study.
GenBank ) GC Content (%) Number of ~ Number ~ Number  Number
Species Name Accession Size LSC SSC IR Genes of CDS of tRNA of rRNA
Number (bp) (bp) (bp) (bp) Total LSC SSC IR CDS  (Different)  (Different) (Different) (Different)

Hedychium bijiangense OP805589 163,883 88541 15786 29,778 3608 3384 2956 4114 3693  133(112) 87 (79) 38 (29) 8(4)
Hedychium brevicaule OP805581 163,438 88,016 15862 29,780 3609  33.86 2952 4114 3691  131(111) 87 (79) 36 (28) 8(4)
Hedychium chrysoleucum ~ OP805577 163,977 88,603 15816 29779 3608 3384 2953 4115 3693  133(112) 87 (79) 38 (29) 8(4)
Hedychium coccineum ‘Red’  OP805574 163,850 88,487 15805 29,779 3610  33.88 2954 4115 3693  133(112) 87 (79) 38 (29) 8(4)
gi‘iyrfg;'fm flavescens OP805591 163,909 88589 15762 29,779 3610 3385 2962 4115 3693  133(112) 87 (79) 38 (29) 8 (4)
gﬁgﬁ”mﬂ”’wsms OP805575 163,951 88591 15804 29,778 3609 3385 2957 4115 3693 133 (112) 87 (79) 38 (29) 8 (4)
Hedychium flavum OP805588 163,850 88573 15821 29,707 3608 3384 2952 4116 3693  133(112) 87 (79) 38 (29) 8(4)
Hedychium kwangsiense OP805586 163,423 88,002 15861 29,780 3609 3386 2952 4114 3691  133(112) 87 (79) 38 (29) 8(4)
Hedychium menghaiense OP805587 163,979 88,603 15818 29,779 3608  33.84 2953 4115 3693  133(112) 87 (79) 38 (29) 8(4)
Hedychium puerense OP805578 163,941 88561 15822 29779 3608 3384 2952 4114 3692  133(112) 87 (79) 38 (29) 8(4)
Hedychium sp.1 LDM232  OP805583 163,442 88,021 15861 29,780 3609 3386 2952 4114 3691 133 (112) 87 (79) 38 (29) 8(4)
Hedychium sp2 LDM222 ~ OP805582 163,319 87,916 15843 29,780 3611  33.88 2952 4114 3691  133(112) 87 (79) 38 (29) 8(4)
Hedychium tienlinense OP805590 163,868 88,488 15820 29,780 3609 3387 2953 4114 3693  133(112) 87 (79) 38 (29) 8(4)
Hedychium villosum var. OP805580 163,442 88,059 15807 29,788  36.11 3386 2957 4116 3692 133 (112) 87 (79) 38 (29) 8 (4)
albifihamentum

gfliyrfg;?m villosum OP805584 163,462 88,040 15846 29788 3610 3386 2949 4116 3692  133(112) 87 (79) 38 (29) 8(4)
gfiyyfzﬁ;’;fq villosumvar. — Gpgossze 163359 88,139 15678 29771 3612 3386 2971 4114 3711 133 (112) 87 (79) 38 (29) 8(4)
Hedychium viridibracteatum ~ OP805579 163,338 88,032 15746 29,780 3612 3389 2961 4115 3693  133(112) 87 (79) 38 (29) 8(4)
Hedychium yunnanense OP805585 163,420 88,071 15789 29,780 3611  33.87 2956 4115 3693  133(112) 87 (79) 38 (29) 8(4)
Calathea makoyana OP805573 166,906 91,910 20,848 27,074 3667 3493 3035 4205 3760  134(112) 88 (79) 38 (29) 8(4)
ES::}ZZ‘;Z’Z’”JI eria OP805593 163,305 88,197 15640 29734 3617 3392 2990 4115 3693 133 (112) 87 (79) 38 (29) 8 (4)
Kaempferia parviflora OP805592 163,075 87,769 15812 29747 3616 3397 2957 4114 3695  133(112) 87 (79) 38 (29) 8(4)
Stromanthe sanguinea OP805594 161,303 87,056 18937 27,655 3655 3444 2984 4216 3757  133(112) 87 (79) 38 (29) 8(4)

Note: CDS protein-coding genes, GC guanine—cytosine, LSC large single-copy region, SSC small single-copy region, and IR inverted repeat.
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Table 2. Gene contents in the newly sequenced 22 complete chloroplast genomes of Zingiberales in this study.

Category of Genes

Group of Genes

Name of Genes

Self-replication

DNA dependent RNA polymerase
Large subunit of ribosomal proteins
Small subunit of ribosomal proteins

rpoA, rpoB, rpoC1 *, rpoC2
rpl2 (x2) *, rpll4, rpll6 *, rpl20, rpl22 (x2) @, rpl23 (x2), rpl32, rpl33, rpl36
rps2, rps3, rpsd, rps7 (X2), rps8, rps1l, rps12 (x2) *, rps14, rps1b, rps16 *, rpsl8, rps19 (x2)

Ribosomal RNA rrn4.5 (x2), rrn5 (x2), rrnl6 (x2), rrn23 (x2)
trnA-UGC (x2) *, trnC-GCA, trnD-GUC, trnE-UUC, trnF-GAA,
RNA genes trnfM-CAU, trnG-GCC, trnG-UCC *, trnH-GUG (x2) @), trnl-GAU (x2) *, trnK-UUU *, trnL-CAA
Transfer RNA (x2), trnL-UAA *, trnL-UAG, trnM-CAU (x3), trnN-GUU (x2), trnP-UGG, trnQ-UUG, trnR-ACG
(x2), trnR-UCU (), trnS-GCU, trnS-GGA, trnS-UGA, trnT-GGU, trnT-UGU,
trnV-GAC (x2), trnV-UAC *, trnW-CCA, trnY-GUA
Subunits of photosystem I psaA, psaB, psaC, psal, psa]
Subunits of photosystem II psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbl, psb], psbK, psbL, psbM, psbN, psbT, psbZ, infA
Photosynthesis Subunits of cytochrome b/f complex petA, petB ¥, petD *, petG, petL, petN

related genes

Subunits of ATP synthase
Subunits of NADH dehydrogenase
Subunit of rubisco

atpA, atpB, atpE, atpF *, atpH, atpl
ndhA *, ndhB (x2) *, ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhl, ndh], ndhK
rbcL

