
Citation: Jagadeesan, S.K.; Al-gafari,

M.; Wang, J.; Takallou, S.; Allard, D.;

Hajikarimlou, M.; Kazmirchuk,

T.D.D.; Moteshareie, H.; Said, K.B.;

Nokhbeh, R.; et al. DBP7 and YRF1-6

Are Involved in Cell Sensitivity to

LiCl by Regulating the Translation of

PGM2 mRNA. Int. J. Mol. Sci. 2023,

24, 1785. https://doi.org/10.3390/

ijms24021785

Academic Editors: Naoyuki

Kataoka and Rui Henrique

Received: 15 November 2022

Revised: 13 January 2023

Accepted: 14 January 2023

Published: 16 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

DBP7 and YRF1-6 Are Involved in Cell Sensitivity to LiCl by
Regulating the Translation of PGM2 mRNA
Sasi Kumar Jagadeesan 1,2, Mustafa Al-gafari 1,2, Jiashu Wang 1,2, Sarah Takallou 1,2, Danielle Allard 1,2,
Maryam Hajikarimlou 1,2 , Thomas David Daniel Kazmirchuk 1,2, Houman Moteshareie 2,3,
Kamaledin B. Said 2,4 , Reza Nokhbeh 2, Myron Smith 2, Bahram Samanfar 2,5 and Ashkan Golshani 1,2,*

1 Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
2 Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
3 Biotechnology Laboratory, Environmental Health Science and Research Bureau,

Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
4 Department of Pathology and Microbiology, College of Medicine, University of Hail, Hail 55476, Saudi Arabia
5 Agriculture and Agri-Food Canada, Ottawa Research and Development Centre (ORDC),

Ottawa, ON K1A 0C6, Canada
* Correspondence: ashkan_golshani@carleton.ca

Abstract: Lithium chloride (LiCl) has been widely researched and utilized as a therapeutic option for
bipolar disorder (BD). Several pathways, including cell signaling and signal transduction pathways
in mammalian cells, are shown to be regulated by LiCl. LiCl can negatively control the expression
and activity of PGM2, a phosphoglucomutase that influences sugar metabolism in yeast. In the
presence of galactose, when yeast cells are challenged by LiCl, the phosphoglucomutase activity
of PGM2p is decreased, causing an increase in the concentration of toxic galactose metabolism
intermediates that result in cell sensitivity. Here, we report that the null yeast mutant strains DBP7∆
and YRF1-6∆ exhibit increased LiCl sensitivity on galactose-containing media. Additionally, we
demonstrate that DBP7 and YRF1-6 modulate the translational level of PGM2 mRNA, and the
observed alteration in translation seems to be associated with the 5′-untranslated region (UTR) of
PGM2 mRNA. Furthermore, we observe that DBP7 and YRF1-6 influence, to varying degrees, the
translation of other mRNAs that carry different 5′-UTR secondary structures.

Keywords: molecular toxicity; lithium chloride; bipolar disorder; cell sensitivity; gene expression;
translation; yeast

1. Introduction

Lithium is presently the first-line therapeutic choice for people suffering from bipolar
illness. Bipolar disorder (BD), characterized by periodic bouts of severe depression and
(hypo)mania interspersed with periods of remission, affects an estimated 1–5% of the
adult population worldwide. Mood stabilizers, including anticonvulsants, atypical antipsy-
chotics, and lithium salts, are often used to treat acute bouts of depression in the short and
long term, as well as to prevent recurrences in the long run [1,2]. A lithium-based treatment
regime for BD has been shown to be effective in avoiding mood relapses and lowering
suicide probability in BD patients [3]. Approximately 30% of patients with BD are believed
to be great responders to preventive medications, whereas 70% of patients exhibit varying
degrees of response to Li [4]. LiCl is shown to alter the signaling pathways of protein
kinase C and glycogen synthase kinase 3 and has immediate effects on neuroplasticity and
behavior [5,6].

Previous work has revealed that when galactose is used as a sugar source, the bud-
ding yeast Saccharomyces cerevisiae is sensitive to LiCl exposure [7]. Alterations in PGM2
expression and activity were shown to cause the observed LiCl sensitivity. PGM2 is a
phosphoglucomutase that aids galactose entry into the glycolysis process [7–9]. In the
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process of glycogenolysis, the conversion of glucose-1-phosphate to glucose-6-phosphate
is facilitated by the PGM2 enzyme. Impeding PGM2 activity results in harmful interme-
diate metabolite aggregation and induces cell toxicity in yeast cells. As a result, yeast
cell growth is substantially inhibited when grown on a galactose medium containing LiCl
owing to metabolite buildup and glycolysis impairment [9]. LiCl has also been reported
to disrupt the enzyme activity associated with ribosomal biogenesis, mRNA maturation
in the cytoplasm, and rRNA processing, suggesting a potential translational inhibitory
mechanism [10,11]. During the translation process, LiCl seems to alter the activity of certain
eukaryotic translation initiation factors (eIFs), which are key elements in translation initia-
tion regulation and function [8]. Translation initiation factor eIF4A, known as TIF2 in yeast,
is an archetypal DEAD-box RNA helicase which functions in tandem with eIF4B, eIF4E,
eIF4G, and eIF4H and unwinds mRNA secondary structures at the 5’ untranslated region
(UTR), in preparation for ribosomal binding. Ribosome scanning of the mRNAs is aided by
eIF4A ATPase-dependent duplex-unwinding activity, and the latest findings suggest that
this activity is dependent on both RNA secondary structures and sequence patterns [12].
eIF4A has been implicated in yeast’s response to LiCl stress [8]. Overexpression of eIF4A
has been found to restore yeast cell sensitivity to LiCl in a galactose medium [13,14].

