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Abstract: A giant multidomain protein of striated and smooth vertebrate muscles, titin, consists
of tandems of immunoglobulin (Ig)- and fibronectin type III (FnIII)-like domains representing β-
sandwiches, as well as of disordered segments. Chicken smooth muscles express several titin isoforms
of ~500–1500 kDa. Using various structural-analysis methods, we investigated in vitro nonspecific
amyloid aggregation of the high-molecular-weight isoform of chicken smooth-muscle titin (SMTHMW,
~1500 kDa). As confirmed by X-ray diffraction analysis, under near-physiological conditions, the
protein formed amorphous amyloid aggregates with a quaternary cross-β structure within a relatively
short time (~60 min). As shown by circular dichroism and Fourier-transform infrared spectroscopy,
the quaternary cross-β structure—unlike other amyloidogenic proteins—formed without changes in
the SMTHMW secondary structure. SMTHMW aggregates partially disaggregated upon increasing the
ionic strength above the physiological level. Based on the data obtained, it is not the complete protein
but its particular domains/segments that are likely involved in the formation of intermolecular
interactions during SMTHMW amyloid aggregation. The discovered properties of titin position this
protein as an object of interest for studying amyloid aggregation in vitro and expanding our views of
the fundamentals of amyloidogenesis.

Keywords: smooth muscle titin; protein aggregates; amyloid aggregation; amyloids; cross-β

1. Introduction

It is known that, to normally perform their biological functions, newly synthesized
proteins must fold into a certain three-dimensional structure [1,2]. The folded structures
of proteins are only moderately stable. Certain factors, such as genetic mutations or
disturbances of protein synthesis and degradation, can lead to incorrect protein stacking
or misfolding followed by the formation of pathological aggregates [3]. Improper protein
stacking is a rather common phenomenon associated most often with the development
of diseases such as amyloidoses [4]. With the development of amyloidosis in humans
or animals, the protein loses its native conformation to form amyloids, aggregates of
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incorrectly folded forms of protein having a specific structure. Amyloid aggregates, as well
as their intermediate forms (mainly oligomers), may lead to cellular death [5–10].

Amyloid aggregates of many proteins have been found in various tissues and organs of
amyloidosis humans and animals. These diseases include, in particular, liver amyloidosis,
Alzheimer’s disease, Parkinson’s disease, type II diabetes, and prion diseases, as well as
systemic amyloidoses [11–14]. Amyloids have a number of specific characteristics, such
as the ability to bind to Congo Red and thioflavin T; they are resistant to proteases and
insoluble in most solvents [14]. The main property of amyloids, regardless of the type of
aggregates they form, is the presence of a quaternary cross-β structure [15,16].

Besides pathological amyloids, there are functional amyloids—protein aggregates
that perform certain functions. Functional amyloids are found in many species of living
organisms from plants, fungi, and protozoa to higher animals, including humans [17–27].

Despite the extensive investigation, there is as yet no clear understanding of the
molecular mechanisms of amyloid aggregation. The differences behind the mechanisms
of the formation of functional versus pathological amyloids have yet to be resolved. This
is probably due to the complexity of the object of study. In order to obtain the required
information about amyloids, it is necessary to use an array of methods (such as nuclear
magnetic resonance spectroscopy, transmission electron microscopy (TEM), cryo-electron
microscopy, atomic-force microscopy (AFM), X-ray diffraction, small-angle X-ray scattering
(SAXS), Fourier-transform infrared spectroscopy (FTIR), which is often technically difficult
to perform, since each of the methods has its own limitations regarding the object of study.

Titin (also called connectin [28,29]) is one of the most difficult objects when studying its
aggregation properties. In vitro studies on isolated titin preparations revealed a tendency
of this protein to form various sorts of intermolecular interactions that led to the formation
of oligomers and aggregates. Thus, the aggregation of titin in vitro was first investigated
in 1993 [30]. It was shown that, in solutions of low ionic strength (0.1 M KCl near neutral
pH (6.5)), striated muscle titin assembles into higher-order aggregates [30]. In 2003, atomic-
force microscopy revealed that, in a solution containing 25 mM imidazole–HCl, 0.2 M KCl,
4 mM MgCl2, 1 mM EGTA, 0.01% NaN3, 1 mM dithiothreitol (DTT), 20 µg/mL leupeptin,
10 µM E-64, pH 7.4, isolated titin molecules are capable of self-assembly into oligomers
within a mere 10 min [31]. The observed titin oligomers could be divided into bimolecular
species, as well as consisting of several molecules. In each case, however, a globular head
was observed, with which other titin molecules interacted, thus forming an oligomer [31].

In vitro investigations of the specificity of aggregation between titin domains con-
ducted in 2005 concluded that the ability for aggregation increases when the identity of
amino acid sequences of the domains is greater than 40% [32]. In 2015, the in vitro aggre-
gation of some titin Ig-domains obtained by a recombinant method was studied [33]. The
neighboring identical titin domains were shown to be able to form misfolded structures [33].

The experiments in vitro with molecular simulations carried out in 2015 showed that
during the refolding of tandem repeats (I27–I27 and I27–I28 immunoglobulin-like domains
of titin), independent of sequence identity, more than half of all molecules transiently
formed a wide range of misfolded conformations [33]. Simulations suggested that a
large fraction of these misfolds resemble an intramolecular amyloid-like state named
“intramolecular amyloids” [33]. These authors also reported that, during the refolding of
tandem repeats, the development of a strand-swapped long-lived misfolded state without
an amyloid-like structure is possible [33].

In 2016, the ability of a low-molecular-weight (500 kDa) isoform or possibly a truncated
form of chicken smooth-muscle titin (SMTLMW) to form in vitro amyloid aggregates was
described [34]. In 2018, the ability of that isoform to form in vitro amyloid aggregates with
different properties in two solutions differing in ionic strength was found [35].