Subunit of acetyl-coA-carboxylase accD
c-type cytochrome synthesis gene ccsA
Other genes Envelop membrane protein cemA
Protease clpP **
Maturase matK
Genes of

unknown function

Conserved open reading frames

yof1 (X2), yef2 (X2), yef3 ™, ycf4

Note: *: gene containing one intron; **: gene containing two introns; (x2): gene with two copies; (x3): gene with three copies; (D: rpl22 has two copies only in the chloroplast genome of
Calathea makoyana; 2): trnH-GUG has only one copy in the chloroplast genome of Hedychium brevicaule; 3): trnR-UCU is missing in the chloroplast genome of H. brevicaule.
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2.2. Repeat Sequences Analyses

In this study, four types of long repeats including forward repeats, palindromic re-
peats, reverse repeats, and complement repeats were identified in our newly assembled
22 chloroplast genomes (Figure 2A and Table S3). Among these 22 chloroplast genomes,
C. makoyana had the largest number of long repeats (384) and Kaempferia parviflora had the
smallest number of long repeats (51) (Figure 2A and Table S3). The number of forward re-
peats varied between 19 (Cornukaempferia aurantiflora) and 306 (C. makoyana), the number of
palindromic repeats varied from 23 (K. parviflora) to 70 (C. makoyana), the number of reverse
repeats varied between 3 (K. parviflora) and 21 (Hedychium villosum var. tenuiflorum), and the
number of complement repeats varied from 1 (C. makoyana and Hedychium yunnanense) to
9 (H. villosum var. tenuiflorum) (Figure 2A and Table S3). Long repeats with 30-34 bp were
found to be the most common in these 22 chloroplast genomes (Figure 2B and Table S3).
Long repeats with lengths of >45 bp and lengths of 35-39 bp were the second and third
most common, respectively (Table S3).
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Figure 2. Analysis of long repeats in the 22 newly sequenced complete chloroplast genomes of
Zingiberales. (A) Total number of four long repeat types. (B) Length distribution of long repeats in
each sequenced chloroplast genome.

Six types of simple sequence repeats (SSRs) were discovered among these 22 chloroplast
genomes: mononucleotide, dinucleotide, trinucleotide, tetranucleotide, pentanucleotide and
hexanucleotide (Figure 3A and Table S4). In total, there were 85 to 127 SSRs in each chloroplast
genome (Figure 3A). Among these SSRs, only the chloroplast genome of C. aurantiflora had no
pentanucleotide repeats, and four chloroplast genomes of Hedychium chrysoleucum, Hedychium
tienlinense, H. menghaiense, and S. sanguinea had no hexanucleotide repeats (Figure 3A and
Table S4). Among each sequenced chloroplast genome, mononucleotide repeats were the most
frequent, with numbers ranging from 41 to 63, followed by dinucleotide repeats, ranging from
14 to 35, tetranucleotide repeats, ranging from 10 to 21, trinucleotide repeats, ranging from
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3 to 14, hexanucleotide repeats, ranging from 0 to 7, and pentanucleotide repeats, ranging from
0 to 6 (Figure 3A and Table S4). The majority of the mononucleotide SSRs were A /T repeats,
which accounted for 92.68-100% of all the mononucleotide types among these 22 genomes
(Figure 3B and Table S4). In the dinucleotide repeats, the AG/CT repeats were observed
most frequently except in the chloroplast genome of C. makoyana (Figure 3B and Table S4). In
the chloroplast genome of C. makoyana, AT/ AT repeats were the most frequent dinucleotide
repeats (Figure 3B and Table S4). In the tetranucleotide category, the AAAT/ATTT repeats
were the most abundant type (Figure 3B and Table S4). SSRs were more frequently located in
the LSC regions (54-87 loci, 62.09-73.68%) than in the SSC regions (15-23 loci, 14.02-22.35%),
IRa regions (3-10 loci, 3.53-8.40%), and IRb regions (3-9 loci, 3.53-8.05%) among these
22 chloroplast genomes (Table S4).
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Figure 3. Types and distribution of SSRs in 22 newly sequenced complete chloroplast genomes of
Zingiberales. (A) Number of different SSR types. (B) Number of identified SSR motifs in different
repeat class types. SSR, simple sequence repeat.
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2.3. Codons Usage Analysis

The 22 newly sequenced chloroplast genomes of Zingiberales were analyzed to survey
information on the codon usage, amino acid frequency, and relative synonymous codon
usage (RSCU) (Table S5). The total codons (excluding stop codons) of these 22 chloroplast
genomes ranged from 25,908 (S. sanguinea) to 27,694 (H. brevicaule). Of these, 61 codons
encoded 20 amino acids (Figure 4 and Table S5). The codons ATG and TGG, encoding
methionine (Met) and tryptophan (Trp), respectively, showed no codon bias, both with
RSCU values of 1.00 among these 22 chloroplast genomes (Figure 4 and Table S5). The
codons of four with the highest RSCU values (AGA, TTA, GCT, and TCT) and six with
the lowest RSCU values (AGC, GGC, CGC, GCG, CTG and GAC) were found in these
22 chloroplast genomes (Figure 4 and Table S5). Twenty-nine codons showed codon usage
bias with RSCU > 1.00 in protein-coding genes of 21 chloroplast genomes; however, in
protein-coding genes of C. makoyana chloroplast genome, thirty codons indicated codon
usage bias with RSCU > 1.00 (Table S5).