The mRNA 5′-UTR may include various regulatory elements, such as a translation ini-
tiation motif, upstream AUGs, upstream ORFs, 5′-cap structure, terminal oligo-pyrimidine
strands, G-quadruplexes, internal ribosome entry sites, and secondary structures [15].
Among these, primarily the secondary structures at 5′-UTRs are thought to influence trans-
lation efficiency significantly [16]. The presence of a strong secondary structure in the
5′-UTR of an mRNA can substantially reduce translation efficiency by extending the “dwell
time” of preinitiation complex formation during translation initiation [17]. Recent investi-
gations have established a connection between LiCl cell sensitivity and the translation of
structured mRNAs in yeast [13,14,18].

Here, we observe that the yeast mutant strains dbp7∆ and yrf1-6∆ cultured on a
galactose medium had enhanced cell sensitivity to LiCl. DBP7 exhibits helicase activity and
is reported to be actively involved in ribosomal biogenesis [19]. YRF1-6 encodes a DNA
helicase called Y-Helicase protein 1 and shares homology with eif4A [20]. Our findings
suggest that DBP7 and YRF1-6 influence PGM2 translation. This observed activity appears
to impact the structured 5’-UTR of PGM2 mRNA in addition to many additional structured
5’-UTRs.

2. Results
2.1. DBP7 and YRF1-6 Gene Deletions Diminish Yeast Tolerance to Lithium Chloride

The functional characteristics of various chemicals and biologically active compounds
can be studied using chemical genetic methods [21,22]. These approaches provide imper-
ative information on the fundamental mechanism of action of a compound as well as its
secondary mode of action inside a cell. In this context, the sensitivity of gene mutant strains
to a targeted drug serves as a powerful tool for identifying cellular target pathways for
that drug. In this research investigation, we discovered that two gene deletion mutants,
DBP7 and YRF1-6, were more sensitive to LiCl (Figure 1B,C) than a WT control strain.
Deletion of DBP7 and YRF1-6 significantly reduced cell growth in galactose-containing
media supplemented with 10 mM LiCl. This suggests a functional relationship between
these genes and the LiCl mechanism of action on yeast cells. It remains possible that the ob-
served sensitivity for the gene deletion mutants might be due to an unintended secondary
mutation within these strains. To investigate that possibility, we further established a clear
connection between the observed impairments from LiCl sensitivity and our potential gene
targets by showing that the re-introduction of the deleted genes back into the deletion
strains repaired the previously impaired growth. (Figure 1B). Our quantitative study vali-
dates these results by directly comparing the colony-forming units in a medium containing
10mM LiCl (Figure 1C). In comparison to the control strain, gene deletion mutants formed
fewer colonies, indicating an increased sensitivity to LiCl. Deletion of TIF2, DBP7, and
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YRF1-6 resulted in a decrease in the formation of colonies, as seen in Figure 1C. As shown
before, restoration of the deleted genes back into the target gene mutant strains elevated
colony formation to the control levels. The cells exhibited no discernible sensitivity when
we evaluated our target strains on the YPgal medium without LiCl (Figure 1A). We also
investigated how yeast strains responded to LiCl, with glucose being the carbon source.
When glucose was used, there was no change in sensitivity in yeast mutant strains and WT,
as expected (Figure S1).
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Figure 1. Spot test and colony count analysis demonstrated that dbp7∆ and yrf1-6∆ exhibit increased
LiCl sensitivity when compared to the WT. In (A,B), yeast cells were serially diluted (10−1 to 10−4)
and spotted onto Ypgal media with or without 10mM LiCl. Dbp7∆ and Yrf1-6∆ exhibit less growth
when exposed to LiCl. In gene deletion mutants, restoration of the target genes resulted in a recovery
of LiCl sensitivity. Similarly, GAL1 deletion reversed LiCl sensitivity in target gene deletion mutants.
WT and tif2∆ are used as controls. (C) When treated with 10mM LiCl, mutant strains dbp7∆ and
yrf1-6∆ formed considerably fewer colonies than the WT in the colony count analysis. The bars reflect
mean values (n ≥ 3), and the error bars represent standard deviation and the ‘*’ indicates statistically
notable outcomes compared to the WT. Each experiment was conducted in triplicates, with similar
outcomes.

It is thought that LiCl inhibits PGM2 expression in the presence of galactose, causing
yeast cells to accumulate toxic intermediate metabolites during galactose metabolism. In
the initial stages of galactose metabolism, GAL1 encodes galactokinase, which is involved
in the phosphorylation of α-D-galactose to α-D-galactose-1-phosphate in yeast. To examine
the involvement of DBP7 and YRF1-6 in LiCl sensitivity when galactose metabolism is
disrupted, we created DBP7 and YRF1-6 double gene deletions in conjunction with the
GAL1 gene. Interestingly, GAL1 double mutant cells with our candidate genes were no
longer sensitive to LiCl, suggesting that the observed sensitivity for DBP7 and YRF1-6
deletion mutants is connected to galactose metabolism (Figure 1B,C). Notably, DBP7 and
YRF1-6 have no reported connection to LiCl sensitivity or the biochemical pathways that
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might support these observations, making them intriguing gene candidates for further
research.