In the present work, using a number of structural analysis methods, we investigated
the formation of an in vitro amyloid structure of a chicken smooth-muscle titin isoform
with a molecular weight of ~1500–1600 kDa (SMTHMW). A peculiar feature of this protein
and, in particular, this isoform of titin relative to other amyloid proteins studied is its
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large size. One titin molecule is comparable to the size of the protofibrils of some amyloid
proteins. Thus, it was of interest to elucidate whether this high-molecular-weight isoform
of smooth-muscle titin was capable of forming aggregates, their structural features, and the
type of aggregation—amyloid/non-amyloid. The results obtained point at the nonspecific
amyloid aggregation of the protein.

2. Results
2.1. DLS Analysis of SMT Aggregations

Based on our previous research into SMTLMW [34,35] and SMTHMW [36], we were
aware of the conditions required to form amyloid aggregates of these proteins. This work, in
order to understand the features of chicken titin aggregation rate, investigated the kinetics
of SMTHMW aggregation. We used dynamic light scattering (DLS), the simplest and most
convenient method to study the aggregation kinetics of amyloid proteins [34,35,37]. The
method also enables analyzing the aggregation reversibility, which has been shown earlier
for SMTLMW [35].

Figure 1a shows a change in the autocorrelation function of the scattered light upon
the formation of SMTHMW aggregates in a solution containing 0.15 M glycine–KOH at pH
7.0–7.5 over 60 min. During the first 20 min of incubation, the correlation function g1(t) was
observed to decay almost mono-exponentially (Figure 1a), with the subsequent emergence
of a shoulder at high correlation times. This is indicative of the formation of large aggregates
with smaller diffusion coefficients. After 40 min, the correlation function g1(t) featured a
greater decay time and a more pronounced shoulder (Figure 1a) at high correlation times,
which indicated an aggregation increase. A pronounced correlation-function shoulder was
also observed during 40, 50, and 60 min of incubation (Figure 1a).

Several peaks reflecting the dimensions of SMTHMW aggregates were obtained by the
correlation function analysis. Prior to the formation of aggregates, only two well-resolved
peaks with the average Rh of approximately 16 nm (the dominating peak of approximately
73%) and 86 nm (the minor peak of approximately 27%) were observed (Figure 1b, 0 min).
The first peak corresponds, most likely, to SMTHMW molecules, whereas the second can
be indicative of their insignificant aggregation. During the first 20 min of incubation, we
observed a shift of the peaks and an increase in the ratio of the volumes of the larger- and
smaller-size fraction, indicating the development of the titin aggregation process (Rh~53 nm
and ~479 nm) (Figure 1b).

After 40 min of the experiment, a stable fraction of larger aggregates with a hydro-
dynamic radius of ~1175 nm (96.7%) appeared. This fraction was also observed after
50 and 60 min of the experiment (Figure 1b). Another peak, indicating the formation of
titin aggregates with the average Rh of approximately 3813 nm emerged after 50 min of
incubation and, after over 60 min, Rh was more than 4475 nm. It should be noted that
the peak with Rh of approximately 4500 nm was at the limit of the range for this method.
Therefore, the formation of larger SMTHMW aggregates cannot be excluded (Figure 1b).

The next task was to elucidate the ability of SMTHMW aggregates to disaggregate upon
increasing ionic strength. Figure 1c presents data on the partial disaggregation of SMTHMW
aggregates after incubation in a solution containing 0.6 M KCl and 30 mM KH2PO4 (pH 7.0).
A decrease in the percentage of particles with larger hydrodynamic radii and an increase in
the number of particles with smaller hydrodynamic radii (Figure 1c) were observed.



Int. J. Mol. Sci. 2023, 24, 1056 4 of 21

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 21 
 

 

aggregates after incubation in a solution containing 0.6 M KCl and 30 mM KH2PO4 (pH 
7.0). A decrease in the percentage of particles with larger hydrodynamic radii and an in-
crease in the number of particles with smaller hydrodynamic radii (Figure 1c) were ob-
served.  

 
Figure 1. (a) Evolution of field autocorrelation functions g1(t) of light scattered during SMTHMW am-
yloid aggregate formation (pH 7.0–7.5, T = 25 °C). Aggregation was observed in a solution contain-
ing 0.15 M glycine–KOH, pH 7.0–7.5; (b) size distributions of SMTHMW particles. Generation of large 
aggregates and their time-dependent growth are shown; (c) distribution of SMTHMW particles after 
1 h disaggregation (for clarity, the graph shows monodispersed SMTHMW). The data reflect the dis-
tributions corresponding to certain time points. Three independent experiments were carried out. 

2.2. Electron and Atomic-Force Microscopy of SMTHMW Aggregates 
Based on the DLS data presented above, investigations were conducted using two 

time intervals (1 h and 24 h). Figure 2 shows AFM images of SMTHMW molecules in a so-
lution of 0.6 M KCl, 30 mM KH2PO4, 1 mM DTT, 0.1 M NaN3, and pH 7.0. It was found 
that, as in the case of striated-muscle titin [31,38,39], the smooth-muscle titin molecules 
had a filamentous shape with threads 3–4 nm thick and ~300 nm (on average) long with a 
globular head on one end (Figure 2a, inside the white squares). Besides individual mole-
cules, oligomers of this protein were also found: several titin molecules interacting with 
one another, often forming a thickening in the center (Figure 2b). Similar oligomers have 
been found earlier in titin preparations isolated from rabbit skeletal muscles [31]. 

Figure 1. (a) Evolution of field autocorrelation functions g1(t) of light scattered during SMTHMW

amyloid aggregate formation (pH 7.0–7.5, T = 25 ◦C). Aggregation was observed in a solution
containing 0.15 M glycine–KOH, pH 7.0–7.5; (b) size distributions of SMTHMW particles. Generation
of large aggregates and their time-dependent growth are shown; (c) distribution of SMTHMW particles
after 1 h disaggregation (for clarity, the graph shows monodispersed SMTHMW). The data reflect the
distributions corresponding to certain time points. Three independent experiments were carried out.