BT 0T e 1 AT e T R e

Figure 4. Heat map for the relative synonymous codon usage values of the 22 newly sequenced
complete chloroplast genomes of Zingiberales.

2.4. Comparative Analysis of 22 Complete Chloroplast Genomes in Zingiberales

Using the complete chloroplast genome of H. bijiangense as the reference, 22 newly
sequenced chloroplast genomes of Zingiberales were compared by using mVISTA [29]
and CGView [28] (Figures 1 and 5). The mVISTA result revealed that the two IR regions
were less divergent than the LSC and SSC regions (Figure 5). The non-coding regions
showed obviously higher divergence than the protein-coding regions (Figure 5). The main
divergences for the protein-coding regions were trnQ, rpl33, trnG, ycf3, trnS and ccsA. For
the non-coding regions, highly divergent regions were accD-psal, rpl32-trnL, rbcL-accD, and
ndhG-psaC (Figure 5). The CGView result also indicated that the LSC and SSC regions were
significantly more divergent than the two IR regions, and the main divergences originated
from LSC and SSC regions (the innermost fourth color ring to the outwards 25th ring in
Figure 1). Compared to the chloroplast genome of H. bijiangense (the innermost fourth color
ring in Figure 1), the other 21 complete chloroplast genomes showed four divergent regions
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in LSC (trnG-trnS, rbeL-accD, psaA-ycf3 and ycf4-cemA), one region in SSC (ndhG-psaC) and
one region in IRa (ycfl).
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Figure 5. Visualization of the alignment of the 22 newly sequenced complete chloroplast genomes of
Zingiberales. The chloroplast genome of H. bijiangense is used as the reference. The y-axis represents
the percent identity ranging from 50% to 100%. The x-axis depicts sequence coordinates within
the chloroplast genome. Purple bars represent exons, sky-blue bars represent untranslated regions
(UTRs), red bars represent non-coding sequences (CNS), grey bars represent mRNA and white regions
represent sequence differences among 22 analyzed chloroplast genomes.

The borders of LSC/IRb, IRb/SSC, SSC/IRa, and IRa/LSC among these 22 chloroplast
genomes were compared and shown in detail (Figure 6). Among these 22 chloroplast genomes,
the rps19 and psbA genes were located in the IRa/LSC borders, respectively (Figure 6). The
distances between the ends of rps19 and the IRa/LSC borders were 120-305 bp, and the
distances between the start of psbA and the IRa/LSC boundaries ranged from 93 bp to 291 bp
(Figure 6). For the LSC/IRb borders, the rpl22 and rps19 genes were located in the LSC/IRb
borders in all the 22 chloroplast genomes. A total of 24-95 bp were found between the ends
of rpl22 and the LSC/IRb borders among these 22 chloroplast genomes, and the distances
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between the start of rps19 and the LSC/IRb borders ranged from 124 bp to 306 bp (Figure 6).
The SSC/IRa borders were located in the ycfl gene, which crossed into the IRa region in the
21 chloroplast genomes; however, the lengths of ycfI in the IRa regions significantly varied
among these 21 chloroplast genomes, ranging from 1050 bp to 3877 bp (Figure 6). In S.
sanguinea, ndhF was found in the SSC/IRa border in its chloroplast genome; and the distance
between the end of ndhF and the SSC/IRa border was 5 bp (Figure 6). Regarding the IRb/SSC
borders, the ycfl and ndhF genes were located in the IRb/SSC borders in the 21 chloroplast
genomes, except in the chloroplast genome of S. sanguinea. The ycfl gene expanding into the
SSC regions ranged from 6 bp to 132 bp, and the distances between the start of ndhF and the
IRb/SSC borders ranged from 4 bp to 447 bp among these 21 chloroplast genomes (Figure 6).
Regarding S. sanguinea, only ycfl gene was located at the border of IRb/SSC in its chloroplast
genome, and the ycfl gene expanded into the SSC region by 4107 bp (Figure 6). In conclusion,
the IR/LSC borders of these 22 chloroplast genomes of Zingiberales were relatively conserved
and similar, but the IR/SSC borders exhibited variations.
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Figure 6. Comparison of the IR/SC borders among 22 newly sequenced complete chloroplast
genomes of Zingiberales. LSC, large single-copy region; SSC, small single-copy region; IR, inverted
repeat region.
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2.5. Highly Divergence Regions and Selective Pressure Analyses of Zingiberales

Nucleotide diversity (Pi) and single-nucleotide substitutions in the LSC, SSC, IRa, IRb
and the total of chloroplast genomes were analyzed among the 111 complete chloroplast
genomes of Zingiberales (Figure 7 and Table 3). One hundred and eleven chloroplast
genomes of Zingiberales were aligned with a matrix of 163,883 bp with 111,120 variable
sites (67.80%) and 92,746 parsimony informative sites (56.59%). The Pi value of the complete
chloroplast genomes was 0.1565 (Table 3). The LSC region had the highest Pi value (0.1751)
and the IRa region had the lowest Pi value (0.1455) (Table 3). Among the protein-coding
regions, the Pi values ranged from 0 to 0.2695 and had an average value of 0.1399 (Table S6).
Four protein-coding regions (trnM, trnL, ccsA and psaC) showed remarkably high values
(Pi> 0.20; Figure 7A and Table S6). For the non-coding regions, Pi values ranged from 0
to 0.2379 (ccsA-ndhD) and had an average of 0.1423 (Table S6). Five of these regions had
remarkably high values (Pi > 0.20), including trnQ-psbK, psbL-psbF, ccsA-ndhD, ndhD-psaC,
and psaC-ndhE (Figure 7B and Table 56). Considering the results of Pi values and the length
of regions > 150 bp for the selection of potential molecular markers of Zingiberales, three
regions were identified, including ccsA, psaC and psaC-ndhE.
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Figure 7. Comparison of nucleotide diversity values across the 111 complete chloroplast genomes of
Zingiberales. (A) Protein-coding regions. (B) Non-coding regions.
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Table 3. Variable site analyses of the 111 complete chloroplast genomes of Zingiberales.
. Variable Sites Informative Sites Nucleotide
Regions Length . .
Number % Number % Diversity