2.2. DBP7 and YRF1-6 Regulate PGM2 Expression at the Translational Level

PGM2 is a key target for LiCl sensitivity. We investigated the impact of DBP7 and
YRF1-6 on the expression of PGM2. For protein content analysis, anti-GFP antibodies were
used in western blot analysis to measure GFP-tagged PGM2p (Figure 2A). Under control
conditions (no exposure to LiCl), gene deletions for DBP7 and YRF1-6 showed similar
protein levels for PGM2p to that of the control strain. Intriguingly, after exposure to LiCl,
the deletion of our target genes significantly reduced PGM2p protein levels in comparison
to the WT. In addition, qRT-PCR was performed to investigate the impact of DBP7 and
YRF1-6 gene deletions on the PGM2 mRNA levels. As indicated in Figure 2B, there were no
statistically notable variations in PGM2 mRNA content between the mutant strains and the
WT in the treatment and control groups. Therefore, it seems that the deletion of DBP7 and
YRF1-6 has little impact on the levels of PGM2 mRNA. As a result, DBP7 and YRF1-6 seem
to control PGM2p protein expression. These observations support our previous research
findings, indicating that the deletion of specific genes that conferred LiCl sensitivity caused
a reduction in PGM2 translation in the presence of LiCl [13,18].
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Figure 2. PGM2p-GFP protein and PGM2 mRNA content were examined using western blot and
qRT-PCR with and without LiCl treatment (A) In the deletion strains DBP7 and YRF1-6, the amount
of PGM2p-GFP protein is reduced by LiCl treatment. As an internal control, the housekeeping protein
PGK1p was employed, and the data was standardized based on it. (B) There was no statistically
significant variation in mRNA content across the yeast variants studied. Individual Ct values in this
experiment were between 20 and 22.5. PGK1 mRNA was used as an internal control. All experiments
were carried out in triplicates. The bars reflect the mean values (n ≥ 3), the error bars represent the
standard deviation, and the ‘*’ indicates statistically notable outcomes compared to the WT.
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2.3. DBP7 and YRF1-6 Deletion Directly Impact β-Galactosidase Reporter mRNAs with
Secondary Structures at 5′-UTR

Previously, it was shown that PGM2 mRNA at the 5’-UTR was utilized by multiple
genes to regulate the expression of PGM2 at the translational level [10,13]. The PGM2
mRNA at the 5’-UTR is predicted to have a stem-loop region (Figure S2). Expression
of PGM2 was significantly diminished with the removal of TIF2, a helicase protein that
unwinds mRNA strands during the initiation of translation [10,14]. Using the secondary
structure of PGM2 mRNA at the 5’-UTR, we next asked whether DBP7 and YRF1-6 had
an influence on PGM2 translation through this specific sequence. For this purpose, a lacz
expression cassette in the p416 expression plasmid with PGM2 5’-UTR incorporated in front
of the Lacz gene was used. The parental p416 plasmid that lacked a secondary structure
in front of the lacz gene (control plasmid), and the pPGM2 plasmid that carried the PGM2
hairpin structure at its 5′-UTR, were transformed into our target yeast mutant strains, as
well as the WT strain. Lacz gene expression was measured using β-galactosidase activity
(Figure 3A). As anticipated, we found no apparent change in β-galactosidase activity among
our target strains harboring the parental plasmid (p416), in which the mRNAs lacked
a structure at their 5’-UTR. However, β-galactosidase activity was considerably reduced
in dbp7∆, and yrf1-6∆, similar to the tif2∆ control, carrying pPGM2 expression plasmid
that contains PGM2 mRNA secondary structure at the 5’-UTR, suggesting a relationship
between DBP7 and YRF1-6 activity and structured PGM2 mRNA translation.
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Figure 3. β-galactosidase analysis of our candidate gene deletions carrying the construct p416, with
and without PGM2 hairpin. (A) Yeast strains carrying intact p416 construct lacking a secondary
structure upstream of the lacz reporter mRNA. β-galactosidase activity observed for the yeast mutant
strains and WT had no significant difference. (B) Yeast strains carrying a modified p416 construct
with PGM2 mRNA 5′-UTR structure upstream of the lacz reporter mRNA. B-galactosidase activity was
reduced in the tif2∆, dbp7∆, and yrf1-6∆ strains compared to the WT. Bars represent mean values
(n ≥ 3), and ‘*’ represents statistically significant results compared to the WT. The insets illustrate
schematic reporter mRNA structures.
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The impact of DBP7 and YRF1-6 on other structured mRNAs was then investigated.
A total of four additional constructs were used in this experiment, each of which carried
a unique structure at their 5’-UTR in front of a lacz reporter gene. pBcell has a structure
derived from BCL2 mRNA with a ∆G value of −20 kcal/mol. pRTN contains a structured
5’-UTR from RTN4IP1 mRNA with a ∆G value of −29.8 kcal/mol, and the pTAR structure
is obtained using HIV1 mRNA with a ∆G value of −57.9 kcal/mol. The final construct,
p2hair, has a synthetic structure with a high degree of complexity, ∆G = −33 kcal/mol.
Using these constructs, we observed that deleting DBP7 and YRF1-6 considerably lowered
the lacz expression carrying all four highly structured mRNAs at their 5′-UTR compared
to the WT (Figure 4). This indicates that our target genes DBP7 and YRF1-6 may play a
broader role in the translation, specifically in the translation of structured mRNAs.