2.2. Electron and Atomic-Force Microscopy of SMTHMW Aggregates

Based on the DLS data presented above, investigations were conducted using two time
intervals (1 h and 24 h). Figure 2 shows AFM images of SMTHMW molecules in a solution of
0.6 M KCl, 30 mM KH2PO4, 1 mM DTT, 0.1 M NaN3, and pH 7.0. It was found that, as in the
case of striated-muscle titin [31,38,39], the smooth-muscle titin molecules had a filamentous
shape with threads 3–4 nm thick and ~300 nm (on average) long with a globular head on
one end (Figure 2a, inside the white squares). Besides individual molecules, oligomers of
this protein were also found: several titin molecules interacting with one another, often
forming a thickening in the center (Figure 2b). Similar oligomers have been found earlier
in titin preparations isolated from rabbit skeletal muscles [31].

Figure 3 shows electron micrographs of negatively stained SMTHMW aggregates
formed in a solution containing 0.15 M glycine–KOH, pH 7.0–7.5, at 4 ◦C. SMTHMW formed
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amorphous aggregates after 1 h and 24 h incubation (Figure 3). Aggregates became larger
after 24 h of incubation. In a number of cases, filamentous structures of about 4 nm in
diameter (represented, most likely, by titin filaments) were observed between amorphous
aggregates (Figure 3c).
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Figure 3. Electron microscopy of SMTHMW aggregates formed in a solution containing 0.15 M
glycine–KOH at pH 7.0–7.5 at 4 ◦C. (a) 1 h aggregation of SMTHMW. (b,c) 24 h aggregation of
SMTHMW. Protein filaments of a diameter of about 4 nm between amorphous aggregates (shown
by red arrows on the insert) can be seen. The most representative data, obtained as a result of
10 independent experiments, are given. Scale bar, 100 nm.
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According to AFM, after 1 h, aggregation SMTHMW aggregates looked like large
amorphous structures several micrometers long and up to 350 nm high (Figure 4a). After
24 h of aggregation, they had the form of branching flattened structures of more than 10 µm
in length and 200–250 nm in height (Figure 4b,c).
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To determine their capability of disaggregation, SMTHMW aggregates formed during
1 and 24 h were transferred to conditions with increased ionic strength (0.6 M KCl, 30 mM
KH2PO4, 1 mM DTT, 0.1 M NaN3, and pH 7.0). Figure 4d presents the results of 1 h
disaggregation. As can be seen in the figure, SMTHMW became much smaller and spherical
amorphous aggregates of about 100–200 nm in diameter and 100–120 nm in height. Apart
from amorphous aggregates, individual filaments occurred on the substrate (Figure 4g);
judging by their size, they may be bundles of SMTHMW molecules.

Figure 4e,f shows the disaggregation results for SMTHMW aggregates formed for 24 h.
Spherical amorphous aggregates up to 23 nm in height can be seen, as well as a network of
threads with a height of 5–6 nm.

2.3. Circular Dichroism

Figure 5a illustrates the circular dichroism (CD) spectrum of SMTHMW before and
after the formation of aggregates. No changes in the secondary structure were detected
upon the formation of SMTHMW aggregates: after chromatography the preparation had
6 ± 6% α-helices and 41 ± 6% β-structures, 53 ± 6% of turns and a disordered structure,
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whereas aggregated SMTHMW had a helix and β-structure content of 5 ± 6% and 42 ± 6%,
respectively, 53 ± 6% of turns and disordered structure. Thus, in both cases, we detected a
high content of β-structure and a disordered secondary structure.
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Figure 5. Investigation of the structure of SMTHMW aggregates by various methods. (a) CD spectrum
of SMTHMW; (b) FTIR spectra of titin and its aggregates at 20 ◦C. Protein concentration was 10 mg/mL;
(c,d) thioflavin T (ThT) staining of SMTHMW aggregates formed in a solution containing 0.15 M
glycine–KOH at pH 7.0–7.5. (c) 1 h formation of aggregates; (d) 24 h formation of aggregates;
(e,f) X-ray diffraction of SMTHMW aggregates formed after 1 h (e) and 24 h (f).

2.4. Fourier-Transform Infrared Spectroscopy

Figure 5b presents FTIR data obtained at 20 ◦C and corrected for the spectral contribu-
tion of water vapor and CO2. The experimental data were analyzed following the principles
described in [40]. The obtained estimates of the content of secondary structure elements
in samples of titin and its aggregates are given in Table 1. As the circular dichroism data,
the FTIR data indicate that the secondary structure of the protein does not change during
SMTHMW aggregation.

Table 1. Secondary structure content in chicken titin samples calculated by the FTIR method.

Preparation α-Helices, % β-Folds, % Turns, % Disordered Structure, %

Molecular SMTHMW 26 ± 1.0 25 ± 2.0 11.7 ± 0.6 32 ± 2.0
Aggregated SMTHMW 24.6 ± 1.6 26 ± 2.0 10.7 ± 0.4 34 ± 2.0

The results of two experiments are presented. The means and standard deviations are given.

2.5. Association of SMTHMW Aggregates with Thioflavin T

To identify the amyloid nature of SMTHMW aggregates, we investigated their binding
to thioflavin T. A significant increase in ThT fluorescence intensity in the presence of
SMTHMW aggregates formed over 1 h (Figure 5c) and 24 h (Figure 5d) was recorded and
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compared with that in the presence of monodispersed SMTHMW. After disaggregation, the
ThT fluorescence in the presence of SMTHMW aggregates was at the same level as that of
monodispersed SMTHMW after 1 and 24 h of the experiment.

2.6. X-ray Diffraction of SMTHMW Aggregates

The amyloid cross-β structure of SMTHMW aggregates was revealed by X-ray diffrac-
tion (Figure 5e,f). A 1 h aggregation featured a diffuse reflex at ~10 Å and a relatively
sharp reflex at ~4.7 Å (Figure 5e). X-ray diffraction of SMTHMW aggregates after a 24 h
aggregation revealed a diffuse reflex at ~10 Å and a sharp reflex at ~4.8 Å (Figure 5f).
The detected reflections can be ascribed to a cross-β structure. Thus, the presence of a
cross-β structure identified by X-ray diffraction analysis confirms that SMTHMW aggregates
are amyloids.