LsC 88,541 65,855 74.38 54,324 61.35 0.1751

SSC 15,786 11,757 74.48 9131 57.84 0.1621

IRa 29,778 13,210 44.36 12,150 40.80 0.1455

IRb 29,778 20,298 68.16 17,141 57.56 0.1534

Complete chloroplast genome 163,883 111,120 67.80 92,746 56.59 0.1565

The ratio (w) of non-synonymous (dN) to synonymous (dS) substitution (dN/dS) for
66 shared protein-coding genes was analyzed across 111 complete chloroplast genomes of
Zingiberales. In this study, using the M8 model ( & w > 1) for estimating gene selection
pressure, 32 genes were under positive selection with a posterior probability greater than
0.95 using the BEB method (Table 4). These genes with positive selection sites could
be divided into six categories: subunits of photosystem (psaA, psal, psbA, psbB and psbD),
subunits of cytochrome (petB and petD), subunits of ATP synthase (atpA, atpB, atpF and atpl),
subunits of NADH dehydrogenasee (ndhA, ndhB, ndhC, ndhD, ndhF, and ndhl), subunits
of ribosome (rpl20, rpl23, rps3, rps4, rps7, rps8 and rps15) and others (rpoB, rpoC1, rpoC2,
rbeL, clpP, matK, ycf3 and ycf4). Among these 32 genes, clpP harbored the highest number of
positive amino acids sites (15), followed by rbcL (8), rpoC2 (8), matK (7), ndhB (5), rps7 (5),
atpB (4), atpA (3), atpF (3), ndhF (3), psaA (3), psbD (3), and rpl20 (3); the remaining 19 genes
had one or two positive amino acids sites (Table 4).

Table 4. Positively selected sites detected in the 111 complete chloroplast genomes of Zingiberales.

Gene Names

Positively Selected Sites Pr (w > 1)

atpA
atpB
atpF
atpl

clpP

matK

ndhA
ndhB
ndhC
ndhD
ndhF
ndhl
petB
petD
psaA
psal
psbA
psbB
psbD
rbcL
rpl20
rpl23
rpoB
rpoC1

rpoC2

rps3
rps4
rps7
rps8
rpslb
yef3
yeft

190 Q 0.981 *, 255 R 0.955 *, 459 V 0.998 **

83 M 0.975 %, 132 P 0.998 **, 143 L 0.996 **, 315 E 0.984 *

491L.0.959 %, 124 F 0.986 *, 178 A 0.966 *

241.0.984 %, 65D 0.990 *

195 1.000 **,21 V 0.999 **, 22 E 1.000 **, 38 S 0.996 **, 56 P 1.000 **, 73 S 0.968 *,
114 A 1.000 **, 128 G 0.989 *, 133 S 1.000 **, 136 A 0.985 *, 158 Y 0.957 *, 162 Y 0.982 *,
186 G 0.986 *, 1871 0.966 *, 189 F 0.999 **

92V 0.955*,106 R 0.959 *, 146 W 0.985 *, 279 T 0.971 *, 294 F 0.985 *, 296 R 0.997 **,
413 P 0.970 *

132 F0.982 *

13 F 0.996 **, 163 T 1.000 **, 228 P 0.993 **, 241 G 1.000 **, 379 S 1.000 **

98 L 1.000 **

422 A 0.989 *

504 G 0.998 **, 623 F 0.955 *, 630 K 0.957 *

165 D 0.967 *

1 M 1.000 **,2 S 1.000 **

106 T 0.990 **

152 50.968 *, 261 L 0.983 *, 292 A 0.988 *

4F0.992**

155 A 0.980 *

494 A 0.981 *

3V 1.000 **, 4 A 1.000 **, 5 L 1.000 **

219 L 0.999 **,22511.000 **, 226 Y 1.000 **, 240 L 1.000 **, 255 V 1.000 **, 407 L 0.998 **, 424 L 0.999 **, 449 S 1.000 **
69 N 0.987 *, 70 K 1.000 **, 77 R 0.984 *

62 K 0.987 *

787 G 0.953 *

141 D 0.950 *

398 L 0.995 **,582 S 0.957 *, 622 W 0.968 *, 673 Y 1.000 **, 707 S 1.000 **, 811 T 0.952 %,
97210.987 *,1119 W 0.990 **

83 L 0.986 *

157 P 0.956 *

43 1.0.998 **,51 Q 0.963 *, 81 S 1.000 **, 112 P 0.980 *, 131 S 0.994 **

90 R 0.996 **

72 R 0.994 **

109 C 0.981 *, 110 H 1.000 **

158 L0.975%,175 R 0.976 *

Note: * and ** indicate a posterior probability higher than 0.95 and 0.99, respectively.
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2.6. Phylogenetic Relationships of Zingiberales

In this study, we defined strong support as 85% < maximum likelihood bootstrap
(MLBS) < 100% and 0.90 < Bayesian inference posterior probabilities (BIPP) < 1.0; mod-
erate support as 70% < MLBS < 85% and 0.80 < BIPP < 0.90; and weak support as
MLBS < 70% and BIPP < 0.80. Both ML and BI phylogenetic trees based on chloroplast
genomes generated almost identical topological structures with strong support among
eight families of Zingiberales (MLBS = 94-100%, and BIPP = 0.93-1.0) (Figure 8). Can-
naceae was sister to Marantaceae, forming a clade that was collectively sister to the clade
of (Costaceae, Zingiberaceae) with strong support (MLBS = 100%, and BIPP = 0.99-1.0)
(Figure 8). Heliconiaceae was sister to the clade of (Lowiaceae, Strelitziaceae), then col-
lectively sister to Musaceae with strong support (MLBS = 94-100%, and BIPP = 0.93-1.0)
(Figure 8). The clade of ((Cannaceae, Marantaceae), (Costaceae, Zingiberaceae)) was sister
to the clade of (Musaceae, (Heliconiaceae, (Lowiaceae, Strelitziaceae))) with robust support
(MLBS = 100%, and BIPP = 1.0) (Figure 8).