2.4. Deletion Mutants for DBP7 and YRF1-6 Show Increased Sensitivity to
Phenethyl Isothiocyanate

It has been observed that phenethyl isothiocyanate (PEITC), a naturally occurring
component of cruciferous vegetables, inhibits cap-dependent translation, specifically the
translation of mRNAs harboring secondary structures at 5’UTR [23,24]. If DBP7 and
YRF1-6 are affecting the translation of structured mRNAs, it might be expected that their
gene deletion mutants may also possess increased sensitivity to PEITC. To study this, we
subjected gene deletion mutants for DBP7 and YRF1-6 to sensitivity analysis using PEITC.
It was observed that the deletion mutants of DBP7 and YRF1-6 had increased sensitivity
to 15 µM PEITC (Figure 5). As expected, the re-introduction of the deleted genes into
their respective target mutant strains reverted the observed sensitivity induced by PEITC
treatment, indicating that the exhibited phenotypes are a direct consequence of the deletion
of the target genes.

2.5. Genetic Interaction Analysis Connects the Activity of DBP7 and YRF1-6 to
Protein Biosynthesis

The concept underlying genetic interaction (GI) analysis is that parallel pathways allow
flexibility and tolerance to random damaging mutations, hence sustaining cell survival
and homeostasis. In certain instances, a gene from one pathway may complement a gene
from another. Therefore, when two genes in parallel pathways are eliminated, the fitness
of the cell may drastically decline (cell sickness), or in severe cases, the cell may die (cell
lethality). Because of the decreased cell fitness observed in the double mutants, this type of
GI is referred to as a negative genetic interaction (nGI). nGIs have been commonly used
in different studies to examine various functions for genes, identify complex biological
networks and understand various molecular pathways [19–21].
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Figure 4. Analysis of β-galactosidase activity in yeast strains. (A) Activities of β-galactosidase mRNAs
with a strong hairpin construct, pBcell carrying the 5’-UTR of the BCL-2 gene located upstream of a
lacz reporter gene, were dramatically reduced in yeast mutant strains relative to the WT. The pRTN
(B) and pTAR (C) constructs, respectively, contain the structures from the 5’-UTR of the FOAP-11
and HIV TAR-1 genes in front of the β-galactosidase reporter mRNA and have considerably decreased
values in strains dbp7∆, yrf1-6∆, and tif2∆ compared to the WT. The construct p2hair (D) carries two
strong synthetic hairpin structures in front of the β-galactosidase mRNA. Similarly, the β-galactosidase
activity of p2hair was reduced in mutant strains dbp7∆, yrf1-6∆, and tif2∆ compared to the WT. The
values were normalized to the WT. All experiments were carried out in triplicates (n ≥ 3), and the
error bars reflect the standard deviation. ‘*’ and ‘**’ reflect statistically significant results compared
to WT, with p-values ≤ 0.05 or ≤ 0.005, respectively. The insets illustrate schematic reporter mRNA
structures.
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Figure 5. Spot test and colony count analysis demonstrated that dbp7∆ and yrf1-6∆ exhibit increased
PEITC sensitivity. (A) Yeast cells are serially diluted (10−1 to 10−4) and spotted onto YPD media
with 15 µM PEITC. tif2∆, dbp7∆, and yrf1-6∆ demonstrated enhanced sensitivity to 15 uM PEITC
drug treatment relative to the WT, which is reversed by reintroducing corresponding overexpression
plasmids. All experiments were conducted in triplicates with similar outcomes. (B) When treated with
PEITC, the mutant strains tif2∆, dbp7∆, and yrf1-6∆ formed considerably fewer colonies than the WT.
Yeast strains bearing the relevant overexpression plasmids had PEITC sensitivities that resembled that
of the WT. The bars reflect mean values (n ≥ 3), and the error bars represent standard deviation; One-
way ANOVA with Post Hoc Tukey Test, p-value ≤0.05, was used to establish statistically significant
observations indicated by ‘*’.

To study GIs in yeast, two mating types: α-mating type (Mat α) and a-mating type
(Mat a), are commonly utilized. Mat “α” contains the target gene deletion and is crossed
with an array of Mat “a” single gene deletion to create double gene deletions [25]. The
phenotypic fitness of the strains is measured using colony size. We used this approach to
look for genetic links between our target genes, DBP7 and YRF1-6, and nearly 1000 other
genes, including ~700 linked to gene expression pathways and a random sample group
of ~300 genes used as control (See Table S1). We uncovered a series of intriguing nGIs as
well as multiple shared gene hits between DBP7 and YRF1-6 (See Table S2). A substantial
proportion of these hits are linked with translation and translation initiation, as determined
using the functional enrichment analysis (Figure 6).