2.7. Small-Angle X-ray Scattering (SAXS)

SAXS was used to obtain information about the conformation of molecules in solu-
tion. For such high-molecular-weight structures as titin, this method makes it possible
to approximately estimate their internal conformation, taking into account the tangent
of the slope (tan A) of the log I–log S dependence. It is known that, for a rod-shaped
conformation, tan A = 1; that, for a planar conformation, tan A = 2; that, for globular
particles tan, A = 4. Using the DAMMIF program [41], it is also possible to visualize the
approximate three-dimensional structure of the protein.

From these data (Figure 6), it follows that molecular SMTHMW has a flat shape (plate
conformation) (tan A = −2.7) (Figure 6a). The latter is clearly visible in the insert (Figure 6c).
The aggregated shape of SMTHMW particles is also close to plate-like (more charged plate
conformation) (tan A = 2.65) (Figure 6b).

2.8. Differential Scanning Calorimetry of SMTHMW

The thermal stability of SMTHMW aggregates was elucidated by differential scanning
calorimetry (DSC). Figure 7 presents typical temperature dependences of excess heat
capacity of SMTHMW in monomeric and aggregated forms. As seen in the figure, the curves
have heat absorption peaks that might correspond to cooperative disruption of the structure.
Repeated heating of the preparations confirms that the process is irreversible. The heat
absorption peak maximum temperature of molecular titin, Tm, was 317.7 ± 0.1 K; the value
of transition calorimetric enthalpy, ∆Hcal = 870 ± 90 kJ mol−1. The heat absorption peak
maximum temperature of titin aggregates, Tm, was 321.7 ± 0.1 K; the value of transition
calorimetric enthalpy, ∆Hcal = 1090 ± 110 kJ mol−1.

2.9. SMT Amino Acid Sequence Identity

To reveal segments with large amino acid sequence identity that, according to available
data, have an increased tendency for aggregation [33], we calculated the identity in the
amino acid sequence between adjacent pairs of domains in smooth-muscle titin. Chicken
titin (UniProtKB—A6BM71_CHICK) was chosen for the calculations. Calculations carried
out using the BLAST program showed that the average identity in the amino acid sequence
between neighboring FnIII domains does not exceed 33 ± 7%, and between neighboring
Ig domains, it does not exceed 20 ± 11%, which is a relatively low indicator (Table 2,
Supplementary File S1). In two cases, however, domains with an identity higher than 50%
were observed.
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Figure 7. Typical temperature dependence of excess heat capacity of SMTHMW in monomeric (black)
and aggregated (blue) forms. Experiments were carried out 2 times for both the monomeric and
aggregated SMTHMW forms. The obtained curves coincided in temperature Tm to an accuracy of
0.1 K. The relative error in determining calorimetric enthalpy, ∆Hcal, did not exceed 10%.
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Table 2. Identity of the chicken-titin amino acid sequence.

Protein
Domain 1
(for Pair

Comparison)

Number of
Domains in the

Group

Average Length
of Domain

Domain 2
(for Pair

Comparison)

(Id) Mean
Identity, %

Side Standard Dis-
persion/Deviation

of Identity, %

N0, Number of
Domain Pairs with

Zero Identity

N, Total Number
of Domain Pairs N0/N·100, %

Chicken titin

Ig-like 64 81.4 Ig-like 20% 11% 647 4032 16%
Ig-like 64 81.4 FnIII-like 3% 4% 223 384 58%
Ig-like 64 81.4 none 2% 6% 526 704 75%

FnIII-like 6 84.3 FnIII-like 33% 7% 0 30 0%
FnIII-like 6 84.3 none 2% 2% 43 66 65%

none 11 104.2 none 3% 5% 59 110 54%

Identity was calculated by the formula: Id = 2 × Nid/(L1 + L2). Nid—number of identical residues in the alignment. L—number of residues in the domain. Chicken titin domains
were taken from the website: UniProtKB—A6BM71_CHICK. If there was a distance of more than 50 residues between the domains, then a pseudodomain with the signature none
FnIII-like = Fibronectin type-III was created. This corresponded to the I-band region of the skeletal muscle sarcomere, which is involved in extension and contraction between the Z-line
and the A–I junction [42]. The complete sequence for the smooth muscle isoform of titin or full-sized chicken skeletal titin is not available in the literature.
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2.10. Calculation of Unstructured Areas in the SMT Molecule

The disorder was revealed by analyzing the amino acid sequence UniProtKB—A6BM71
_CHICK using IsUnstruct, a specialized program for predicting the natural disorder of
proteins [43,44]. The average disorder of a titin fragment was 90% for PRK12323; 90%,
Ig-like; 30%, FnIII-like; 55%, none (Figure 8).
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3. Discussion

In the present work, we investigated the amyloidogenic propensity in the smooth-
muscle isoform of the giant protein titin. According to our results, three titin isoforms—with
molecular weights of ~500, ~1200, and ~1500–1600 kDa—were isolated from chicken
gizzard muscle tissue. Previously, we have shown the 500 kDa splice-isoform of titin
or its truncated fragment (SMTLMW) to form in vitro aggregates with amyloid prop-
erties and structure [34,35]. In this study, we show that the smooth-muscle titin iso-
form with MW~1500–1600 kDa and an isoform or a proteolytic fragment of this protein
with MW~1200 kDa (SMTHMW) also form aggregates in vitro. Detailed research into the
SMTHMW aggregation process was conducted to better understand the changes occurring
in this protein, which is undoubtedly involved in smooth muscle contraction.

Using DLS, we found that, upon decreasing ionic strength, chicken SMTHMW formed
large aggregates with a hydrodynamic radius of ~4500 nm over 1 h (Figure 1a). EM and
AFM showed SMTHMW aggregates formed over 1 h to be amorphous (Figures 3 and 4). In
general, chicken SMTHMW aggregation was fast, which made it impossible to determine
the lag period. The high aggregation rate of SMTHMW (three times as high as that for
SMTLMW [34]) was, apparently, due to the oligomeric forms of the protein and its monomers
present, as shown by AFM, in the high ionic-strength solution (Figure 2). Our results are
consistent with the literature data showing that the presence of oligomeric forms at the
initial stage of aggregation accelerates the process [45].