Within Marantaceae, S. sanguinea was sister to Phrynium rheedei with strong support,
then forming a clade that was sister to C. makoyana with strong support (MLBS = 100%,
and BIPP = 1.0). Within Zingiberaceae, Hedychium was sister to the clade of (Monolophus,
Roscoea) with strong support (MLBS = 96%, and BIPP = 1.0) (Figure 8). Kaempferia was
sister to Zingiber with strong support (MLBS = 97%, and BIPP = 1.0), then forming a
clade that was sister to the clade of Boesenbergia kingii and Curcuma flaviflora with strong
support (MLBS = 99%, and BIPP = 1.0) (Figure 8). Cornukaempferia was sister to the clade of
((B. kingii, C. flaviflora), (Kaempferia, Zingiber)) with strong support (MLBS = 86%, and BIPP
=1.0) (Figure 8). Within genus Hedychium, there were two unidentified species (Hedychium
sp.1 LDM232 and Hedychium sp.2 LDM222). Hedychium sp.1 LDM232 was firstly clustered
with H. kwangsiense, then forming a clade that was sister to H. brevicaule, and Hedychium sp.2
LDM222 was sister to these three species with moderate to strong support (MLBS = 83-87%,
and BIPP = 1.0) (Figure 8).

2.7. Divergence Time Estimation of Zingiberales

Divergence time estimation suggested that the stem and crown nodes of Zingiberales
were 100.1 Mya (95% HPD: 92.2-109.6 Mya) and 85.0 Mya (95% HPD: 81.6-89.3 Mya), re-
spectively (Figure 9). The crown nodes of ((Cannaceae, Marantaceae), (Costaceae, Zingiber-
aceae)), (Cannaceae, Marantaceae) and (Costaceae, Zingiberaceae) were 80.5 Mya (95% HPD:
75.4-85.8 Mya), 62.5 Mya (95% HPD: 39.0-76.2 Mya), and 75.2 Mya (95% HPD: 69.8-81.2 Mya),
respectively (Figure 9). The crown nodes of Marantaceae, Costaceae and Zingiberaceae oc-
curred at 38.6 Mya (95% HPD: 24.7-58.3 Mya), 34.6 Mya (95% HPD: 22.3-45.4 Mya), and
65.1 Mya (95% HPD: 62.9-69.5 Mya), respectively (Figure 9). Within Zingiberaceae, the species
in three genera Hedychium, Kaempferia and Cornukaempferia occurred approximately 8.1 Mya
(95% HPD: 4.2-15.4 Mya), 23.5 Mya (95% HPD: 14.8-31.6 Mya), and 34.9 Mya (95% HPD:
28.7-39.9 Mya), respectively (Figure 9).

The crown nodes of (Musaceae, (Heliconiaceae, (Lowiaceae, Strelitziaceae))), (He-
liconiaceae, (Lowiaceae, Strelitziaceae)) and (Lowiaceae, Strelitziaceae) were 79.4 Mya
(95% HPD: 69.4-86.5 Mya), 71.4 Mya (95% HPD: 55.0-82.4 Mya), and 46.8 Mya (95% HPD:
30.5-70.9 Mya), respectively (Figure 9). The crown nodes of Musaceae, Heliconiaceae,
Strelitziaceae and Lowiaceae occurred at 54.9 Mya (95% HPD: 44.9-70.7 Mya), 15.2 Mya
(95% HPD: 3.8-36.4 Mya), 20.4 Mya (95% HPD: 7.7-38.1 Mya), and 11.4 Mya (95% HPD:
3.4-26.3 Mya), respectively (Figure 9). Within Musaceae, the crown nodes of Musa and
Musella-Ensete clades were 41.2 Mya (95% HPD: 29.4-61.2 Mya), and 41.9 Mya (95% HPD:
40.6-44.8 Mya), respectively (Figure 9).
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Figure 8. Two phylogenetic trees reconstructed from the 115 chloroplast genome sequences of
Zingiberales and 4 outgroups using maximum likelihood (ML) and Bayesian inference (BI), respec-
tively. (A) Phylogenetic tree reconstruction using ML method of PhyML v. 3.0. Numbers next to the
branches are ML bootstrap support values. (B) Phylogenetic tree reconstruction using the BI method
of MrBayes v. 3.2.6. Numbers next to the branches are BI probability support values. The newly
sequenced 22 chloroplast genomes in this study are in bold.
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Figure 9. Divergence time estimation of Zingiberales based on the 115 chloroplast genome sequences.
The fossil and calibration taxa are indicated with red points on the corresponding nodes. The mean
divergence time of the nodes is shown at the nodes with blue. The blue bars correspond to 95% HPD
of estimated divergence time, with minimum and maximum values, respectively.