For DBP7, we identified nGIs with genes including ANB1, EBS1, and GCN3, among
others (Figure 6). ANB1 is a ribosome-binding protein that encodes the eukaryotic trans-
lation initiation factor eIF5A [26]. It actively catalyzes the formation of peptide bonds
and facilitates translation by resolving ribosomal stalls during protein biosynthesis [27].
GCN3, the alpha subunit of the translation initiation factor eIF2B, is primarily engaged
in translation initiation, mediating the exchange of guanine nucleotides associated with
GTPases, thereby enabling the formation of preinitiation complex in translation initia-
tion [28,29]. Another intriguing interactor, EBS1, is engaged largely in translation inhibition
and nonsense-mediated decay [30]. It physically interacts with the cap-binding proteins
cdc33p and Nam7p, which contribute to translation initiation and control [30,31].
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Figure 6. Negative genetic interactions (nGIs) for DBP7 and YRF1-6. A group of interactors belongs
to the category of translation for DBP7 (p ≤ 3.4 × 10−6) and YRF1-6 (p ≤ 5.8 × 10−9). Several
interactors also fall into the category of translation initiation for DBP7 (p ≤ 2 × 10−8) and YRF1-6
(p ≤ 1.9 × 10−6). Mutual hits shared by two target genes include SHE3, PUF6, SLH1, SGN1, SIP4, and
RPP2A. Genes are represented as circles (nodes), while nGIs are represented by lines/dotted lines
(edges). A representative nGI is indicated in the inset by the red circle. The strength of interactions is
illustrated by gradients of color, with darker shades indicating lower fitness. GIs that were previously
documented in the literature are referred to as existing GIs.

Similarly, YRF1-6 interacted with TMA64, BUD27, and eIF2A, among others, that are
associated with translation (Figure 6). TMA64 is linked to translation initiation, encodes
an RNA binding domain, and interacts with small ribosomal subunits [32]. It has been
demonstrated that TMA64 influences protein synthesis, and its homologous protein in
mammals, eIF2D, facilitates the attachment of the 43S initiation complex to mRNA, forming
a 48S initiation complex during translation initiation [33]. BUD27 is a cytoplasmic protein
that aids in the development of the preinitiation translation complex [34]. eIF2A encodes
the translation initiation factor eIF2a, which is associated with both 40S and 80S ribosomal
subunits [34,35]. It is noteworthy that eIF2a has previously been reported to influence
mRNA secondary structures at the 5′-UTR [36].

Numerous common interactors between DBP7 and YRF1-6 were also discovered,
including SLH1, SHE3, and PUF6. SLH1 codes for a putative RNA helicase that has been
linked to the inhibition of translation of non-poly(A) mRNAs [37,38]. SHE3 codes for an
adapter protein involved in mRNA localization and protein accumulation and promotes
general translation [39,40]. The protein encoded by PUF6 binds to the 3’UTR of ASH1
mRNA and plays a critical role in the synthesis of the 60S ribosomal subunit [41,42].

Conditional nGI occurs when a specified condition is met, enabling an interaction.
Such conditions may include nutrient deprivation/starvation, exposure to cold or heat
shock, or the occurrence of a bioactive chemical at a sub-inhibitory concentration. They
indicate functional connections between genes that develop in response to specific environ-
ments [43,44]. For instance, under specific conditions such as DNA damage, certain gene
function(s) may be modified, and these varied activities are functionally connected to the
activity of an interacting partner. Such case-dependent relationships constitute the founda-
tion of conditional nGIs [45]. In our analysis, with a sub-inhibitory drug concentration of
LiCl (3 mM), we evaluated nGIs for DBP7 and YRF1-6 (See Table S3). The nGIs observed in
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this circumstance are formed in response to exposure to LiCl. As illustrated in Figure 7, we
found new nGIs for our candidate genes DBP7 and YRF1-6.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 10 of 18 
 

 

in polysomes and cytoplasmic stress granules [56,57]. DBP1 encodes for a DEAD box pro-

tein that interacts with the 48S preinitiation complex during translation initiation and re-

cruits mRNAs with structured 5′-UTRs [58,59]. GIS2 is involved in translation control by 

regulating mRNA binding and localization, and it also influences mRNA degradation 

[60]. 

 

Figure 7. Conditional nGIs for DBP7 and YRF1−6 under a subtle sub-inhibitory concentration of 

LiCl (3 mM). A collection of genetic interactors implicated in the control of translation for both DBP7 

(p ≤ 8.1 × 10−6) and YRF1−6 (p ≤ 6.2 × 10−6) is observed. DBP7 and YRF1−6 share common interactors 

SRO9, GIS2, DBP1, CTK3, GBP2, and MRN1. Genes are represented as circles (nodes), while nGIs 

are represented by lines/dotted lines (edges). A representative nGI is indicated in the inset by the 

red circle. The strength of interactions is illustrated by gradients of colour, with darker shades indi-

cating lower fitness. GIs that were previously documented in the literature are referred to as existing 

GIs. 

Phenotypic suppression array (PSA) analysis explores a different type of interaction 

where the overexpression of a target gene compensates for the absence of another, under 

a specific condition [22,61–63]. It is an informative type of interaction because it may re-

veal functional associations between two genes. In this analysis, the gene mutant array 

was subjected to 10 mM LiCl. Several tested mutant strains demonstrated greater cell sen-

sitivity. We then sought to compensate for the reported sensitive phenotypes using the 

introduction of DBP7 and YRF1−6 overexpression plasmids. As mentioned above, colony 

size was used to measure phenotypic fitness. The incorporation of DBP7 or YRF1−6 over-

expression plasmid recovered the cell sensitivity caused by LiCl treatment in four gene 

deletion mutant strains MRN1, GCN2, BCK1, and DHH1 (Figure 8). MRN1 encodes an 

RNA-binding protein that regulates translation by binding to specific categories of mRNA 

that include uORFs and IRES motifs [64,65]. GCN2 encodes for a protein kinase found in 

cytosolic ribosomes that controls translation initiation by phosphorylating the translation 

initiation factor eIF2 and influences the overall translation rate [66]. BCK1 encodes for a 

kinase which influences several cellular processes, including translation [67]. DHH1 is a 

cytoplasmic DEAD-box helicase that facilitates mRNA stability, mRNA degradation, and 

polyadenylation at the 5′-UTR of mRNAs [68]. 