An increase of ThT fluorescence detected at the binding of the dye to SMTHMW
aggregates an hour after their formation indicates the amyloid nature of the structures
formed (Figure 5c,d). This is also supported by the X-ray diffraction data: the presence
of reflexes at 4.7 and 10 Å confirms the amyloid nature of SMTHMW aggregates formed
both after 1 and 24 h of incubation (Figure 5e,f). The X-ray diffraction data are indicative of
the presence of a quaternary cross-β structure in SMTHMW aggregates. It should be noted
that both reflexes are circular and partially blurred. Nevertheless, the reflex representing
the distance between the beta segments in the sheet was observed both after 1 h (4.7 Å,
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Figure 5e) and after 24 h (4.8 Å, Figure 5f) of aggregation. The 10 Å reflex representing the
distance between the beta sheets was blurred but was also present in both cases. According
to numerous literature data, such reflexes are characteristic of amyloid or amyloid-like
structures [46].

An uncharacteristic feature of the amyloid aggregation of titin is the formation of ag-
gregates without changing the secondary structure, which was confirmed by CD and FTIR
independent techniques (Figure 5a,b, Table 1). According to the literature data, in vitro ex-
periments with some proteins have shown that prior to the formation of amyloids, the struc-
ture of their molecules must undergo a transformation of the type of α-helix to β-folding or
random coil to β-sheet [47–49]. We revealed no such changes in the amyloid aggregation of
chicken SMTHMW. Similar results have been obtained earlier for chicken SMTLMW [34,35]
and for skeletal myosin binding protein C [46] that also consists of Ig-like and FnIII-like
domains. It appears that the ability to form amyloid aggregates without changes in the
secondary structure of molecules is a characteristic feature of the above-mentioned mul-
tidomain proteins, which distinguishes them from most other amyloid proteins.

Taking into account the EM data on protein filaments between amorphous SMTHMW
aggregates (Figure 3c) and the data on the presence of protein “filaments” after disaggre-
gation of SMTHMW aggregates (Figure 4e–g), we suggested that not the entire protein but
only its particular domains were involved in intermolecular interactions in the process of
amyloid SMTHMW aggregation. The proposed SMTHMW scheme of stacking to form an
amyloid structure during the aggregation is given in Figure 9. In particular, segments that
have a disordered structure and those whose structure is amyloid are shown.

Are there any confirmations of the assumption we make? In the literature, there
are comparative data obtained by cryoelectron microscopy on the structure of functional
amyloid aggregates of Orb2 and pathological aggregates of amyloid β-peptide [50]. Those
authors have shown that only a small part of its molecule is involved in the formation of the
amyloid nucleus in the functional amyloids of Orb2, whereas most of the molecule remains
dynamically disordered. Formation of the amyloid nucleus in pathological amyloid β-
peptide, on the contrary, involves most of its molecule. Given these data and the revealed
properties of SMTHMW aggregates, they can be classified as functional, which is indirectly
confirmed by their ability to disaggregate with ionic strength increasing (Figures 1 and 4).
It should only be noted that this type of aggregation is a model, since neither functional
nor pathological SMTHMW aggregates have been found in living cells.

It should also be understood that, due to the huge size and complex structure of the
titin molecule, its complete transition to the amyloid form is hardly possible. However,
its particular segments are, most likely, capable of forming an amyloid structure. This
assumption can be supported by literature data on the unfolding of individual titin do-
mains [51]. In particular, those authors have shown that the stepwise unfolding/folding of
titin immunoglobulin (Ig) domains occurs in the elastic I band region of intact myofibrils
at physiological sarcomere lengths and forces of 6–8 pN [52]. For this reason, we consider
the formation of amyloid segments to occur exactly between partially opened domains of
neighboring titin molecules.

It has also been shown that most proteins have amyloidogenic segments [53,54].
We calculated the number of amyloidogenic segments in randomly selected domains of
a chicken titin fragment, predicted using the FoldAmyloid program (three Ig-like and
three FnIII-like). From the data obtained (Supplementary File S2), there are at least two
amyloidogenic segments in each of the counted domains; furthermore, for example, the
Ig-like (I10) domain has five such segments. These data indicate a high potential propensity
of titin, inherent in its domains, to form amyloid aggregates.

When discussing the type of SMTHMW aggregates, it is necessary to dwell in more
detail on the DSC data, which are indicative of yet another feature of titin’s amyloid
aggregation. It is known that amyloid fibrils or aggregates of several proteins melt and
dissociate at temperatures of the order of 75–100 ◦C, which manifests itself in the form of
characteristic endothermic transitions on the thermograms [55–59]. It has been shown that



Int. J. Mol. Sci. 2023, 24, 1056 13 of 21

amyloid fibrils are more resistant to temperature than the native protein (their transition
temperatures differ by about 30–40 K) [59]. At the same time, it has been shown that the
enthalpy of the melting of amyloid fibrils is less than that of the native protein. Based on
this, it has been concluded that the density of intermolecular interactions in the amyloid
structure is lower than in the native protein [59]. Our experiments showed that the melting
point of the aggregated form of SMTHMW is slightly higher (by only 4 K) than that of the
molecular form of the protein (Figure 7). Herewith, the melting enthalpies of the aggregated
and non-aggregated forms of SMTHMW practically did not differ. These data suggest that
the total binding energy during the formation of SMTHMW aggregates did not change.
Attention should be also paid to the heat absorption peaks themselves. If we compare the
data obtained by us for SMT with the data for globular proteins, then the heat absorption
peak should be much larger. There is a possibility that the current peak of heat absorption
can correspond to the energy spent on the breakdown of the aggregates or oligomers of the
molecular and aggregated forms of the protein or even its particular domains. If this is the
case, then we failed to register the melting point, and it is above 373 K. Nevertheless, the
obtained data are of interest. It can be summed up that, in this temperature range (up to
373 K), the molecular form of the protein and its aggregates have relatively similar stability.
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between them are shown separately.