3. Discussion
3.1. Genome Structure Comparison and Sequence Variation

In this study, 22 complete chloroplast genomes of Zingiberales showed a typical
quadripartite structure (a single LSC region, a single SSC region and a pair of IR regions),
which had been reported in other Zingiberaceae and Musaceae species [9-11,13,14]. Al-
though most of the protein-coding genes tRNAs and rRNAs were highly conserved, gene
loss and gene duplication occurred in these 22 complete chloroplast genomes. For exam-
ples, H. brevicaule lost trnR-UCU and had only one copy of trnH-GUG in its chloroplast
genome and C. makoyana had two copies of rpl22 only in its chloroplast genome, suggesting
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that gene loss and insertion had happened during the evolutionary processes of H. bre-
vicaule and C. makoyana. In contrast, there had been reports of gene loss and duplication
in other chloroplast genomes of higher plants, such as losses of ndh genes in families
Orobanchaceae [30] and Orchidaceae [31], and duplication of trnS-GCU and trnT-UGU
in Globba schomburgkii [19]. IR contraction and expansion of chloroplast genomes were
recognized to be important evolutionary events and may cause chloroplast genome size
variations, production of pseudogenes, gene duplication or the reduction in duplicate
genes to single genes [19,30,31]. In this study, the IR region of C. makoyana was 27,074 bp
long, which was shorter than that of the other 21 chloroplast genomes (Table 1), indicating
the other Zingiberales species differentiated later than C. makoyana. Additionally, among
studied 22 chloroplast genomes herein, only ycfl and ndhF were found at the IRb/SSC and
SSC/IRa borders in the chloroplast genome of S. sanguinea, respectively. Therefore, changes
in the SSC/IR borders may be the main reasons for the IR contraction and expansion in
these Zingiberales species.

Comparative analysis of the 111 complete chloroplast genomes of Zingiberales re-
vealed that the LSC and SSC regions were more divergent than the IR regions
(Table 3 and Figure 7), consistent with findings for other plants [12-15,31]. Previous studies
used three combined molecular markers (atpB, rbcL and 18S) to confirm the relationships
among the ginger families, but were not able to resolve the earliest divergent lineages in
Zingiberales [2]. Based on the Pi values studied in the present study;, it was also obvious
that the frequently used chloroplast genome markers, including atpB and rbcL, presented
relatively low polymorphisms (0.17, 0.16, respectively) at the order level. Based on Pi values
studied currently, 3 divergent hotspot regions among 111 complete chloroplast genomes of
Zingiberales were identified, including ccsA, psaC and psaC-ndhE. By comparison, ccsA was
also reported as a divergent hotspot region in Myrtales [32] and Monsteroideae [33]. There-
fore, these variable regions may be suitable for potential DNA markers for phylogenetic
relationships and species identification studies of Zingiberales.

3.2. Positive Selection and Phylogenetic Analysis within Zingiberales

In this study, 32 genes with positive selection sites were identified among 111 complete
chloroplast genomes of Zingiberales (Table 4). In contrast, we found fewer genes under pos-
itive selection than results in a previous study [34], in which most protein-coding genes (62)
underwent positive selection pressures among 14 Araceae species. Our results found that
15 positively selected sites were identified in clpP genes for Zingiberales, suggesting that
clpP may play an important role in the adaptive evolution of Zingiberales. Additionally, we
found that rpoC2, rbcL and matK also possessed relatively high positive selection sites (8, §,
7, respectively). Current studies have revealed that these four genes with positive selection
in land plants may be very common [31,35-38]. For examples, rpoC2 and rbcL have been
reported as positive selection in orchid species [31]; matK and rbcL have been identified
under positive selection in Ulmaceae species [35]; rpoC2 and clpP have been identified under
positive selection in Anisodus species [36]; matK has been identified under positive selection
in the Cotinus species [37], and clpP has been identified under positive selection in the Astra-
galus species [38]. The high positive selection sites of clpP, rpoC2, rbcL and matK indicated
that these four genes were valuable markers for the adaptive evolution studies of Zingib-
erales. On the one hand, Zingiberales species commonly maintained high levels of plant
diversity, such as diverse pseudostem heights and leaf sizes; for instance, Musa coccinea
had pseudostem height of 100-200 cm and leaf size of 50-100 x 10-25 cm, respectively,
while Orchidantha chinensis and Roscoea humeana had pseudostem heights of 50-100 cm
and 13-25 cm, respectively, and leaf sizes of 22-30 x 5.5-11 cm and 10-30 x 3-6 c¢m, re-
spectively [39]. On the other hand, Zingiberales species also owned diverse habitats;
for example, R. humeana lived in pine forests, meadows and rocky hillside at altitudes
of 2900-3800 m, whereas M. coccinea scattered in the valley and slope below altitudes
of 600 m [39,40]. Therefore, genes of chloroplast genome involved in energy (photosys-
tem, ATP synthase, NADH dehydrogease) and development (ribosome and others), may
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play important roles during the evolution and adaptation of Zingiberales species to their
respective habitats.

Compared with previous studies based on morphology, chloroplast genome genes and
nuclear ITS [1,3,23], incomplete chloroplast genomes and nuclear genes [4—6,20], our results
sampled more species using chloroplast genome sequences and showed high resolution
of phylogenetic relationships in Zingiberales (Figure 8). Eight clades representing eight
families were fully resolved with strong support (Figure 8). Across these previous studies,
the four ginger families (Cannaceae, Marantaceae, Costaceae, and Zingiberaceae) and
all the relationships among them were strongly supported; however, the placements of
the other four banana families (Musaceae, Strelitziaceae, Lowiaceae, and Heliconiaceae)
have to date been uncertain and inconsistent. On the one hand, in some previous studies,
Musaceae [1,2,4,8] or Heliconiaceae [3] or Lowiaceae [27] were placed as the sister to all
the other families in the Zingiberales. On the other hand, Musaceae was sister to the clade
containing Heliconiaceae, which was in turn sister to Strelitziaceae and Lowiaceae with
weak to strong support (MLBS = 69-100%, and BIPP = 0.6-1.0) [5,6,20]. Our phyloge-
nomic analysis of Zingiberales identified strong support for the sister relationship between
Musaceae and a clade of Heliconiaceae + Strelitziaceae-Lowiaceae (MLBS = 94-100%, and
BIPP = 0.93-1.0; Figure 8), which was in agreement with the backbone from some previous
studies [5,6,20]. Additionally, the phylogenetic positions of Cornukaempferia, Hedychium
and Kaempferia within Zingiberaceae were also determined. The present phylogenetic
results provided high degree of credibility that complete chloroplast genomes may be
useful for phylogeny of Zingiberales in the future. Further study should sample more taxa
of Zingiberales and obtain more complete chloroplast genomes data to identify whether
our results are in agreement with those from nuclear genes.