Figure 7. Conditional nGIs for DBP7 and YRF1-6 under a subtle sub-inhibitory concentration of
LiCl (3 mM). A collection of genetic interactors implicated in the control of translation for both
DBP7 (p ≤ 8.1 × 10−6) and YRF1-6 (p ≤ 6.2 × 10−6) is observed. DBP7 and YRF1-6 share common
interactors SRO9, GIS2, DBP1, CTK3, GBP2, and MRN1. Genes are represented as circles (nodes),
while nGIs are represented by lines/dotted lines (edges). A representative nGI is indicated in the
inset by the red circle. The strength of interactions is illustrated by gradients of colour, with darker
shades indicating lower fitness. GIs that were previously documented in the literature are referred to
as existing GIs.

Under LiCl treatment, DBP7 is associated with numerous translation control genes,
including DTD1, CTK1, and EAP1, among others. These interactions were not observed
in the absence of LiCl. DTD1 is involved in the regulation of protein synthesis machinery
under nutrient deprivation or stress, and it affects nonsense suppression via alteration
of the protein translation machinery [46]. CTK1 regulates various translation processes,
such as mRNA processing, ribosomal binding, and initiation complex formation, as well as
functioning as a vital factor in enhancing translation fidelity. It also stimulates the formation
of the 80S initiation complex [47–49]. Another intriguing negative interactor is EAP1, which
encodes an eIF4E-associated binding protein and controls the global translation rate by
inhibiting eIF4G-eIF4E binding [50,51]. It stimulates decapping and accelerates mRNA
degradation by promoting association with eIF4E [52]. Of interest, eIF4E is a component of
the eIF4F complex, which also includes eIF4A, eIF4G, and eIF4E.

In addition, YRF1-6 interacted conditionally with several translation control genes,
including EDC1 and PSK1. EDC1 encodes for an RNA binding protein that controls mRNA
decapping and plays an active role in translation under stress conditions [53,54]. PSK1
encodes for a kinase with a PAS domain that controls protein synthesis during glycogen
formation and is primarily involved in the process of protein phosphorylation [55]

Furthermore, we identified several common conditional interactors between DBP7
and YRF1-6 that are involved in translation regulation, including SRO9, GIS2, and DBP1,
among others. SRO9 encodes a cytoplasmic RNA-binding protein that controls the global
translation rate and is involved in mRNA binding and translation regulation. It is found
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in polysomes and cytoplasmic stress granules [56,57]. DBP1 encodes for a DEAD box
protein that interacts with the 48S preinitiation complex during translation initiation and
recruits mRNAs with structured 5′-UTRs [58,59]. GIS2 is involved in translation control by
regulating mRNA binding and localization, and it also influences mRNA degradation [60].

Phenotypic suppression array (PSA) analysis explores a different type of interaction
where the overexpression of a target gene compensates for the absence of another, under a
specific condition [22,61–63]. It is an informative type of interaction because it may reveal
functional associations between two genes. In this analysis, the gene mutant array was
subjected to 10 mM LiCl. Several tested mutant strains demonstrated greater cell sensitivity.
We then sought to compensate for the reported sensitive phenotypes using the introduction
of DBP7 and YRF1-6 overexpression plasmids. As mentioned above, colony size was
used to measure phenotypic fitness. The incorporation of DBP7 or YRF1-6 overexpression
plasmid recovered the cell sensitivity caused by LiCl treatment in four gene deletion mutant
strains MRN1, GCN2, BCK1, and DHH1 (Figure 8). MRN1 encodes an RNA-binding protein
that regulates translation by binding to specific categories of mRNA that include uORFs
and IRES motifs [64,65]. GCN2 encodes for a protein kinase found in cytosolic ribosomes
that controls translation initiation by phosphorylating the translation initiation factor eIF2
and influences the overall translation rate [66]. BCK1 encodes for a kinase which influences
several cellular processes, including translation [67]. DHH1 is a cytoplasmic DEAD-box
helicase that facilitates mRNA stability, mRNA degradation, and polyadenylation at the
5′-UTR of mRNAs [68].
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Figure 8. Overexpression of DBP7 and YRF1-6 restores the cell sensitivity caused by 10 mM LiCl
treatment in yeast mutant strains mrn1∆, gcn2∆, bck1∆, and dhh1∆ to 10 mM LiCl. MRN1, GCN2, BCK1,
and DHH1 are involved in the regulation of translation. A representative interaction is indicated
in the inset by the red circle; it illustrates the phenotype recovered using the introduction of DBP7
overexpression plasmid in media supplemented with 10 mM LiCl.

3. Discussion

It is well-documented that mRNA structures at the 5’-UTR can affect translation
initiation activity [15]. The findings in this study demonstrate that DBP7 and YRF1-6
regulate PGM2 mRNA translation at its 5′-UTR region. Similar findings were found
for additional mRNAs that have distinct secondary structures at their 5′-UTRs. Several
hypotheses may be suggested to explain the activity of DBP7 and YRF1-6 on structured
mRNA translation. The simplest interpretation is that one or both proteins may contain
helicase function, implicated in the 5′-UTR unwinding of structured mRNAs. This is a likely
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explanation as these genes are already thought to have helicase functions [69,70]. Another
possibility is that these factors may also influence the activity of other helicases and by doing
so, they alter structured mRNA translation. In addition, it is possible that DBP7 and YRF1-6
could modify ribosome function, which may have an effect on the translation of structured
mRNAs. Consequently, it is possible that in the absence of DBP7, ribosomes might have
a slight adjustment making them less amenable to translating structured mRNAs. In
agreement with this possibility, we also observed several interactions for DBP7 and YRF1-6
with various ribosomal proteins in the current study, indicating a possible relationship
between our candidate genes and translation machinery. An alternate argument is that
these genes may influence the biology of mRNAs. DBP7 and YRF1-6 may thereby influence
mRNA biosynthesis, which may affect the translatability of structured RNAs.