Discussing the issue of the type of (functional or pathological) amyloid aggregation, it
is worth noting that no cases of the transformation of functional to pathological amyloids
have been recorded. Most probably, there are molecular mechanisms of protection against
such a transformation that developed in the process of evolution. Thus, it is known that, in
multidomain proteins with homologous tandem repeats, the neighboring domains have a
low identity in the amino acid sequence. This feature formed, apparently, as a result of evo-
lutionary pressure, prevents incorrect protein stacking and subsequent aggregation [33]. It
is generally accepted that a low tendency for aggregation is characteristic of those proteins
in which the identity between domains is less than 40% [33]. Data on the identity of indi-
vidual titin domains in the amino acid sequence are known [33]. We calculated the identity
of amino acid sequences for chicken titin (Table 2). Calculations showed this fragment to
contain only two domains with an identity greater than 50% (Supplementary File S1). The
average identity of the amino acid sequence between pairs of neighboring FnIII-like or
Ig-like domains does not exceed 40% (Table 2). Thus, it can be concluded that chicken SMT
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has a low tendency towards aggregation. It has been shown, however, that upon sarcomere
elongation, titin domains are capable of unfolding in situ [52], herewith opening the hidden
hydrophobic sites that may lead to its aggregation.

In conclusion, regarding the possible role of the revealed changes for the muscle
in vivo, it is necessary to recall one of the early works in which the authors show, using AFM,
that repeated mechanical cycles of the extension/relaxation of multidomain proteins can
lead to the formation of misfolded structures formed by two neighboring domains [60]. The
misfolding was completely reversible and changed the mechanical topology of the domains,
while maintaining the same stability as in the original folded state. The authors conclude
that multidomain proteins can assume a new state of incorrect stacking. These data and
the data we obtained can be important from the viewpoint of a better understanding of
the functioning of multidomain muscle proteins, in particular titin, in the sarcomere and
muscle as a whole. It is not to be ruled out that structural changes occurring in this protein
during the muscle extension/contraction cycle are involved not only in the fine-tuning of
elastic properties but also in changing the contractile response of the muscle. Future in vivo
studies of titin structural modifications and misfolding will reveal more subtle nuances of
the involvement of this protein in the functioning of muscle cells.

4. Conclusions

In summary, in vitro nonspecific amyloid aggregation of chicken SMTHMW was found.
Over relatively short times (within 1 h), the protein formed amorphous amyloid aggregates
with a quaternary cross-β structure without undergoing changes in the secondary structure.
The thermal stability of SMTHMW aggregates did not practically differ from that observed
in protein preparations containing both monomers and oligomers. Amyloid aggregates
of SMTHMW disaggregated almost completely at an increase in the ionic strength of the
solution. Amyloid aggregates of this type are functional rather than pathological, so
a similar aggregation of titin in vivo to perform certain functions cannot be ruled out.
However, the involvement of this protein in the formation of amyloid deposits has not been
shown yet, which positions this protein as a model object to study the process of the amyloid
aggregation of a non-pathological type. Our data expand the views about the fundamentals
of amyloidogenesis. Besides, disclosing the mechanisms of the formation of functional and
pathological amyloids and understanding their differences at the structural level can give
an idea of how the cell regulates amyloid aggregation for its desired functioning, avoiding
the manifestation of the toxicity of pathological amyloids.

5. Materials and Methods
5.1. Purification of Chicken Gizzard SMT

Smooth-muscle titin was prepared from chicken gizzard by the method described
in [61] with our modifications described in [34]. SMTHMW was purified by gel filtration on
a Sepharose-CL2B column equilibrated in a buffer containing 0.6 M KCl, 30 mM KH2PO4,
1 mM DTT, 0.1 M NaN3, pH 7.0. Protein concentration was determined by a SPECORD UV
VIS spectrophotometer using the extinction coefficient (E280

1 mg/mL) of 1.37 for titin [62].
For this research, the protein has been isolated more than 20 times.

5.2. SDS-PAGE and Mass Spectrometry Analysis of Titin

The presence of SMTHMW in the sample was confirmed by sodium dodecyl sulfate–
polyacrylamide gel electrophoresis (SDS-PAGE) (Supplementary File S3) and mass spec-
trometry analysis, the data of which are described in [36]. The molecular weight of SMTHMW
was assessed by TotalLab software v1.11 (Supplementary File S3). Two protein bands are
visible, which are most likely SMTHMW isoforms, or the lower band is a proteolytic frag-
ment of this protein (Supplementary File S3, gels 1–4). By the densitometry data, the
molecular weight of the upper band of the protein is ~1635 ± 245 kDa; its content is ~68.5%.
The molecular weight of the lower band is ~1245 ± 189 kDa; its content is ~31.5%. The
SDS-PAGE of titin was performed using a separating gel containing 6.5–7% polyacrylamide
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prepared as described [62]. The gels were stained with Coomassie Brilliant Blue G-250
and R-250 mixed at a 1:1 ratio. For shotgun mass spectrometry analysis, the sample was
solubilized into a buffer (4% sodium dodecyl sulfate in 0.1 M Tris-HCl pH 7.6, 0.1 M dithio-
threitol) and incubated for 5 min at 95 ◦C as described [36,63]. The samples were sonicated
(4 × 30 s at 20 W; ME220, Covaris, Woburn, MA, USA), centrifuged (5 min, 16,000× g),
and the supernatant was collected. The YM-30 filter (Millipore, Ireland) was used for
alkylation and trypsinolysis (14 h, 2 µg of trypsin (Trypsin Gold, Promega, Madison, WI,
USA)) according to the FASP method [64]. Peptides were desalted using C18 microcolumns
and subjected to HPLC–MS/MS analysis using the HPLC Ultimate 3000 RSLCnano system
(Thermo Scientific, Waltham, MA, USA) as described [36,63].