3.3. Divergence Time within Zingiberales

In this study, the results of divergence time estimation showed that the crown node
of Zingiberales most likely occurred at 85.0 Mya (95% HPD: 81.6-89.3 Mya) (Figure 9).
The divergence time of Zingiberales estimated herein was in close proximity to some
previous reports, such as 87.59 Mya reported by Fu et al. (2022) [9], and 83 Mya reported
by Givnish et al. (2018) [6]. However, Kress and Specht (2006) using three genes (atpB,
rbcL, and 18S) from 36 taxa (including 24 species of Zingiberales and 12 outgroups) and
five calibration points, estimated the divergence time of Zingiberales to be approximately
124 Mya [7]. Present analyses estimated that the major family-level lineages of Zingiberales
became established approximately 46.8-80.5 Mya (Figure 9), which were younger than
the ages estimated by Kress and Specht (2006) (80-110 Mya) [7]. In addition, within
Zingiberaceae, the crown node of Hedychium had occurred approximately 8.1 Mya (95%
HPD: 4.2-15.4 Mya) (Figure 9), which coincided with a report that Hedychium was a very
young lineage that originated approximately 10.6 Mya [26]. Because taxon sampling,
analysis methods, molecular data, and calibration points were different among these
divergence time studies [6,7,9,26], we cannot perfectly compare across all these studies.
Changes in taxon sampling, analysis methods, molecular data, and calibration points may
lead to differences in divergence times estimation in these studies [6,7,9,26].

4. Materials and Methods
4.1. Plant Sample Collection, DNA Extraction, and Sequencing

Fresh leaves of 22 individuals from 21 species, representing 5 genera and 2 families
in Zingiberales, were collected from the resource garden (23°23’ N, 113°26" E) of the
environmental horticulture research institute at the Guangdong Academy of Agricultural
Sciences, Guangzhou, China. Each leaf sample was immediately frozen in liquid nitrogen
and stored at —80 °C until use. Total chloroplast genomic DNA was extracted from each
leaf sample using sucrose gradient centrifugation method with minor modifications [41].
The chloroplast DNA quality and concentration were detected by using 1% (w/v) agarose
gel electrophoresis and NanoDrop 2000 microspectrometer (Wilmington, DE, USA). Each
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qualified chloroplast DNA (1.0 ug) was used for construction a DNA library with fragments
of approximately 350 bp, volume of 25 uL and concentration of 21.5 ng/uL, and then
sequenced on an Illumina NovaSeq 6000 platform with 150 bp paired-end reads length
(Biozeron, Shanghai, China). The original raw data were filtered by Trimmomatic v. 0.39
with default parameters [42] to delete adaptors and low-quality reads.

4.2. Chloroplast Genome Assembly and Annotation

Filtered high-quality clean reads were assembled into complete chloroplast genomes
using GetOrganelle v. 1.7.6.1 [43] with default settings. Geneious Prime 2022 (Biomatters
Ltd., Auckland, New Zealand) [44] was used for sequence correction with a reference
chloroplast genome of Hedychium coronarium from Guangdong (GenBank MK262736). Each
assembled complete chloroplast genome was annotated using GeSeq [45] and the online
Dual Organellar Genome Annotator (DOGMA) [46] with default parameters, respectively.
The transfer RNA (tRNA) and ribosomal RNA (rRNA) sequences were confirmed by tR-
NAscanSE v. 2.0.5 [47] and BLAST v. 2.13.0 [48]. The newly annotated complete chloroplast
genome sequences were first validated using online GB2sequin [49], further were verified
and formatted using Sequin v. 15.50 from NCBI, and deposited in GenBank (accession
numbers are shown in Table 1). Newly complete chloroplast genomes maps were drawn
using Organellar Genome Draw (OGDRAW) v. 1.3.1 [27].

4.3. Repeat Sequences Analysis

Four types of long repeats of the newly sequenced 22 chloroplast genomes of Zin-
giberales, namely, forward, palindrome, reverse and complement repeats, were identified
using REPuter [50] with a minimal repeat size of 30 bp, a hamming distance of 3 and a
repeat identity of more than 90%. Simple sequence repeats (SSRs) of these 22 chloroplast
genomes were examined by MISA-web [51] with the following parameters: minimum
repeat units of 10 for mononucleotides; 5 for dinucleotides, 4 for trinucleotides, and 3 for
tetra-, penta- and hexanucleotides.

4.4. Codon Usage Analysis

The relative synonymous codon usage (RSCU) and amino acid frequencies of the
22 chloroplast genomes of Zingiberales were analyzed using MEGA v. 7.0 [52] with
default parameters. A RSCU value of >1 indicates that the codon is used more frequently,
a RSCU value = 1 indicates that the codon has no use preference, and a value of <1
indicates that the codon is used less frequently. Clustered heat map of RSCU values of
newly sequenced 22 chloroplast genomes of Zingiberales was constructed with R v. 4.0.2
(https:/ /www.R-project.org) (accessed on 10 September 2022).

4.5. Chloroplast Genomes Comparison

Chloroplast genomes structures among the 22 newly sequenced genomes of Zingiberales
were compared with the mVISTA program in the Shuffle-LAGAN mode [29], using the chloro-
plast genome of Hedychium bijiangense as the reference. The newly generated 22 chloroplast
genomes of Zingiberales for LSC/IR and SSC/IR boundaries and their adjacent genes were
analyzed using IRscope [53]. Furthermore, chloroplast genomes comparisons across 22 chloro-
plast genomes of Zingiberales were performed using CGView Server [28]. GC contents were
detected based on GC skew using the equation: GC skew = (G — C)/(G + C).