Interestingly deletion of the target genes did not show similar patterns in the levels
of translation reduction for the different constructs, pBCell, pRTN, pTAR, and p2hair
(Figure 4). For example, the deletion of DBP7 reduced the translation of pBCell and p2hair
by approximately 90%. However, its lowering effect on the translation of pRTN was
approximately 40%. Similarly, deletion of the positive control, TIF2, appeared to affect the
translation of pBCell more than the other constructs. Each of the constructs carry distinct
secondary structures at the 5′-UTR that may explain these differences (Figure 4). These
structures vary in configuration, free energy value, loop sequence, GC content, length, and
their distance from the 5’ cap, to name a few. Such differences are thought to be important
in restricting translation activity [71]. For subsequent research, it would be interesting to
study the causes of the observed differences in the translation of different constructs using
particular gene deletion mutants.

The discovery of new gene functions associated with the regulation of structured
mRNA translation reveals that structured mRNA translation is more mosaic and compli-
cated than previously assumed. Moreover, it demonstrates that mRNAs with complex
structures may have increased activity in dynamic regulatory networks and biological
pathways during translation. Depending on the structure and content of these sequences,
different host mutations may result in different mRNA translation levels for different hosts.
In addition, the present study provides an additional link to LiCl’s influence on biolog-
ical function and regulation of structured mRNA translation in yeast. Translational or
other pre-clinical research are warranted to discover how these mechanistic insights could
improve the responders and non-responders of bipolar disease patients to LiCl therapy.
Investigating the 5′-UTR of different human genes may uncover new mechanisms for LiCl
activity. Due to the therapeutic use of LiCl, subsequent investigations on the impact of
other compounds affecting the translation of complex mRNA secondary structures at the
5′-UTR would be of interest.

4. Materials and Methods
4.1. Strains and Plasmids

Deletion strains in BY4741 background (MATa orf∆: kanMX4 his3∆1 leu2∆0 met15∆0
ura3∆0) were obtained from the yeast gene deletion collection [72] and verified using
PCR analysis. Deletion strains in BY4742 background (MATα can1∆:STE2pr-HIS3 lyp11∆
ura31∆ leu21∆ his31∆ met151∆) were generated using PCR-mediated gene disruption
as previously described [20,73]. Overexpression plasmids were acquired from the yeast
overexpression plasmid library [20]. PGM2p-GFP fusion strain was obtained from the
Yeast gene-GFP fusion library [21] and verified using PCR analysis. The control plasmid,
p416, carried a lacz expression cassette with a gal promoter [74]. The HIV1 (TAR1), RTN
(FOAP-11), Bcell (BCL-2), 2-hair, and PGM2 hairpin constructs were cloned by utilizing the
XbaI restriction site, located upstream of lacz ORF and in between the gal promoter and the
β-galactosidase reporter gene in the p416 expression vector (lacz expression cassette).

pTAR construct contains 5′-UTR of HIV1-TAR gene (5’GGTTCTCTGGTTAGCCAGATC-
TGAGCCCGGGAGCTCTCTGGCTAGCTAGGGAACCCATGCTTAAGCCTCAATAAAG-
CTTGCCTTGAGTGCTTCAAGTAGTGTGTGCC 3’), pRTN has 5′-UTR of FOAP-11 gene



Int. J. Mol. Sci. 2023, 24, 1785 13 of 18

(5’GGGATTTTTACATCGTCTTGGTAAAGGCGTGTGACCCATAGGTTTTTTAGATCAAA-
CACGTCTTTACAAAGGTGATCTAAGTATCTC3’), pBCell carries 5′-UTR of BCL-2 gene (5′

GGGGGCCGUGGGGUGGGAGCUGGGGGGGCCGUGGGGU GGGAGCUGGG 3′), 2-hair
contains 5′-UTR of the construct (5’ CTTGGTAAAGGGGGUGGTCTGAGCCCGGGAGC-
TCTCTGCTGCTTAAGCCTCGGATTTT 3’), and pPGM2 construct has 5′-UTR of PGM2
gene (5′TAATAAGAAAAAGATCAC CAATCTTTCTCAGTAAAAAAAGAACAAAAGT-
TAACATAACAT 3′). Furthermore, all plasmids carried an ampicillin-resistant gene for
selection during plasmid transformations in the DH5α strain of Escherichia coli (E. coli).
URA3 gene was used for selecting transformed yeast. Plasmid extraction of E. coli was con-
ducted with the GeneJET plasmid miniprep kit (Thermofisher®, Mississauga, ON, Canada),
and yeast plasmid extraction was performed using the yeast plasmid miniprep kit (Omega
Biotek, Norcross, GA, USA). Yeast colonies were grown in a YP medium containing 1%
yeast extract and 2% peptone. In yeast media, the carbon source was 2% galactose or 2%
glucose. For solid media, 2% agar was utilized. To prepare complete synthetic media with
selective amino acids, a 0.67% yeast nitrogen base without amino acids and a 0.2% amino
acid dropout mix were used. E. coli was cultured in an LB medium (Lysogeny Broth).