5.3. Conditions for the Formation of SMT Aggregates

Purified SMTHMW in a column buffer (0.6 M KCl, 30 mM KH2PO4, 1 mM DTT,
0.1 M NaN3, pH 7.0) was used to form aggregates. SMT aggregates (concentration,
0.2–0.4 mg/mL) were formed by dialysis in Sigma-Aldrich cellulose membrane tubing
(size, 25 × 16 mm) for 1 and 24 h at 4 ◦C against a solution containing 0.15 M glycine–KOH,
pH 7.0–7.5. In disaggregation experiments, SMT aggregates were dialyzed during 1 and
24 h against a column buffer.

5.4. Dynamic Light Scattering Experiments

DLS experiments were conducted according to a protocol described in [34,35]. For the
DLS analysis of SMT aggregation, a protein sample in a buffer containing 0.6 M KCl, 30 mM
KH2PO4, 1 mM DTT, 0.1 M NaNO3, pH 7.0, at an initial concentration of 1 mg/mL, was
transferred into a solution of 0.15 M glycine–KOH, pH 7.0–7.5, by gradual dilution to a final
concentration of 0.1 mg/mL to decrease ionic strength. Further steps were as in [35]. The
collected autocorrelation functions were converted into particle-size distributions, using
the general-purpose algorithm provided with the ZS Zetasizer Nano (Malvern Instruments
Ltd., Malvern, UK) used in this experiment. Particle-size distributions obtained from
alternative inversion algorithms yielded comparable results. The dynamic viscosity of the
protein solutions determined using an SV-10 Sine-wave Vibro Viscometer (A&D Company
Ltd., Tokyo, Japan) at 25 ◦C was 0.92 cP. This value was taken into consideration when
measuring the particle dimensions in SMT samples collected 60 min after the dialysis. The
analyzed volume of scattering with a beam cross-section of ~100 µm, accounting for the
protein concentration used, contained about 10 billion SMT protein molecules, the signal
from which was measured. The correlation function signal accumulated over 15 cycles
of 15 s each (the way it is described in [34,35]). The results were obtained from three
independent experiments.

5.5. Transmission Electron Microscopy

A drop of aggregated protein suspension at a concentration of 0.1 mg/mL was applied
to a carbon-coated collodion film (2% collodion solution in amyl acetate (Sigma-Aldrich, St.
Louis, MO, USA)) on a copper grid (Sigma-Aldrich, St. Louis, MO, USA) and negatively
stained with 2% aqueous uranyl acetate (SPI-Chem., West Chester, PA, USA). Samples
were examined under a JEM-100B electron microscope (JEOL Ltd., Tokyo, Japan). Samples
obtained from five independent protein isolations were analyzed; many different fields of
view were analyzed.

5.6. Atomic-Force Microscopy

For AFM measurements, titin aggregates were attached to freshly cleaved mica. An
aliquot of titin (10–20µL) was pipetted onto the mica surface and incubated at room
temperature for 10 min. Unbound protein was washed away by extensive rinsing with
distilled water, then by blowing gently with a stream of high-purity N2 gas. The noncontact
mode (alternating current or AC mode) AFM images of titin aggregates bound to the mica
surface were acquired with a Cypher ES AFM instrument (Asylum Research, Santa Barbara,
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CA, USA). Scanning was performed at high set-point values (0.8–1.2 V) to avoid the binding
of the sample to the cantilever tip. Silicon nitride cantilevers (Olympus) were used for
scanning in air (AC160TS, resonance frequency~300 kHz). At a typical scanning frequency
of 0.7–1.4 Hz, we collected 512 × 512 pixel or 1024 × 1024 pixel height-, amplitude-, and
phase-contrast images.

To prepare samples of SMTHMW aggregates for AFM, 2 µL of the protein was trans-
ferred to freshly cleaved mica and incubated for 5 min. The sample was then washed
three times in a drop of distilled water deionized by a type I Milli-Q system for 30 s and
dried in the air. AFM imaging was performed using an AFM Ntegra-Vita microscope
(NT-MDT, Russia) in noncontact (tapping) mode in air. The typical scan rate was 0.5–1 Hz.
Measurements were carried out using NSG03 cantilevers with a resonance frequency of
47–150 kHz and ensured a 10 nm tip curvature radius. The processing and presentations
of AFM images were performed using Nova software 1.0.26 (NT-MDT, Moscow Region,
Russia) and Gwyddion 2.4450 software (http://gwyddion.net/download-old.php accessed
on 17 April 2018. Experiments were replicated by independently executing the process of
protein preparation, their incubation at 37 ◦C, and sample analysis three times. AFM images
of a buffer solution (0.15 M glycine–KOH, pH 7.0–7.5) containing no titin are presented in
Supplementary File S4. Samples obtained from three independent protein isolations were
analyzed; many different fields of view were analyzed.

5.7. Circular Dichroism

SMTHMW was dialyzed for 24 h against a buffer containing 0.15 M glycine–KOH, pH
7.0–7.5. The CD spectra prior to and after SMTHMW aggregation were recorded in a Jasco
J-815 spectrometer (JASCO Inc., Tokyo, Japan) using 0.1 cm optical path-quartz cells and
wavelengths of 250–190 nm.

Three repeats of the spectrum were taken for each investigated sample. Data process-
ing and graphical representation were performed in the SigmaPlot program. Based on the
absorption spectrum, the exact protein concentration was calculated using the formula:
C = ABS280/l/Ke (where ABS280 is the absorption value at a wavelength of 280 nm, l is the
optical path length in cm, Ke is the extinction coefficient).

Three spectra in the far UV region obtained for the investigated sample were averaged
and smoothed in the spectropolarimeter software (Spectra Manager Version 2, Spectra
Analysis Version 2.02.06 (Build 1) Spectra Analysis Jasco). A similar procedure was done
for the three spectra obtained for the buffer solution. The averaged spectrum of the buffer
solution was subtracted from the obtained averaged spectrum of the investigated sample.
The value of molar ellipticity [Θ] was calculated by the formula:

[Θ]λ = Θ λ · RMW/l·c,

where Θ λ is the measured value of ellipticity at the wavelength λ, millidegrees; RMW, the
average molecular weight of the residue, calculated from the amino acid sequence; l, the
optical path length, mm; c, protein concentration, mg/mL.