4.6. Nucleotide Diversity and Gene Selective Pressure Analyses

Nucleotide diversity (Pi) was calculated by sliding window analysis using DnaSP v.
6.12.03 [54]. In total, 111 complete chloroplast genomes of Zingiberales were analyzed,
including 22 newly sequenced complete chloroplast genomes and 89 complete chloroplast
genomes from the NCBI database (Table S7). Additionally, variable and parsimony in-
formative base sites of the LSC, SSC, IRa, IRb, and complete chloroplast genomes were
also calculated.
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To detect positively selected amino acid sites in 111 complete chloroplast genomes
of Zingiberales, the nonsynonymous (dN) and synonymous (dS) substitution rates of
consensus protein-coding genes were calculated by using the CodeML program imple-
mented in EasyCodeML [55]. Gene selective pressure analysis was based on 66 consensus
protein-coding genes sequences after removing all stop codons. The positive selection
model of M8 (3 & w > 1) was used to detect positively selected sites based on both the dN
and dS ratios (w) and likelihood ratio tests (LRTs) values [56]. The bayes empirical bayes
(BEB) method was used to identify the most likely codons under positive selection, with a
posterior probability higher than 0.95 and 0.99 indicating sites under positive selection and
strong positive selection, respectively [57].

4.7. Phylogenetic Relationship Analysis

To reconstruct and confirm the phylogenetic relationships of eight families in Zin-
giberales, 115 chloroplast genomes of Zingiberales, including 22 complete chloroplast
genomes generated in the present study, 89 complete chloroplast genomes and 4 incom-
plete chloroplast genomes downloaded from the NCBI GenBank database, were analyzed
(Table S8). Commelina communis (IMW617984), Pollia japonica (MW617990), Rhopalephora
scaberrima (MW617991), and Siderasis fuscata (MW617992) were used as outgroups. Chloro-
plast genome sequences were aligned using MAFFT v. 7.458 [58] with default parameters,
and manually checked when necessary. Phylogenetic tree was constructed using ML
and Bl methods, respectively. The best nucleotide substitution model (GTR + G +I) was
determined using Akaike Information Criterion (AIC) in jModelTest v. 2.1.10 [59]. ML
analysis was conducted in PhyML v. 3.0 [60] with 1000 bootstrap replicates. BI analysis was
performed in MrBayes v. 3.2.6 [61]. Two Markov Chain Monte Carlo algorithm (MCMC)
runs were conducted simultaneously with 200,000 generations and four Markov chains,
starting from random trees, sampling trees every 100 generations, and discarding the first
10% of samples as burn-in. The phylogenetic trees were edited and visualized using iTOL
v. 3.4.3 (http:/ /itol.embl.de/itol.cgi) (accessed on 10 December 2022).

4.8. Divergence Time Estimation

The dataset of 115 chloroplast genomes of Zingiberales was analyzed using GTR + G +1
model determined in jModelTest v. 2.1.10 [59] to search for the best tree topology. Diver-
gence time estimation of Zingiberales was performed by using MCMC tree in PAML v.
4.4 [62]. Three fossil records and one calibration point was obtained and used in this
divergence time estimation. Zingiberopsis attenuate was used as a mean age of 65 Million
years ago (Mya) for the crown age of family Zingiberaceae [63]. Ensete oregonense was
applied to calibrate the crown age of Ensete and Musella with a mean age of 43 Mya [64].
Spirematospermum chandlerae was used to calibrate the crown age of Zingiberales with a
mean age of 83.5 Mya [65]. Each fossil calibration point was assumed to follow a normal
distribution with a standard deviation of 2 and an offset of 2, resulting in 63.1-70.9 Mya,
41.1-48.9 Mya, and 81.6-89.4 Mya, 95% intervals, respectively. Then, the stem root of Zin-
giberales was set with a mean age of 100 Mya and a standard deviation of 5 (90.2-110 Mya,
95% intervals), based on previous studies [9,66]. The ML tree constructed from chloro-
plast genome sequences was used as a starting tree for MCMC run. MCMC run was set
1,000,000 generations, sampling every 100 generations, and removing the first 10% genera-
tions as burn in. Divergence time estimation was calculated by parameters of clock = 2 and
model = 0, with 95% highest posterior density (HPD) intervals.

5. Conclusions

In this study, we sequenced, assembled and compared structural characteristics of
22 complete chloroplast genomes from 21 Zingiberales species, studied the molecular evo-
lution of chloroplast genomes in Zingiberales, reconstructed the phylogenetic relationships
of Zingiberales with a high-resolution backbone, and inferred the phylogenetic divergence
time of Zingiberales. The newly sequenced 22 chloroplast genomes of Zingiberales had a
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typical quadripartite structure and contained 111-112 different genes, including 79 protein-
coding genes, 28-29 tRNA genes and 4 rRNA genes, with chloroplast genome length of
161,303-163,979 bp. Comparative analyses of 111 complete chloroplast genomes of Zingib-
erales identified 3 highly divergent regions, which can be used as candidate markers for
phylogenetic analyses and species identification. Both ML and BI phylogenetic trees based
on chloroplast genome sequences identified a strongly supported clade of ((Cannaceae,
Marantaceae), (Costaceae, Zingiberaceae)), sister to (Musaceae, (Heliconiaceae, (Lowiaceae,
Strelitziaceae))) (MLBS = 94-100%, and BIPP = 0.93-1.0). Reconstruction divergence time
of Zingiberales revealed that the stem and crown nodes of Zingiberales were approxi-
mately 100.1 Mya (95% HPD: 92.2-109.6 Mya), and 85.0 Mya (95% HPD: 81.6-89.3 Mya),
respectively. The major family-level lineages of Zingiberales becoming ranged from 46.8 to
80.5 Mya. In addition, 32 genes were under positive selection at levels of amino acids with
high posterior probabilities among 111 complete chloroplast genomes of Zingiberales. All
the obtained genomic resources in this study will contribute to future studies of species
identification, phylogeny, molecular evolution, and conservation of Zingiberales species.
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