4.2. Drug Sensitivity Analysis

Specific yeast colonies were cultured for 48 h at 30 ◦C in liquid YPgal (YP + 2%
galactose) media. Spot test analysis was performed by spotting serial dilutions of cell
suspensions onto solid media with or without LiCl. For drug sensitivity analysis to LiCl,
galactose media or glucose media containing 10 mM LiCl concentration was used, as
discussed previously [13,18]. The ssensitivity of our target strains to LiCl was determined
by examining the growth of gene deletion mutants compared to those of the wild type
(WT) strain. To validate that the reported sensitivities correspond to the deletion of our
candidate genes, overexpression constructs pDBP7 and pYRF1-6 were transformed into the
target gene deletion strains. For colony count analysis, 100 µL of each strain at 10−4 cell
culture concentration was plated onto YPgal petri plates with or without LiCl. The plates
were evaluated based on colony formation after 48 h. All the experiments were carried out
in triplicates. To evaluate statistical significance, one-way ANOVA analysis (p-value ≤ 0.05)
was performed. For Phenethyl Isothiocyanate (PEITC) sensitivity analysis, liquid cultures
were normalized to OD 0.1 and plated onto a YPD medium with 15 µM PEITC.

4.3. mRNA Quantification Analysis (qRT-PCR)

The PGM2 mRNA levels were determined using a PGM2p-GFP yeast strain cul-
tured in liquid YPgal medium overnight with or without 10 mM LiCl, as previously
described [14,18]. The Qiagen® RNeasy Mini Pack (Qiagen, Toronto, ON, Canada) was
used to harvest total RNA. The complementary DNA (cDNA) was synthesized with the
help of a Bio-Rad® cDNA Synthesis Kit, (Bio-Rad®, Mississauga, ON, Canada) and the
quantitative real-time PCR was carried out with Bio-Rad® IQ SYBR Green Supermix (Bio-
Rad®, Mississauga, ON, Canada). As an internal control, the housekeeping gene PGK1 was
employed. Methodology and data analysis were conducted per MIQE principles [75]. At
least three technical and biological replicates were used in each experiment. qPCR primers
used in this study are as follows:

PGK1 Forward: ATGTCTTTATCTTCAAAGTT; Reverse: TTATTTCTTTTCGGATAAGA;
PGM2 Forward: GGTGACT CCGTCGCAATTAT; Reverse: CGTCGAACAAAGCACAGAAA.

4.4. Western Blot Analysis

PGM2p-GFP fusion protein content was analyzed using quantitative western blotting,
as indicated previously [13,14]. Gene deletion mutant strains in the PGM2p-GFP back-
ground were cultured in media either containing or lacking LiCl to evaluate the protein
levels of PGM2. Protein concentration was determined using the Bradford Protein Assay
(BSA). Using Mini-PROTEAN Tetra cell electrophoresis equipment (Bio-Rad®, Mississauga,
ON, Canada), 50 µg of total extracted protein was run on a 10% SDS-PAGE gel. Trans-Blot
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Semi-Dry Transfer (Bio-Rad®, Mississauga, ON, Canada) was used to transfer protein
bands onto a 0.45 m nitrocellulose membrane. A mouse monoclonal anti-GFP antibody
(Santa Cruz®) was used to detect PGM2p-GFP protein levels, and a mouse monoclonal
anti-PGK1 antibody was used to assess PGK1 protein levels (internal control). At least
three technical and biological replicates were used in each experiment.

4.5. Quantitative β-Galactosidase Assay

To assess the activity of lacZ expression cassettes, a quantitative β-galactosidase as-
say experiment was conducted using ONPG (O-nitrophenyl—D-galactopyranoside), as
reported [14,18]. All experiments were conducted in triplicates, and the one-way ANOVA
method was used to assess statistically significant changes.

4.6. Genetic Interaction Analysis

Synthetic Genetic Array (SGA) analysis was conducted by mating two strains, MATa
mating type and MATα mating type, to produce progenies carrying both gene deletions.
MATa strains were obtained from the yeast knockout library [72]. MATα mating strains
that carried the target gene knockout were generated using homologous recombination, as
previously reported [20,72]. PCR analysis was used to confirm a successful gene knockout.
We investigated genetic interactions between our target genes (GI) using a 384-formatted
SGA, as described before [25]. Conditional SGA was carried out by introducing the double
mutants to a low sub-inhibitory concentration of LiCl (3 mM) [61]. Phenotypic Suppression
Array (PSA) analysis was performed by mating MATa single deletion array with a MATα
yeast strain containing the target overexpression plasmid [22,61]. Compensation for LiCl
sensitivity of the single deletion mutants with the overexpression analysis was used to
establish a putative functional relationship between the deleted and the overexpressed
gene as before two genes [19,33].

Cell fitness was determined using colony size measurements [28,34]. SGA Software
was used to determine the colony size and similarity of colonies [76]. A Cell Fitness
reduction of 30% or more was considered. Each experiment was conducted three times,
and those findings that were consistent in at least two repeats were considered. Using
Gene ontology enrichment methods, observed gene hits were grouped according to their
biological and molecular functions using Genemania. http://genemania.org (Accessed on
20 December 2021).
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