The secondary structure was calculated using the CONTIN/LL module of the CDPro
program [65]. The mean root square deviation (RMSD) according to the CDPRO program
did not exceed 6%.

5.8. Fourier-Transform Infrared Spectroscopy

Measurements were carried out on a Thermo Scientific Nicolet 6700 FT-IR spectrometer,
equipped with the Smart Proteus accessory with a Peltier cuvette holder, in transmission
mode in a cuvette of crystalline calcium fluoride with an optical pathlength of 4 µm, using
a liquid nitrogen-cooled MCT detector. Scanning in the wavenumber range from 650 to
4000 cm−1; resolution, 1 cm−1; averaging over 256 spectra. The device was calibrated
according to the manufacturer’s instructions.

The IR spectra of titin preparations’ solutions in a corresponding buffer and the spectra
of the buffer itself were measured at 20 ◦C. The concentration of the protein was 10 mg/mL.

http://gwyddion.net/download-old.php
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The optical path length of the CaF2 cuvette was calculated for each measurement based on
the optical density of the test sample at 3404 cm−1, using the water absorption value at an
optical pathlength of 1 µm equal to 0.533 AU, adjusted for the protein concentration in the
sample [66]. The optical pathlength of the cuvette was 4.52 ± 0.04 µm. The IR spectrum
of the protein preparation was measured twice; the buffer spectrum was also registered
twice. The IR spectrum of the buffer (0.6 M KCl, 30 mM KH2PO4, 1 mM DTT, 0.1 M NaNO3,
pH 7.0, for molecular SMT; and 0.15 M glycine–KOH, pH 7.0–7.5, for the aggregated form of
the protein) was subtracted from each protein spectrum, taking into account the difference
in the values of the optical path length in the measurements. Each difference spectrum was
adjusted for the spectral contribution of water vapor and CO2, followed by the analysis in
the wavenumber range of 1725 to 1481 cm–1 for the content of secondary structure elements
in the protein, following the principles described in [40]. A sample obtained from three
different isolations of the protein was used. The obtained estimates of secondary structure
elements in the protein were averaged by the results of two measurements. The standard
deviations of the values of the secondary structure elements in the protein are given.

5.9. Fluorescence Analysis with Thioflavin T

The amyloid nature of the SMTHMW aggregates was estimated by the intensity of
thioflavin T (ThT) fluorescence (1 ThT:5 SMT (w/w)). Fluorescence was measured at
λex = 440 nm and λem = 488 nm using a Cary Eclipse spectrophotometer (Varian, Palo Alto,
CA, USA). Four independent series of measurements were carried out. The amyloid nature
was assessed from the difference of fluorescence intensity between the non-aggregated and
aggregated forms of the protein. This method was used as a control of the amyloid nature
of titin aggregates after each isolation of the protein.

5.10. X-ray Diffraction

SMTHMW aggregates for X-ray diffraction analysis were prepared after a 1 h and 24 h
incubation at 4 ◦C in an experimental solution. A sample obtained from three different
isolations of the protein was used. Then the aggregates were concentrated up to more than
10 mg/mL by centrifugation at 12,000 rpm for 60 min. Droplets of this preparation were
placed between the ends of wax-coated glass capillaries (approximately 1 mm in diameter)
separated by a gap of approximately 1.5 mm. Fiber diffraction images were collected
using a Microstar X-ray generator with HELIOX optics equipped with a Platinum135 CCD
detector (X8 Proteum system, Bruker AXS) at the Institute of Protein Research, Russian
Academy of Sciences, Pushchino. Cu Kα radiation, λ = 1.54 Å (1 Å = 0.1 nm), was used.
The samples were positioned at a right angle to the X-ray beam using a four-axis kappa
goniometer. Different exposures and different oscillation angles were used; the sample
itself was irradiated in different orientations.

5.11. Small Angle X-ray Scattering

SAXS experiments were carried out on a small-angle camera of the Photon Factory
(Tsukuba, Japan). The protein solution in a thermostatted cuvette with mica windows was
irradiated by X-rays of a wavelength 1.503 Å at 23 ◦C. The distance between the sample and
the detector was 2.35 m. The range of the measured scattering vectors is Q = 0.008–0.2 Å−1

(Q = 4π sin θ/λ, where λ is the X-ray radiation wavelength and 2θ is the scattering angle).
X-ray scattering was detected by a PILATUS 100K two-dimensional X-ray detector. The
shape of the particles was estimated from the tangent of the angle of inclination log I on
log Q, where I is the scattering intensity, and Q is the scattering vector modulus [67]. Log
I–log Q dependences in SAXS data were approximated by linear regression. Correlation
coefficients (R2) ranged from 0.92 to 0.99.

5.12. Differential Scanning Calorimetry

DSC measurements were made on a SCAL-1 precision scanning microcalorimeter (Scal
Co. Ltd., Pushchino, Russia) with 0.33 mL glass cells at a scanning rate of 1 K/min and
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under a pressure of 2.5 atm [68]. The experiments were performed in 0.15 M glycine–KOH
at pH 7.0–7.5. The protein concentrations were 1.2 mg/mL. The experimental calorimetric
traces were adjusted for the calorimetric baseline, and the molar partial heat capacity
functions were calculated in a standard manner. The excess heat capacity was evaluated by
the subtraction of the linearly extrapolated initial and final heat capacity functions with
correction for the difference of these functions by using a sigmoidal baseline [69]. DSC
experiments were carried out 2 times for both the monomeric and aggregated SMTHMW
forms. The obtained curves coincided in temperature Tm to an accuracy of 0.1 K. The
relative error in determining calorimetric enthalpy, ∆Hcal did not exceed 10%.

5.13. Calculation of the Identity of the Amino Acid Sequence and Disordered Regions in the
SMTHMW Molecule

The SMTHMW amino-acid sequence identity was calculated by the BLAST program.
The data were retrieved from the UniProtKB databases: UniProtKB—A6BM71_CHICK.
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